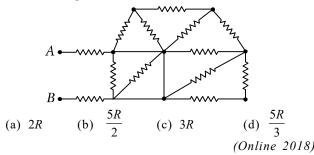

CHAPTER

Current Electricity

- Two batteries with e.m.f. 12 V and 13 V are connected in parallel across a load resistor of 10 Ω . The internal resistances of the two batteries are 1 Ω and 2 Ω respectively. The voltage across the load lies between
 - (a) 11.6 V and 11.7 V
- (b) 11.5 V and 11.6 V
- (c) 11.4 V and 11.5 V
- (d) 11.7 V and 11.8 V

(2018)

- On interchanging the resistances, the balance point of a meter bridge shifts to the left by 10 cm. The resistance of their series combinations is 1 k Ω . How much was the resistance on the left slot before the interchange?
 - (a) 990Ω
- (b) 505Ω
- (c) 550Ω
- (d) 910Ω
- (2018)



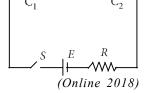
In a meter bridge, as shown in the figure, it is given that resistance $Y = 12.5 \Omega$ and that the balance is obtained at a distance 39.5 cm from end A (by Jockey J). After interchanging the resistances X and Y, a new balance point is found at a distance l_2 from end A. What are the values of X and l_2 ?

- (a) 19.15 Ω and 60.5 cm (b) 8.16 Ω and 60.5 cm
- (c) 8.16Ω and 39.5 cm
- (d) 19.15 Ω and 39.5 cm

(Online 2018)

In the given circuit all resistances are of value R ohm each. The equivalent resistance between A and B is

- A constant voltage is applied between two ends of a metallic wire. If the length is halved and the radius of the wire is doubled, the rate of heat developed in the wire will be
 - (a) Increased 8 times
- (b) Unchanged
- (c) Doubled
- (Online 2018) (d) Halved
- A copper rod of cross-sectional area A carries a uniform current I through it. At temperature T, if the volume charge density of the rod is ρ , how long will the charges take to travel a distance d?


(a)
$$\frac{\rho dA}{I}$$

- (a) $\frac{\rho dA}{I}$ (b) $\frac{\rho dA}{IT}$ (c) $\frac{2\rho dA}{I}$ (d) $\frac{2\rho dA}{IT}$

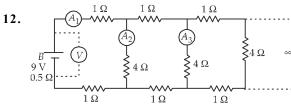
In the following circuit, the switch S is closed at t = 0. The charge on the capacitor C_1 as a function of time will

be given by
$$\left(C_{eq} = \frac{C_1 C_2}{C_1 + C_2}\right)$$

- (a) $C_{eq}E$ [1 exp(-t/RC_{eq})] (b) C_1E [1-exp(-tR/C₁)] (c) $C_{eq}E$ exp(-t/RC_{eq}) (d) C_2E [1-exp(-t/RC₂)]

- A heating element has a resistance of 100 Ω at room temperature. When it is connected to a supply of 220 V, a steady current of 2 A passes in it and temperature is 500°C more than room temperature. What is the temperature coefficient of resistance of the heating element?
 - (a) $1 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$
- (b) $2 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$
- (c) $0.5 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$
- (d) $5 \times 10^{-4} \, {}^{\circ}\text{C}^{-1}$

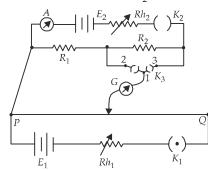
(Online 2018)


- In the given circuit diagram when the current reaches steady state in the circuit, the charge on the capacitor of capacitance C will be

In the above circuit the current in each resistance is

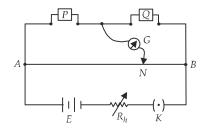
- (a) 1 A
- (b) 0.25 A
- (c) 0.5 A
- (d) 0 A
- (2017)
- 11. Which of the following statement is false?
 - (a) Wheatstone bridge is the most sensitive when all the four resistances are of the same order of magnitude.
 - (b) In a balanced Wheatstone bridge if the cell and the galvanometer are exchanged, the null point is disturbed.
 - (c) A rheostat can be used as a potential divider.
 - (d) Kirchhoff's second law represents energy conservation. (2017)

A 9 V battery with internal resistance of 0.5 Ω is connected across an infinite network as shown in the figure. All ammeters A_1 , A_2 , A_3 and voltmeter V are ideal.


Choose correct statement.

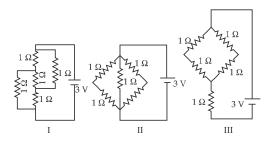
- (a) Reading of V is 9 V
- (b) Reading of A_1 is 2 A
- (c) Reading of V is 7 V
- (d) Reading of A_1 is 18 A

(Online 2017)


13. A potentiometer PQ is set up to compare two resistances as shown in the figure. The ammeter A in the circuit reads 1.0 A when two way key K_3 is open. The balance point is at a length l_1 cm from P when two way key K_3 is plugged in between 2 and 1, while the balance points is at a length l_2 cm from P when key K_3 is plugged in between 3 and 1.

The ratio of two resistances $\frac{R_1}{R_2}$, is found to be

(Online 2017)


14. In a meter bridge experiment resistances are connected as shown in the figure. Initially resistance $P = 4 \Omega$ and the neutral point N is at 60 cm from A. Now an unknown resistance R is connected in series to P and the new position of the neutral point is at 80 cm from A. The value of unknown resistance R is

- (a) $\frac{20}{3}\Omega$

(Online 2017)

15. The figure shows three circuits I, II and III which are connected to a 3 V battery. If the powers dissipated by the configurations I, II and III are P_1, P_2 and P_3 respectively,

- (a) $P_3 > P_2 > P_1$ (c) $P_1 > P_3 > P_2$

- (b) $P_2 > P_1 > P_3$ (d) $P_1 > P_2 > P_3$

(Online 2017)

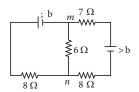
- **16.** A uniform wire of length l and radius r has a resistance of 100 Ω . It is recast into a wire of radius $\frac{7}{2}$. The resistance of new wire will be
 - (a) 400Ω
- (b) 100Ω
- (c) 200 Ω
- (d) 1600Ω

(Online 2017)

- 17. The temperature dependence of resistances of Cu and undoped Si in the temperature range 300-400 K, is best described by:
 - (a) Linear increase for Cu, linear increase for Si.
 - (b) Linear increase for Cu, exponential increase for Si.
 - (c) Linear increase for Cu, exponential decrease for Si.
 - (d) Linear decrease for Cu, linear decrease for Si.

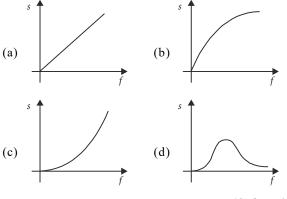
(2016)

18. In the circuit shown, the resistance r is a variable resistance. If for r = fR, the heat generation in r is maximum then the value of f is


(Online 2016)

19. The resistance of an electrical toaster has a temperature dependence given by $R(T) = R_0 [1 + \alpha (T - T_0)]$ in its range of operation. At $T_0 = 300$ K, R = 100 Ω and at T = 500 K, $R = 120 \Omega$. The toaster is connected to a voltage source at 200 V and its temperature is raised at a constant rate from 300 to 500 K in 30 s. The total work done in raising the temperature is

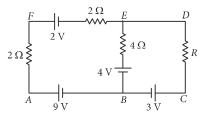
- (a) $400 \ln \frac{5}{6}$ J
- (b) $200 \ln \frac{2}{3}$ J
- (c) 300 J
- (d) $400 \ln \frac{1.5}{1.3}$ J


(Online 2016)

- 20. When 5 V potential difference is applied across a wire of length 0.1 m, the drift speed of electrons is 2.5×10^{-4} m s⁻¹. If the electron density in the wire is 8×10^{28} m⁻³, the resistivity of the material is close to
 - (a) $1.6 \times 10^{-6} \Omega \text{ m}$
- (b) $1.6 \times 10^{-5} \Omega \text{ m}$
- (c) $1.6 \times 10^{-8} \Omega \text{ m}$
- (d) $1.6 \times 10^{-7} \Omega \text{ m}$ (2015)
- 21. In the circuit shown, the current in the 1 Ω resistor is
 - (a) 0.13 A, from *Q* to *P*
 - (b) 0.13 A, from *P* to *Q*
 - (c) 0.3 A, from *P* to *Q*
 - (d) 0 A

(2015)

22. Suppose the drift velocity v_d in a material varied with the applied electric field E as $V_d \alpha \sqrt{E}$. Then V-I graph for a wire made of such a material is best given by


(Online 2015)

- 23. A 10 V battery with internal resistance 1 Ω and a 15 V battery with internal resistance 0.6 Ω are connected in parallel to a voltmeter (see figure). The reading in the voltmeter will be close to
 - (a) 11.9 V
 - (b) 12.5 V
 - (c) 13.1 V
 - (d) 24.5 V

(Online 2015)

24. In the electric network shown, when no current flows through the 4 Ω resistor in the arm EB, the potential difference between the points A and D will be

(a) 3 V

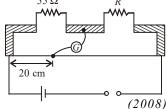
- (b) 4 V
- (c) 5 V
- (d) 6 V (Online 2015)
- 25. In a large building, there are 15 bulbs of 40 W, 5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1 kW. The voltage of the electric mains is 220 V. The minimum capacity of the main fuse of the building will be
 - (a) 14 A
- (b) 8 A
- (c) 10 A
- (d) 12 A (2014)
- 26. The supply voltage to a room is 120 V. The resistance of the lead wires is 6 Ω . A 60 W bulb is already switched on. What is the decrease of voltage across the bulb, when a 240 W heater is switched on in parallel to the bulb?
 - (a) 10.04 Volt
- (b) zero Volt
- (c) 2.9 Volt
- (d) 13.3 Volt
- (2013)
- 27. Two electric bulbs marked 25 W-220 V and 100 W-220 V are connected in series to a 440 V supply. Which of the bulbs will fuse?
 - (a) 100 W
- (b) 25 W
- (c) neither
- (d) both
- (2012)
- 28. If a wire is stretched to make it 0.1% longer, its resistance will
 - (a) increase by 0.05%
- (b) increase by 0.2%
- (c) decrease by 0.2%
- (d) decrease by 0.05% (2011)
- 29. Two conductors have the same resistance at 0°C but their temperature coefficients of resistance are α_1 and α_2 . The respective temperature coefficients of their series and parallel combinations are nearly

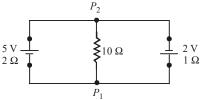
- (a) $\frac{\alpha_1 + \alpha_2}{2}$, $\frac{\alpha_1 + \alpha_2}{2}$ (b) $\frac{\alpha_1 + \alpha_2}{2}$, $\alpha_1 + \alpha_2$ (c) $\alpha_1 + \alpha_2$, $\frac{\alpha_1 + \alpha_2}{2}$ (d) $\alpha_1 + \alpha_2$, $\frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2}$ (2010)
- **30.** This question contains Statement-1 and Statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement-1: The temperature dependence of resistance is usually given as $R = R_0(1 + \alpha \Delta t)$. The resistance of a wire changes from $100~\Omega$ to $150~\Omega$ when its temperature is increased from 27°C to 227°C. This implies that $\alpha = 2.5 \times 10^{-3}$ /°C

Statement-2: $R = R_0(1 + \alpha \Delta t)$ is valid only when the change in the temperature ΔT is small and $\Delta R = (R - R_0) \ll R_0$.

- (a) Statement-1 is true, Statement-2 is false
- (b) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statement-1.
- (c) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (d) Statement-1 is false, Statement-2 is true. (2009)


31. Shown in the figure below is a meter-bridge set up with null deflection in the galvanometer. The value of the unknown resistance R is

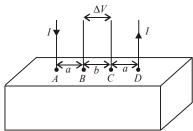

(b) 13.75Ω

(c) 220Ω

(d) 110Ω

32. A 5 V battery with internal resistance 2 Ω and 2 V battery with internal resistance 1 Ω are connected to a 10 Ω resistor as shown in the figure. The current in the 10Ω resistor

(a) $0.27 \text{ A } P_1 \text{ to } P_2$


(b) $0.27 \text{ A } P_2 \text{ to } P_1$

(c) $0.03 \text{ A } P_1 \text{ to } P_2$

(d) $0.03 \text{ A } P_2 \text{ to } P_1$ (2008)

Directions: Questions 33 and 34 are based on the following paragraph.

Consider a block of conducting material of resistivity p shown in the figure. Current I enters at A and leaves from D. We apply superposition principle to find voltage ΔV developed between B and C. The calculation is done in the following steps:

- Take current I entering from A and assume it to spread over a hemispherical surface in the block.
- (ii) Calculate field E(r) at distance r from A by using Ohm's law $E = \rho i$, where i is the current per unit area at r.
- (iii) From the r dependence of E(r), obtain the potential V(r) at r.
- (iv) Repeat (i), (ii) and (iii) for current I leaving D and superpose results for A and D.
- **33.** ΔV measured between B and C is

(a)
$$\frac{\rho I}{2\pi(a-b)}$$

(b)
$$\frac{\rho I}{\pi a} - \frac{\rho I}{\pi (a+b)}$$

(c)
$$\frac{\rho I}{a} - \frac{\rho I}{(a+b)}$$

- (a) $\frac{\rho I}{2\pi(a-b)}$ (b) $\frac{\rho I}{\pi a} \frac{\rho I}{\pi(a+b)}$ (c) $\frac{\rho I}{a} \frac{\rho I}{(a+b)}$ (d) $\frac{\rho I}{2\pi a} \frac{\rho I}{2\pi(a+b)}$
- **34.** For current entering at A, the electric field at a distance

(a)
$$\frac{\rho I}{4\pi r^2}$$

(b)
$$\frac{\rho I}{8\pi r^2}$$

(a)
$$\frac{\rho I}{4\pi r^2}$$
 (b) $\frac{\rho I}{8\pi r^2}$ (c) $\frac{\rho I}{r^2}$ (d) $\frac{\rho I}{2\pi r^2}$ (2008)

35. The resistance of a wire is 5 ohm at 50°C and 6 ohm at 100°C. The resistance of the wire at 0°C will be

(a) 3 ohm (c) 1 ohm (b) 2 ohm

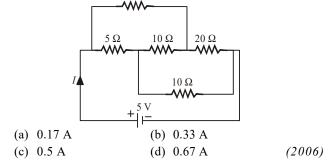
(d) 4 ohm (2007)

36. A material B has twice the specific resistance of A. A circular wire made of B has twice the diameter of a wire made of A. Then for the two wires to have the same resistance, the ratio l_B/l_A of their respective lengths must be

(c) 1/2

(2006)

37. The resistance of a bulb filament is 100Ω at a temperature of 100°C. If its temperature coefficient of resistance be 0.005 per °C, its resistance will become 200 Ω at a temperature of


(a) 200°C

(b) 300°C

(c) 400°C (d) 500°C

(2006)

38. The current I drawn from the 5 volt source will be

39. In a Wheatstone's bridge, three resistance P, Q and R connected in the three arms and the fourth arm is formed by two resistance S_1 and S_2 connected in parallel. The condition for bridge to be balanced will be

(a)
$$\frac{P}{Q} = \frac{R}{S_1 + S_2}$$

(c)
$$\frac{P}{Q} = \frac{R(S_1 + S_2)}{S_1 S_2}$$

(a) $\frac{P}{Q} = \frac{R}{S_1 + S_2}$ (b) $\frac{P}{Q} = \frac{2R}{S_1 + S_2}$ (c) $\frac{P}{Q} = \frac{R(S_1 + S_2)}{S_1 S_2}$ (d) $\frac{P}{Q} = \frac{R(S_1 + S_2)}{2S_1 S_2}$ (2006)

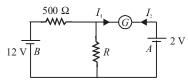
- **40.** The Kirchhoff's first law $(\sum i = 0)$ and second law $(\sum iR = \sum E)$, where the symbols have their usual meanings, are respectively based on
 - (a) conservation of charge, conservation of energy
 - (b) conservation of charge, conservation of momentum
 - (c) conservation of energy, conservation of charge
 - (d) conservation of momentum, conservation of charge. (2006)
- 41. An electric bulb is rated 220 volt 100 watt. The power consumed by it when operated on 110 volt will be
 - (a) 50 watt

(b) 75 watt

(c) 40 watt

(d) 25 watt

(2006)


- 42. A thermocouple is made from two metals, antimony and bismuth. If one junction of the couple is kept hot and the other is kept cold then, an electric current will
 - (a) flow from antimony to bismuth at the cold junction
 - (b) flow from antimony to bismuth at the hot junction
 - (c) flow from bismuth to antimony at the cold junction
 - (d) not flow through the thermocouple. (2006)

- 43. In a potentiometer experiment the balancing point with a cell is at length 240 cm. On shunting the cell with a resistance of 2 Ω , the balancing length becomes 120 cm. The internal resistance of the cell is
 - (a) 4Ω

(b) 2Ω

(c) 1 Ω

- (2005)(d) 0.5Ω
- 44. Two sources of equal emf are connected to an external resistance R. The internal resistances of the two sources are R_1 and R_2 ($R_2 > R_1$). If the potential difference across the source having internal resistance R_2 is zero, then
- (a) $R = \frac{R_1 R_2}{R_1 + R_2}$ (b) $R = \frac{R_1 R_2}{R_2 R_1}$ (c) $R = R_2 \frac{(R_1 + R_2)}{(R_2 R_1)}$ (d) $R = R_2 R_1$ (2005)
- **45.** In the circuit, the galvanometer G shows zero deflection. If the batteries A and B have negligible internal resistance, the value of the resistor R will be

- (a) 500Ω
- (b) 1000Ω
- (c) 200Ω
- (d) 100Ω

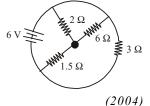
(2005)

- 46. An energy source will supply a constant current into the load if its internal resistance is

 - (b) non-zero but less than the resistance of the load
 - (c) equal to the resistance of the load
 - (d) very large as compared to the load resistance.

(2005)

(2005)

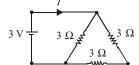

- 47. The resistance of hot tungsten filament is about 10 times the cold resistance. What will be the resistance of 100 W and 200 V lamp when not in use?
 - (a) 400Ω
- (b) 200Ω
- (c) 40Ω
- (d) 20Ω

48. Two voltameters, one of copper and another of silver, are joined in parallel. When a total charge q flows through the voltmeters, equal amount of metals are deposited. If the electrochemical equivalents of copper and silver are z_1 and z_2 respectively the charge which flows through the

- silver voltammeter is
- (a) $q \frac{z_1}{z_2}$
- (c) $\frac{q}{1 + \frac{z_1}{z_2}}$
- (2005)
- 49. A heater coil is cut into two equal parts and only one part is now used in the heater. The heat generated will now be
 - (a) one fourth
- (b) halved
- (c) doubled
- (d) four times

(2005)

- 50. The thermistors are usually made of
 - (a) metals with low temperature coefficient of resistivity
 - (b) metals with high temperature coefficient of resistivity
 - (c) metal oxides with high temperature coefficient of resistivity
 - (d) semiconducting materials having low temperature coefficient of resistivity. (2004)
- 51. In a metre bridge experiment null point is obtained at 20 cm from one end of the wire when resistance X is balanced against another resistance Y. If X < Y, then where will be the new position of the null point from the same end, if one decides to balance a resistance of 4Xagainst Y?
 - (a) 50 cm (b) 80 cm (c) 40 cm (d) 70 cm (2004)
- 52. An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be
 - (a) 3
- (b) 1/3
- (c) 8/9
- (d) 2 (2004)
- 53. The resistance of the series combination of two resistances is S. When they are joined in parallel the total resistance is P. If S = nP, then the minimum possible value of n is
 - (a) 4
- (b) 3
- (c) 2
- (d) 1 (2004)
- 54. The total current supplied to the circuit by the battery is
 - (a) 1 A
 - (b) 2 A
 - (c) 4 A
 - (d) 6 A

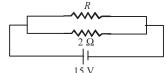


- 55. The electrochemical equivalent of a metal is 3.3×10^{-7} kg per coulomb. The mass of the metal liberated at the cathode when a 3 A current is passed for 2 second will be
 - (a) $19.8 \times 10^{-7} \text{ kg}$
- (b) $9.9 \times 10^{-7} \text{ kg}$
- (c) $6.6 \times 10^{-7} \text{ kg}$
- (d) $1.1 \times 10^{-7} \text{ kg}$ (2004)
- **56.** The thermo emf of a thermocouple varies with the temperature θ of the hot junction as $E = a\theta + b\theta^2$ in volt where the ratio a/b is 700°C. If the cold junction is kept at 0°C, then the neutral temperature is
 - (a) 700°C
- (b) 350°C
- (c) 1400°C
- (d) no neutral temperature is possible for this thermocouple.

(2004)

- 57. Time taken by a 836 W heater to heat one litre of water from 10°C to 40°C is
 - (a) 50 s
- - (b) 100 s (c) 150 s (d) 200 s
- 58. The length of a given cylindrical wire is increased by 100%. Due to the consequent decrease in diameter the change in the resistance of the wire will be
 - (a) 200%
- (b) 100%
- (c) 50%
- (d) 300%
- (2003)

- **59.** A 3 volt battery with negligible internal resistance is connected in a circuit as shown in the figure. The current I, in the circuit will be
 - (a) 1 A
 - (b) 1.5 A
 - (c) 2 A
 - (d) (1/3) A



- (2003)
- **60.** The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f. of a battery whose internal resistance is 0.5 Ω . If the balance point is obtained at l = 30 cm from the positive end, the e.m.f. of the battery is
 - 100.5
- (b) $\frac{30E}{100-0.5}$
- -0.5i, where *i* is the current in the potentiometer wire.
- (d) $\frac{30E}{100}$ (2003)
- 61. A 220 volt, 1000 watt bulb is connected across a 110 volt mains supply. The power consumed will be
 - (a) 750 watt
- (b) 500 watt
- (c) 250 watt
- (d) 1000 watt.
- (2003)
- 62. The negative Zn pole of a Daniell cell, sending a constant current through a circuit, decreases in mass by 0.13 g in 30 minutes. If the electrochemical equivalent of Zn and Cu are 32.5 and 31.5 respectively, the increase in the mass of the positive Cu pole in this time is
 - (a) 0.180 g
- (b) 0.141 g
- (c) 0.126 g
- (d) 0.242 g
- (2003)

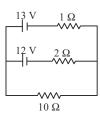
- 63. The thermo e.m.f. of a thermo-couple is 25 μ V/°C at room temperature. A galvanometer of 40 ohm resistance, capable of detecting current as low as 10⁻⁵ A, is connected with the thermocouple. The smallest temperature difference that can be detected by this system is
 - (a) 16°C
- (b) 12°C
- (c) 8°C
- (2003)(d) 20°C
- 64. The mass of a product liberated on anode in an electrochemical cell depends on
 - (a) $(It)^{1/2}$ (b) *It* (where *t* is the time period for which the current is passed).
- (d) I^2t (c) I/t

- **65.** If θ_i is the inversion temperature, θ_n is the neutral temperature, θ_c is the temperature of the cold junction,

- $\begin{array}{lll} \text{(a)} & \theta_i + \theta_\varepsilon = \theta_n \\ \\ \text{(c)} & \frac{\theta_i + \theta_\varepsilon}{2} = \theta_n \end{array} \qquad \begin{array}{lll} \text{(b)} & \theta_i \theta_\varepsilon = 2\theta_n \\ \\ \text{(d)} & \theta_\varepsilon \theta_i = 2\theta_n \end{array}$ (2002)
- 66. A wire when connected to 220 V mains supply has power dissipation P_1 . Now the wire is cut into two equal pieces which are connected in parallel to the same supply. Power dissipation in this case is P_2 . Then $P_2: P_1$ is
 - (a) 1
- (b) 4
- (c) 2 (d) 3
- (2002)
- 67. If in the circuit, power dissipation is 150 W, then R is

(a) 2 Ω (b) 6 Ω (c) 5 Ω (d) 4Ω (2002)

1. (b)	2. (c)	3. (b)	4. (a)	5. (a)	6. (a)	7. (a)	8. (b)	9. (c)	10. (d)	11. (b)	12. (b)
13. (b)	14. (a)	15. (b)	16. (d)	17. (c)	18. (a)	19. (*)	20. (b)	21. (a)	22. (c)	23. (c)	24. (c)
25. (d)	26. (a)	27. (b)	28. (b)	29. (a)	30. (a)	31. (c)	32. (d)	33. (d)	34. (d)	35. (d)	36. (a)
37. (c)	38. (c)	39. (c)	40. (a)	41. (d)	42. (a)	43. (b)	44. (d)	45. (d)	46. (a)	47. (c)	48. (d)
49. (c)	50. (c)	51. (a)	52. (b)	53. (a)	54. (c)	55. (a)	56. (d)	57. (c)	58. (d)	59. (b)	60. (c)
61. (c)	62. (c)	63. (a)	64. (b)	65. (c)	66. (b)	67. (b)	. ,	. ,			


Explanations

1. (b) : Equivalent e.m.f. of parallel batteries

$$\varepsilon = \frac{\frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}}{\frac{1}{r_1} + \frac{1}{r_2}} = \frac{\frac{12}{1} + \frac{13}{2}}{\frac{1}{1} + \frac{1}{2}} = \frac{37}{3} \text{ V}$$
equivalent registance of parallely

Equivalent resistance of parallel batteries,

$$r_{eq} = \frac{2 \times 1}{2+1} = \frac{2}{3}\Omega$$

Now, its equivalent circuit is as drawn.

Current in the circuit, $i = \frac{37/3}{10 + (2/3)} = \frac{37}{32}$ Voltage across the load,

$$V_{10\Omega} = i \times 10 = \frac{37}{32} \times 10 = \frac{370}{32} = 11.56 \text{ V}$$

2. (c) : Let R_1 (left slot) and R_2 (right slot) be two resistances in two slots of a meter bridge.

Initially *l* be the balancing length

Then,
$$\frac{R_1}{R_2} = \frac{l}{(100 - l)}$$
 ...(i) $R_1 + R_2 = 1000 \ \Omega$...(ii)

On interchanging the resistances, balancing length becomes (l-10), so

$$\frac{R_2}{R_1} = \frac{l-10}{110-l}$$
 or $\frac{100-l}{l} = \frac{l-10}{110-l}$ (Using eqn (i))

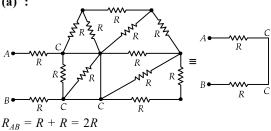
 $11000 + l^2 - 210l = l^2 - 10l$

 $200 \ l = 11000; \ l = 55 \ cm$

From eqn (i), $\frac{R_1}{R_2} = \frac{55}{45}$ or $R_1 = \frac{55}{45}R_2$

$$R_1 = \frac{55}{45}(1000 - R_1)$$
 (Using eqn (ii))

$$R_1 + \frac{55}{45}R_1 = 1000 \times \frac{55}{45}$$
 or $100 R_1 = 1000 \times 55$; $\therefore R_1 = 550 \Omega$


3. (b): For a balanced meter bridge $Y \times 39.5 = X \times (100 - 39.5)$

$$39.3 - X \times (100 - 39.3)$$

$$X = \frac{12.5 \times 39.5}{60.5} = 8.16 \,\Omega$$

When X and Y are interchanged so l_1 and $(100 - l_1)$ will also interchange; and so $l_2 = 60.5$ cm.

4. (a):

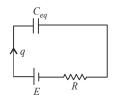
5. (a): Rate of heat developed, $P = \frac{V^2}{R}$

For given V, $P \propto \frac{1}{R} = \frac{A}{\Omega l} = \frac{\pi r^2}{\Omega l}$

Now,
$$\frac{P_1}{P_2} = \left(\frac{r_1^2}{r_2^2}\right) \left(\frac{l_2}{l_1}\right)$$

As per question, $l_2 = l_1/2$ and $r_2 = 2r_1$

$$\therefore \quad \frac{P_1}{P_2} = \frac{1}{4} \times \frac{1}{2} = \frac{1}{8}; \ P_2 = 8P_1$$


6. (a): Current flowing through copper rod is given by $I = neAv_d = \rho Av_d$ $(\cdot, \cdot \circ = ne)$

$$v_d = \frac{I}{\rho A}$$

Time taken by charges to travel distanced d,

$$t = \frac{d}{v_d} = \frac{d}{(I/\rho A)} = \frac{\rho A d}{I}$$

7. (a): Equivalent circuit is shown in figure. Charging of capacitor is given

$$q = C_{eq} E \left[1 - e^{-t/RC_{eq}} \right]$$

Both capacitors will have same charge as they are connected in series.

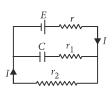
8. (b): Resistance after temperature increases by 500°C,

$$R_T = \frac{\text{Voltage applied}}{\text{Current}} = \frac{220}{2} = 110 \ \Omega$$

Also, $R_T = R_0 (1 + \alpha \Delta T)$

$$110 = 100 (1 + \alpha \times 500)$$

$$\alpha = \frac{10}{100 \times 500} = 2 \times 10^{-4} \, ^{\circ}\text{C}^{-1}$$


9. (c): In the steady state current in the capacitor becomes zero. Therefore, current in the circuit can be shown as below.

Current in the circuit, $I = \frac{E}{r + r_2}$

Charge on the capacitor will be

$$Q = CV$$
 or $Q = (Ir_2)C$

or
$$Q = \frac{Er_2}{r + r_2}C$$
 or $Q = CE\frac{r_2}{r + r_2}$

- 10. (d): The potential difference across each loop is zero. Therefore no current will flow in the circuit.
- 11. (b): In a balanced Wheatstone bridge if the cell and the galvanometer are interchanged the null point remains unchanged.
- 12. (b) : Let equivalent resistance of the infinite network be x. Equivalent resistance between points A and B,

$$x = \frac{4x}{4+x} + 2 \text{ or } x^2 - 2x - 8 = 0$$

$$x = \frac{2 \pm \sqrt{4 - 4(1)(-8)}}{2} = \frac{2 \pm \sqrt{36}}{2}$$

$$= \frac{2 \pm 6}{2} = 4 \Omega$$

(Since negative value is not accepted)

$$I_1 = \frac{9}{4+0.5} = 2$$
 A \Rightarrow Reading of A_1 is 2 A.

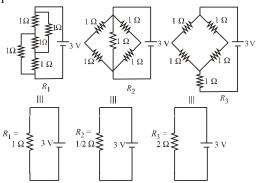
13. (b): When key is plugged between 2 and 1, $V_1 = iR_1 = Xl_1$...(i)

When key is plugged between 3 and 1,

$$V_2 = i(R_1 + R_2) = Xl_2$$
 ...(ii)

On dividing eqn. (ii) by eqn. (i)

$$\frac{R_1}{R_1 + R_2} = \frac{l_1}{l_2} \implies \frac{R_1}{R_2} = \frac{l_1}{l_2 - l_1}$$


14. (a): For
$$P = 4 \Omega$$
, $l_1 = 60 \text{ cm}$ \therefore $\frac{P}{Q} = \frac{l_1}{100 - l_1} = \frac{60}{40} = \frac{3}{2}$

$$Q = \frac{2}{3}P = \frac{8}{3}\Omega$$
Now, $P' = P + R$, $l'_1 = 80 \text{ cm}$

$$\frac{P'}{Q} = \frac{l'_1}{100 - l'_1} = \frac{80}{20} = 4$$

$$\frac{P+R}{Q} = 4 \implies \frac{4+R}{\frac{8}{3}} = 4 \; ; \; 4+R = \frac{32}{3} \; : \qquad R = \frac{32}{3} - 4 = \frac{20}{3} \Omega$$

15. (b) : The given three circuits are equivalent to the following three simpler circuits.

$$P_1 = \frac{3^2}{1} = 9 \text{ W}, P_2 = \frac{3^2}{1/2} = 18 \text{ W}, P_3 = \frac{3^2}{2} = 4.5 \text{ W}$$

Hence, clearly, $P_2 > P_1 > P_3$

16. (d): Resistance of a wire of length l and radius r is given

$$R = \frac{\rho l}{A} = \frac{\rho l}{A} \times \frac{A}{A} = \frac{\rho V}{A^2} = \frac{\rho V}{\pi^2 r^4} \qquad (\because V = Al)$$
i.e., $R \propto \frac{1}{r^4} \therefore \frac{R_1}{R_2} = \left(\frac{r_2}{r_1}\right)^4$

Here,
$$R_1 = 100 \ \Omega$$
, $r_1 = r$, $r_2 = \frac{r}{2}$, $R_2 = ?$

:.
$$R_2 = R_1 \left(\frac{r_1}{r_2}\right)^4 = 16R_1 = 1600 \ \Omega$$

17. (c): Resistivity of Cu increases linearly with increase in temperature because relaxation time decreases.

Resistivity of semiconductor decreases exponentially with increase in temperature, as $\rho_q = \rho^{-b} 4 x^q$.

18. (a): Let the source voltage be V.

Equivalent resistance of the circuit when r = fR,

$$R_{\text{eq}} = R + \frac{r \times R}{r + R} = R + \frac{fR}{f + 1} = \frac{(2f + 1)R}{(f + 1)}$$

 $R_{\text{eq}} = R + \frac{r \times R}{r + R} = R + \frac{fR}{f + 1} = \frac{(2f + 1)R}{(f + 1)}$ $\therefore \text{ Current in the circuit, } I = \frac{V}{R_{\text{co}}} = \frac{V(f + 1)}{R(2f + 1)}$

Current in the resistance r(=fR)

$$I_2 = \frac{I}{f+1} = \frac{V}{R(2f+1)}$$
 Now, heat generated per unit time in r

$$H = I_2^2 r = \frac{V^2 f}{R(2f+1)^2}$$

For maximum H, $\frac{dH}{df} = 0 \implies \frac{V^2}{R} \left| \frac{1}{(2f+1)^2} - \frac{4f}{(2f+1)^3} \right| = 0$

or
$$2f + 1 - 4f = 0 \implies f = \frac{1}{2}$$

19. (*): Here, $R(T) = R_0[1 + \alpha(T - T_0)]$ At $T_0 = 300$ K, $R_0 = 100$ Ω T = 500 K, R = 120 Ω \therefore 120 = 100(1 + α (200))

$$\Rightarrow$$
 200 $\alpha = \frac{6}{5} - 1 = \frac{1}{5}$ $\Rightarrow \alpha = 10^{-3} \, {}^{\circ}\text{C}^{-1}$

Temperature of the toaster is raised at constant rate from 300 K to 500 K is 30 s.

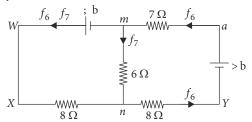
So, increment in the temperature in time $t = \frac{(500 - 300)}{20}t$

$$\Delta T = \frac{20}{3}t$$

Total work done in raising the temperature

$$\begin{split} &= \int_{0}^{t} \frac{V^{2}}{R(t)} dt = \int_{0}^{t} \frac{V^{2}}{R_{0}(1 + \alpha \Delta T)} dt \\ &= \int_{0}^{30} \frac{(200)^{2}}{100 \left(1 + 10^{-3} \times \frac{20}{3}t\right)} dt = 400 \int_{0}^{30} \frac{dt}{\left(1 + \frac{1}{150}t\right)} \\ &= 400 \times 150 \left[\ln\left(1 + \frac{t}{150}\right) \right]_{0}^{30} \\ &= 60000 \left[\ln\left(1 + \frac{30}{150}\right) - \ln 1 \right] = 60000 \ln\left(\frac{6}{5}\right) \text{ J} \end{split}$$

* (None of the given options is correct)


20. (b) :
$$V = IR$$

As
$$I = neAv_d$$
 and $o = \frac{\rho}{W}$ $\therefore s = W \times \frac{\rho}{W} \{ \sim \rho = \frac{s}{W} \}$

Here, V=5 V, $n=8\times10^{28}$ m⁻³, $v_d=2.5\times10^{-4}$ m s⁻¹, $l = 0.1 \text{ m}, e = 1.6 \times 10^{-19} \text{ C}$

$$\rho = \frac{:}{= \times 65^{7} \times 63 \times 65^{-6} \times 73 \times 65^{-9} \times 536}$$
$$= 0.156 \times 10^{-4} \Omega \text{ m} \approx 1.6 \times 10^{-5} \Omega \text{ m}$$

21. (a) :

Applying KVL in loop PQCDP

$$-1I_2 - 3I_1 + 9 - 2I_1 = 0 \implies 5I_1 + I_2 = 9$$
 ...(i)

Applying KVL in loop PQBAP

$$-1I_2 + 3(I_1 - I_2) - 6 = 0 \Rightarrow 3I_1 - 4I_2 = 6$$
 ...(ii)

Solving eqns. (i) and (ii), we get $I_1 = 1.83$ A, $I_2 = -0.13$ A

 \therefore The current in the 1 Ω resistor is 0.13 A, from Q to P.

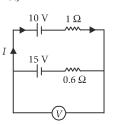
22. (c) : Given,
$$v_d \propto \sqrt{b}$$

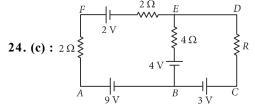
We know,

 $I = neAv_d$

and
$$E = \frac{s}{}$$
 or, $E \propto V$

so
$$I \propto \sqrt{s}$$
; $I^2 \propto V$




23. (c): Current in the circuit, $f = \frac{1}{63}$

$$= \frac{:5}{6;} = \frac{7:}{=} H$$
Reading of the voltmeter

$$s = 6: -\frac{7:}{-} \times 53$$

$$=6: -\frac{6:}{-} = 6836 \text{ b}$$

Current in 4 Ω is zero.

Applying KVL in loop EBCDE,

$$\begin{split} V_{EB} + V_{BC} + V_{CD} + V_{DE} &= 0 \\ -4 + 3 + V_{CD} + 0 &= 0 \end{split}$$

$$-4 + 3 + V_{CD} + 0 = 0$$

 $V_{CD} = 1 \text{ volt}$

$$V_A - V_D = 9 - 3 - 1 = 5 \text{ V}$$

25. (d) : Power of 15 bulbs of 40 W = $15 \times 40 = 600$ W

Power of 5 bulbs of 100 W = $5 \times 100 = 500 \text{ W}$

Power of 5 fan of 80 W = $5 \times 80 = 400 \text{ W}$

Power of 1 heater of 1 kW = 1000 W

 \therefore Total power, P = 600 + 500 + 400 + 1000 = 2500 W

When these combination of bulbs, fans and heater are connected to 220 V mains, current in the main fuse of building is given by

$$I = \frac{P}{V} = \frac{2500}{220} = 11.36 \text{ A} \approx 12 \text{ A}$$

26. (a): As
$$P = \frac{V^2}{R}$$

Here, the supply voltage is taken as rated

$$R_B = \frac{120 \text{ V} \times 120 \text{ V}}{60 \text{ W}} = 240 \Omega$$

Resistance of heater,
$$R_H = \frac{120 \text{ V} \times 120 \text{ V}}{240 \text{ W}} = 60 \Omega$$

Voltage across bulb before heater is switched on,

$$V_1 = \frac{120 \text{ V} \times 240 \Omega}{240 \Omega + 6 \Omega} = 117.07 \text{ V}$$

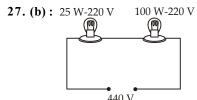
As bulb and heater are connected in parallel. Their equivalent resistance is

Heater

Bulb

 6Ω

120 V


$$R_{\rm eq} = \frac{(240 \,\Omega)(60 \,\Omega)}{240 \,\Omega + 60 \,\Omega} = 48 \,\Omega$$

.. Voltage across bulb after heater is switched on

$$V_2 = \frac{120 \text{ V} \times 48 \Omega}{48 \Omega + 6 \Omega} = 106.66 \text{ V}$$

Decrease in the voltage across the bulb is $\Delta V = V_1 - V_2 = 10.41 \text{ V} \approx 10.04 \text{ V}$

$$\Delta V = V_1 - V_2 = 10.41 \text{ V} \approx 10.04 \text{ V}$$

As
$$R = \frac{(\text{Rated voltage})^2}{\text{Rated power}}$$

Resistance of 25 W-220 V bulb is $R_1 = \frac{(220)^2}{25} \Omega$

Resistance of 100 W-220 V bulb is $R_2 = \frac{(220)^2}{100} \Omega$

When these two bulbs are connected in series, the total resistance is

$$R_s = R_1 + R_2 = (220)^2 \left[\frac{1}{25} + \frac{1}{100} \right] = \frac{(220)^2}{20} \Omega$$

Current,
$$I = \frac{440}{(220)^2 / 20} = \frac{2}{11}$$
 A

Potential difference across 25 W bulb =
$$IR_1 = \frac{2}{11} \times \frac{(220)^2}{25} = 352 \text{ V}$$

Potential difference across 100 W bulb =
$$IR_2 = \frac{2}{11} \times \frac{(220)^2}{100} = 88 \text{ V}$$

Thus the bulb 25 W will be fused, because it can tolerate only 220 V while the voltage across it is 352 V.

28. (b): Resistance of wire
$$R = \frac{\rho l}{4}$$
 ...(i)

On stretching, volume (V) remains constant.

So
$$V = Al$$
 or $A = \frac{V}{I}$ \therefore $R = \frac{\rho I^2}{V}$ (Using (i))

Taking logarithm on both sides and differentiating we get,

$$\frac{\Delta R}{R} = \frac{2\Delta l}{l}$$

(: V and ρ are constants)

or
$$\frac{\Delta R}{R}\% = \frac{2\Delta l}{l}\%$$

Hence, when wire is stretched by 0.1% its resistance will increase by 0.2%.

29. (a): Let R_0 be the resistance of both conductors at 0° C. Let R_1 and R_2 be their resistance at $t^{\circ}C$. Then

$$R_1 = R_0(1 + \alpha_1 t)$$

$$R_2 = R_0(1 + \alpha_2 t)$$

Let R_s is the resistance of the series combination of two conductors at $t^{\circ}C$. Then

$$R_s = R_1 + R_2$$

$$R_{s_0}(1 + \alpha_s t) = R_0(1 + \alpha_1 t) + R_0(1 + \alpha_2 t)$$

where,
$$R_{s_0} = R_0 + R_0 = 2R_0$$

where,
$$R_{s_0} = R_0 + R_0 = 2R_0$$

 $\therefore 2R_0(1 + \alpha_s t) = 2R_0 + R_0 t(\alpha_1 + \alpha_2)$

$$2R_0 + 2R_0\alpha_s t = 2R_0 + R_0 t(\alpha_1 + \alpha_2) : \alpha_s = \frac{\alpha_1 + \alpha_2}{2}$$

Let R_p is the resistance of the parallel combination of two

conductors at
$$t^{\circ}$$
C. Then $R_p = \frac{R_1 R_2}{R_1 + R_2}$

$$R_{p_0}(1+\alpha_p t) = \frac{R_0(1+\alpha_1 t)\,R_0(1+\alpha_2 t)}{R_0(1+\alpha_1 t) + R_0(1+\alpha_2 t)}$$

where,
$$R_{p_0} = \frac{R_0 R_0}{R_0 + R_0} = \frac{R_0}{2}$$

$$\therefore \frac{R_0}{2} (1 + \alpha_p t) = \frac{R_0^2 (1 + \alpha_1 t)(1 + \alpha_2 t)}{2R_0 + R_0(\alpha_1 + \alpha_2)t}$$

$$\frac{R_0}{2} \left(1 + \alpha_p t \right) = \frac{R_0^2 \left(1 + \alpha_1 t + \alpha_2 t + \alpha_1 \alpha_2 t^2 \right)}{R_0 \left(2 + (\alpha_1 + \alpha_2) t \right)}$$

$$\frac{1}{2}\left(1+\alpha_p t\right) = \frac{\left(1+\alpha_1 t + \alpha_2 t + \alpha_1 \alpha_2 t^2\right)}{\left(2+\left(\alpha_1+\alpha_2\right)t\right)}$$

As α_1 and α_2 are small quantities $\alpha_1 \alpha_2$ is negligible

$$\therefore \frac{1}{2}(1+\alpha_p t) = \frac{1+(\alpha_1+\alpha_2)t}{2+(\alpha_1+\alpha_2)t} = \frac{1+(\alpha_1+\alpha_2)t}{2\left[1+\frac{(\alpha_1+\alpha_2)t}{2}\right]}$$

$$= \frac{1}{2} \left[1 + (\alpha_1 + \alpha_2)t \right] \left[1 + \frac{(\alpha_1 + \alpha_2)t}{2} \right]^{-1}$$

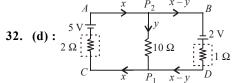
$$= \frac{1}{2} \left[1 + (\alpha_1 + \alpha_2)t \right] \left[1 - \frac{(\alpha_1 + \alpha_2)t}{2} \right]$$
 [By binomial expansion]

$$= \frac{1}{2} \left[1 - \frac{(\alpha_1 + \alpha_2)t}{2} + (\alpha_1 + \alpha_2)t - \frac{(\alpha_1 + \alpha_2)^2 t^2}{2} \right]$$

As $(\alpha_1 + \alpha_2)^2$ is negligible $\frac{1}{2}(1 + \alpha_p t) = \frac{1}{2}\left[1 + \frac{1}{2}(\alpha_1 + \alpha_2)t\right]$

$$\alpha_p t = \frac{(\alpha_1 + \alpha_2)}{2} t$$
 or $\alpha_p = \frac{\alpha_1 + \alpha_2}{2}$

30. (a): From the statement given, $\alpha = 2.5 \times 10^{-3}$ °C.


The resistance of a wire change from 100 Ω to 150 Ω when the temperature is increased from 27°C to 227°C.

It is true that α is small. But $(150 - 100) \Omega$ or 50Ω is not very much less than 100 Ω i.e., $R - R_0 \ll R_0$ is not true.

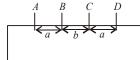
This is a Wheatstone bridge.

If ρ_l is the resistance per unit length (in cm)

$$\frac{20\rho_l}{55} = \frac{80\rho_l}{R}$$
 or $R = \frac{80 \times 55}{20} = 220 \Omega$

Applying Kirchhoff's law for the loops

$$AP_2P_1CA$$
 and $P_2BDP_1P_2$, one gets $-10y - 2x + 5 = 0$
 $\Rightarrow 2x + 10y = 5$...(i)


$$+2 - 1(x - y) + 10 \cdot y = 0$$

 $+x - 11y = 2$...(ii)
 $\Rightarrow 2x - 22y = 4$...(iii) = (ii) × 2

(i) – (iii) gives 32y = 1

$$\Rightarrow$$
 $y = \frac{1}{32} A = 0.03 A \text{ from } P_2 \text{ to } P_1$

33. (d): Current is spread over an area $2\pi r^2$. The current I is a surface current.

Current density,
$$j = \frac{I}{2\pi r^2}$$

Resistance =
$$\frac{\rho l}{\text{area}} = \frac{\rho r}{2\pi r^2}$$

$$E = I \rho / 2 \pi r^2$$

$$\begin{split} V_B - V_C &= \Delta V = \int\limits_{a+b}^a - E dr \quad \Rightarrow \Delta V = \frac{-I\rho}{2\pi} \int\limits_{a+b}^a \frac{1}{r^2} dr = \frac{-I\rho}{2\pi} \bigg[-\frac{1}{r} \bigg]_{a+b}^a \\ \Delta V &= \frac{I\rho}{2\pi} \bigg[\frac{1}{a} - \frac{1}{a+b} \bigg] \end{split}$$

34. (d):
$$j \times \rho = E$$
 : $E = \frac{I\rho}{2\pi r^2}$

35. (d): Given:
$$R_{50} = 5 \Omega$$
, $R_{100} = 6 \Omega$
 $R_t = R_0(1 + \alpha t)$

where R_t = resistance of a wire at t° C, R_0 = resistance of a wire at 0° C, α = temperature coefficient of resistance.

$$R_{50} = R_0 [1 + \alpha 50]$$
 and $R_{100} = R_0 [1 + \alpha 100]$

or
$$R_{50} - R_0 = R_0 \alpha(50)$$
 ...(i); $R_{100} - R_0 = R_0 \alpha(100)$...(ii)

Divide (i) by (ii), we get $\frac{5 - R_0}{6 - R_0} = \frac{1}{2}$ or $10 - 2R_0 = 6 - R_0$

36. (a) : Resistance of a wire
$$R = \frac{\rho l}{\pi r^2} = \frac{\rho l \times 4}{\pi D^2}$$

$$\therefore R_A = R_B$$

$$\therefore \frac{4\rho_A l_A}{\pi D_A^2} = \frac{4\rho_B l_B}{\pi D_B^2} \text{ or } \frac{l_B}{l_A} = \left(\frac{\rho_A}{\rho_B}\right) \left(\frac{D_B}{D_A}\right)^2$$
$$= \left(\frac{\rho_A}{2\rho_A}\right) \left(\frac{2D_A}{D_A}\right)^2 = \frac{4}{2} = \frac{2}{1}$$

37. (c): Given:
$$R_{100} = 100 \Omega$$

 $\alpha = 0.005^{\circ}\text{C}^{-1}$
 $R_t = 200 \Omega$ $\therefore R_{100} = R_0[1 + 0.005 \times 100]$

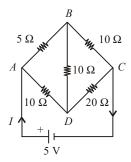
or
$$100 = R_0[1 + 0.005 \times 100]$$
 ...(i)

$$R_t = R_0[1 + 0.005t] \implies 200 = R_0[1 + 0.005t]$$
 ...(ii)

Divide (i) by (ii), we get
$$\frac{100}{200} = \frac{[1 + 0.005 \times 100]}{[1 + 0.005t]}$$

$$1 + 0.005t = 2 + 1$$
 or $t = 400^{\circ}$ C

38. (c): The equivalent circuit is a balanced Wheatstone's bridge. Hence no current flows through arm BD.


$$R_{ABC} = 5 + 10 = 15 \Omega$$
AD and DC are in series

$$\therefore R_{ADC} = 10 + 20 = 30 \Omega$$
ABC and ADC are in parallel

$$\therefore R_{\text{eq}} = \frac{(R_{ABC})(R_{ADC})}{(R_{ABC} + R_{ADC})}$$

or
$$R_{\text{eq}} = \frac{15 \times 30}{15 + 30} = \frac{15 \times 30}{45} = 10 \ \Omega$$

:. Current
$$I = \frac{E}{R_{\text{eq}}} = \frac{5}{10} = 0.5 \text{ A}$$

39. (c) : For balanced Wheatstone's bridge,
$$\frac{P}{Q} = \frac{R}{S}$$

$$\therefore S = \frac{S_1 S_2}{S_1 + S_2} \qquad (\because S_1 \text{ and } S_2 \text{ are in parallel})$$

$$\therefore \frac{P}{Q} = \frac{R(S_1 + S_2)}{S_1 S_2}$$

40. (a): Kirchhoff's first law $[\Sigma i = 0]$ is based on conservation of charge

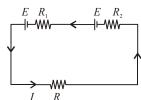
Kirchhoff's second law ($\Sigma iR = \Sigma E$) is based on conservation of energy.

41. (d): Resistance of the bulb

$$(R) = \frac{V^2}{P} = \frac{(220)^2}{100} = 484 \Omega$$

Power across 110 volt = $\frac{(110)^2}{484}$

.. Power =
$$\frac{110 \times 110}{484}$$
 = 25 W


42. (a) : Antimony-bismuth couple is ABC couple. It means that current flows from A to B at cold junction.

43. (b): The internal resistance of a cell is given by

$$r = R \left(\frac{l_1}{l_2} - 1 \right) = R \left(\frac{l_1 - l_2}{l_2} \right) : r = 2 \left[\frac{240 - 120}{120} \right] = 2 \Omega$$

44. (d):
$$I = \frac{2E}{R_1 + R_2 + R}$$

 $\therefore E - IR_2 = 0 \text{ Given}$
 $\therefore E = IR_2$

or
$$E = \frac{2ER_2}{R_1 + R_2 + R}$$

or
$$R_1 + R_2 + R = 2R_2$$
 or $R = R_2 - R_1$

45. (d): For zero deflection in galvanometer, $I_1 = I_2$

or
$$\frac{12}{500+R} = \frac{2}{R} \implies 12R = 1000+ 2R \implies R = 100 \ \Omega$$

46. (a): If internal resistance is zero, the energy source will supply a constant current.

47. (c) : Resistance of hot tungsten
$$=\frac{V^2}{P} = \frac{(200)^2}{100} = 400 \,\Omega$$

Resistance when not in use = $\frac{400}{10}$ = 40 Ω

48. (d): The voltameters are joined in parallel.

Mass deposited = $z_1q_1 = z_2q_2$

$$\therefore \frac{q_1}{q_2} = \frac{z_2}{z_1} \Rightarrow \frac{q_1 + q_2}{q_2} = \frac{z_1 + z_2}{z_1} \Rightarrow \frac{q}{q_2} = \left(1 + \frac{z_2}{z_1}\right) \text{ or } q_2 = \frac{q}{\left(1 + \frac{z_2}{z_1}\right)}$$

49. (c) : Resistance of full coil = RResistance of each half piece = R/2

$$\therefore \frac{H_2}{H_1} = \frac{V^2 t}{R/2} \times \frac{R}{V^2 t} = \frac{2}{1} \therefore H_2 = 2H_1$$

Heat generated will now be doubled.

50. (c): Thermistors are made of metal oxides with high temperature co-efficient of resistivity.

51. (a) : For meter bridge experiment, $\frac{R_1}{R_2} = \frac{l_1}{l_2} = \frac{l_1}{(100 - l_1)}$

In the first case, $\frac{X}{Y} = \frac{20}{100 - 20} = \frac{20}{80} = \frac{1}{4}$

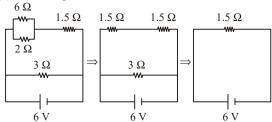
In the second case, $\frac{4X}{Y} = \frac{l}{(100-l)} \Rightarrow \frac{4}{4} = \frac{l}{100-l} \Rightarrow l = 50 \text{ cm}$.

52. (b): Potential difference is same when the wires are put

$$V = I_1 R_1 = I_1 \times \frac{\rho I_1}{\pi r_1^2}$$
 Again $V = I_2 R_2 = I_2 \times \frac{\rho I_2}{\pi r_2^2}$

$$\therefore \frac{I_1 \times \rho I_1}{\pi r_1^2} = \frac{I_2 \times \rho I_2}{\pi r_2^2} \Rightarrow \frac{I_1}{I_2} = \left(\frac{I_2}{I_1}\right) \left(\frac{r_1}{r_2}\right)^2$$

or
$$\frac{I_1}{I_2} = \left(\frac{3}{4}\right)\left(\frac{2}{3}\right)^2 = \frac{3\times4}{4\times9} = \frac{1}{3}$$


53. (a): In series combination, $S = (R_1 + R_2)$

In parallel combination, $P = \frac{R_1 R_2}{(R_1 + R_2)}$: S = nP

$$\therefore (R_1 + R_2) = n \frac{R_1 R_2}{(R_1 + R_2)} \quad \therefore (R_1 + R_2)^2 = n R_1 R_2$$

For minimum value,
$$R_1 = R_2 = R$$

 $\therefore (R + R)^2 = n(R \times R) \Rightarrow 4R^2 = nR^2 \text{ or } n = 4$

54. (c): The equivalent circuits are shown below:

$$=\frac{6}{1.5}=4$$
 A

55. (a) :
$$m = Z i t$$

or
$$m = (3.3 \times 10^{-7}) \times (3) \times (2) = 19.8 \times 10^{-7} \text{ kg}$$

56. (d):
$$E = a\theta + b\theta^2$$
 : $\frac{dE}{d\theta} = a + 2b\theta$

At neutral temperature (θ_n) , $\frac{dE}{d\theta} = 0$

or
$$0 = a + 2b\theta_n$$
 or $\theta_n = -\frac{a}{2b} = -\frac{1}{2} \times (700) = -350$ °C

Neutral temperature is calculated to be -350°C Since temperature of cold junction is 0°C, no neutral temperature is possible for this thermocouple.

$$\therefore$$
 836 × $t = 1000 \times 1 \times (40 - 10) \times (4.18) [\because 4.18 \text{ J} = 1\text{cal}]$

or
$$t = \frac{1000 \times 30 \times 4.18}{836} = 150$$
 seconds

58. (d): Let the length of the wire be
$$l$$
, radius of the wire be r

$$\therefore$$
 Resistance $R = \rho \frac{l}{\pi r^2}$; $\rho =$ resistivity of the wire

Now *l* is increased by 100%
$$\therefore l' = l + \frac{100}{100}l = 2l$$

As length is increased, its radius is going to be decreased in such a way that the volume of the cylinder remains constant.

$$\pi r^2 \times l = \pi r'^2 \times l' \implies r'^2 = \frac{r^2 \times l}{l'} = \frac{r^2 \times l}{2l} = \frac{r^2}{2}$$

$$\therefore \text{ The new resistance } R'^2 = \rho \frac{l'}{\pi r'^2} = \rho \frac{2l}{\pi \times \frac{r^2}{2}} = 4R$$

$$\therefore$$
 Change in resistance = $R' - R = 3R$

:. % change =
$$\frac{3R}{R} \times 100\% = 300\%$$

59. (b) : Equivalent resistance
$$=\frac{(3+3)\times 3}{(3+3)+3} = \frac{18}{9} = 2 \Omega$$

$$\therefore \quad \text{Current } I = \frac{V}{R} = \frac{3}{2} = 1.5 \text{ A}$$

60. (c): Potential gradient along wire, $K = \frac{E}{100} \frac{\text{volt}}{\text{cm}}$

For battery V = E' - ir, where E' is emf of battery.

or
$$K \times 30 = E' - ir$$
, where current i is drawn from battery

or
$$\frac{E \times 30}{100} = E' + 0.5i$$
 or $E' = \frac{30E}{100} - 0.5i$

61. (c) : Resistance of bulb
$$=\frac{V^2}{P} = \frac{(220)^2}{1000} = 48.4 \Omega$$

Required power =
$$\frac{V^2}{R} = \frac{(110)^2}{48.4} = \frac{110 \times 110}{48.4} = 250 \text{ W}.$$

62. (c): According to Faraday's laws of electrolysis,

$$\frac{m_{\rm Zn}}{m_{\rm Cu}} = \frac{Z_{\rm Zn}}{Z_{\rm Cu}}$$
 when *i* and *t* are same

$$\therefore \quad \frac{0.13}{m_{\text{Cu}}} = \frac{32.5}{31.5} \quad \Rightarrow \quad m_{\text{Cu}} = \frac{0.13 \times 31.5}{32.5} = 0.126 \text{ g}$$

63. (a): Let the smallest temperature be θ °C

$$\therefore$$
 Thermo emf = $(25 \times 10^{-6}) \theta$ volt

Potential difference across galvanometer = IR

$$= 10^{-5} \times 40 = 4 \times 10^{-4} \text{ volt}$$

$$\therefore (25 \times 10^{-6})\theta = 4 \times 10^{-4} \therefore \theta = \frac{4 \times 10^{-4}}{25 \times 10^{-6}} = 16^{\circ} \text{C}$$

64. (b) : According to Faraday's laws, $m \propto It$.

65. (c):
$$\theta_c + \theta_i = 2\theta_n \Rightarrow \frac{\theta_i + \theta_c}{2} = \theta_n$$

66. (b) : $P_1 = \frac{V^2}{R}$ when connected in parallel,

$$R_{\text{eq}} = \frac{(R/2) \times (R/2)}{\frac{R}{2} + \frac{R}{2}} = \frac{R}{4} \quad \therefore \quad P_2 = \frac{V^2}{R/4} = 4\frac{V^2}{R} = 4P_1$$

$$\therefore \frac{P_2}{P_1} = 4$$

$$\frac{P_2}{P_1} = 4$$
67. (b): Power = $\frac{V^2}{R}$

$$150 = \frac{(15)^2}{R} + \frac{(15)^2}{2} = \frac{225}{R} + \frac{225}{2} \Rightarrow R = 6 \Omega$$

