EXF	CRCISE-I (Conceptual Questions)		Build Up Your Understanding
	IMPORT	ANT CONCEPTS	
1.	"Hybridisation of central atom does not	always change due to	back bonding". This statement is
	valid for which of the following compou	inds?	
	(i) CCl_3^-	(ii) CCl ₂	
	(iii) CF ₂	(iv) N(SiH ₃) ₃	
	(1) (i), (ii)	(2) (i), (iii)	
	(3) (ii), (iii)	(4) All	
2.	The geometry with respect to the central	atom of the following	molecules are
	$N(SiH_3)_3$, Me_3N , $(SiH_3)_3P$		
	(1) planar, pyramidal, planar	(2) planar, pyrami	dal, pyramidal
	(3) pyramidal, pyramidal, pyramidal	(4) pyramidal, pla	nar, pyramidal
3.	In which of the following compound	s, observed bond ang	le is found to be greater than
	expected, but not due to back bonding.		
	(1) $N(SiH_3)_3$	$(2) O(CH_3)_2$	
	(3) $O(SiH_3)_2$	(4) All of these	
4.	According to following reactions,		
	$CHF_2 \xrightarrow{K\alpha} CF_2^- + H^+$		
	$CHCl_{\alpha} \xrightarrow{K'\alpha} CCl_{\alpha}^{-} + H'$		
	correct statement(s) is:		
	(1) $K_{\alpha} > K'_{\alpha}$		
	(2) CHF ₃ act as a stronger bronsted acid	than CHCl ₃ .	
	(3) CCl_3^- is more stable ~han CF_3^-		
	(4) None of these		
5.	The product formed in the reaction		
	$BCl_2 + H_2O \longrightarrow Product is$		
	$(1) H_3BO_3 + HCl$	$(2) 3B_2O_3 + HOC$	1
	(3) $B_2H_6 + HCl$	(4) No reaction	-
(Which of the full minutes in the	lation to the state	f dih anana
6.	(1) All the terminal D. II hand length on	elation to the structure of	of diborane
	(1) All the terminal B -H bond length are	e equi	
	(2) The terminal B H bond is a 2-centre	2-electron bond	
	(4) The bridge H is a 3 centre 2 el	actron bond	
	B B		
7.	The type of hybridization of boron in dil	borane is-	
	(1) sp (2) sp^2	(3) sp^{3}	$(4) sp^3 d^2$
0	Williah is loss bester less 1		
ð.	which is less hydrolysied: (1) PCl_2 (2) NCl_2	(3) AsCl ₂	(4) SbCl ₂
		(5) 1 15013	
Power	by: VISIONet Info Solution Pvt. Ltd	91-9350679141	
1 11 CUSI		/1 //////////	

9.	Which of the follow	ing halids cannot be hy	drolysed?						
	(i) TeF_6	(ii) SF_6	(iii) NCl ₃	(iv) NF ₃					
	(1) iii and iv	(2) i, ii and iii	(3) i, ii and iv	(4) ii and iv					
10.	Which of the follow (1) Xe	ing is an uncommon hy (2) XeO ₃	drolysis product of Xe	eF_2 and XeF_1 (4) O_2					
	(1) 110	(2) 1100 3	(0) 111	(1) 02					
11.	In which of the following dimer empty atomic orbital of central atm of monomer does not involve in hybridisation?								
	$(1) \operatorname{Ga}_2 \operatorname{H}_6$	(2) Al_2Br_6	(3) Be_2H_4	$(4) \operatorname{Cl}_2 \operatorname{O}_6$					
12.	Which of the follow	ing molecule is having	complete octet						
	(1) $BeCl_2(dlmer)$		(2) BeH_2 (dimer)						
	(3) $BeH_2(s)$		(4) $\operatorname{BeCl}_2(s)$						
13	Which one of the fo	llowing oxy acid of flu	orine exists?						
10.	(1) HOF	(2) HFO_3	(3) HFO ₄	(4)HFO ₂					
14.	Which of the follow	ing statements is correct	zt						
	(1) All form HOXO	d bromine form oxvaci	ds.						
	(3) All halogens for	n oxyacids.							
	(4) Only iodine form	ns oxyacid							
15.	Consider the oxy a regarding these	icids HCIO _n seris, her	re value of n is 1 to	4. Then incorrect statement					
	(1) acidic character	of oxy acids increases v	with increasing value o	f n.					
	(2) oxidising power	of oxy acids increases	with decreasing value	of n.					
	(3) thermal stability	of oxy acids decreases	with increasing value	of n.					
	(4) CI–O bolid order	decreases with decreas	sing value of it						
16.	$2P \xrightarrow{-H_2O} Q \xrightarrow{-IC}$	$^{n} \rightarrow R$							
	If P is parent phosph	oric acid then accordin	g to given information	the incorrect statement is.					
	(1) Q is pyro form a	nd R is hypo form of g	ven present oxy acid F						
	(2) Number of H-ald (3) In P. O oxy acids	s oxidation state of cer	tral atom remains sam	e districtly.					
	(4) All given oxy ac	ids have $p\pi$ -d π bonds (s) in their structure.						
		-							
17.	Silicate having one i	nonovalent comer oxy	gen atom in each tetrah (2) evalue siliente	nedron unit is					
	(1) single chain silic	ate	(4) double chain silic	cate					
	(-) <u>B</u> ••		()						
18.	The silicate anion in	the mineral kinoite is	a chain of three SiO_4^{-4}	⁺ tetrahedra, that share corners					
	with adjacent tetrahe $(1) -4$	eara. The charge of the $(2) - 8$	sincate anion is- $(3) - 6$	(4) - 2					
	<-/ ·	(-) ~	(-) -	··/ -					

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Edubull

19.	Which of the following is an organo silicon polymer?(1) silica(2) silicon(3) silicon carbide(4) silicic acid									
20.	Which reacts rapidly (1) White P	with oxygen in the air (2) Red P	$\begin{array}{c} \text{ at ordinary temperature :} \\ \text{ (3) } \text{N}_2 \\ \end{array} \begin{array}{c} \text{(4) } \text{C} \\ \end{array}$							
21.	Red and yellow phose (1) Allotropes	phorus are : (2) Isobars	(3) Isomers	(4) Isotopes						
22.	Phosphorus is kept in: (1) Kerosene oil(2) Alcohol(3) Water(4) Ammonia									
23.	 Graphite conducts electricity because of the - (1) Highly polarized nature of π-electrons. (2) Highly delocalized nature of π-electrons (3) Highly localized nature of π-electrons (4) None of these 									
		BORON AND C	ARBON FAMILY							
24.	Melting point is high (1) B	er for- (2) Al	(3) Ga	(4) In						
25.	Alane is chemically-(1) AlH ₃	(2) (AlH ₃) _n	(3) LiAlH ₄	(4) None						
26.	 Aluminium is not acted upon by pure water as - (1) Impurities in water are essential for the reaction to occur (2) It is light metal (3) It is protected by a film of aluminium oxide (4) It is not a reactive metal 									
27.	The borax bead test i (1) Boron oxide	s based upon the form (2) Boric acid	ation of (3) Meta borates	(4) Elemental boron						
28.	Boric acid polymerizes due to- (1) The presence of hydrogen bonds (3) Its geometry (2) Its acidic nature (4) Its monobasic nature									
29.	Alum is found to con (1) 1 : 1 : 1	tain hydrated monova (2) 1 : 1 : 2	lent cation $[M(H_2O)_6]^+$ (3) 1 : 2 : 2	⁺ and SO_4^{2-} in the ratio of : (4) 1 : 2 : 3						
30.	Borax $Na_2B_4O_7.10H_2$ (1) $Na_2(B_4O_5(OH)_4]$. (3) $Na_2[B4O_3(OH)8]$.	20 is actually : 8H2O 6H2O	(2) Na ₂ [B ₄ O ₄ (OH) ₆]. (4) Na ₂ [B ₄ O ₂ (OH) ₁₀]	.7H ₂ O].5H ₂ O						
31.	Diborane ios leqis ac (1) Is ionic and exists (2) On heating, is cor	id forming addition cos as $[BH_2(NH_3)_2)]^+$ and nverted into borazine,	mpound B ₂ H ₆ .2NH ₃ w l [BH ₄] [–] ions B ₃ N ₃ H ₆	vith NH ₃ , a Lewis base. This						

Website : www.edubull.com Mob no. :	+91-9350679141

	(3) Both are correct(4) None is correct						
32.	 Which alum is a double salt made up of two salts: (1) Salt of a (SA + WB) + Salt of a (WA + WB) (2) Salt of a (SA + SB) + Salt of a (SA + WB) (3) Salt of a (SA + SB) + Salt of a (WA + WB) (4) Salt of a (SA + WB) + Salt of a (WA + WB) 						
33.	From B ₂ H ₆ all the fo (1) H ₃ BO ₃ (3) B ₂ (CH ₃) ₆	llowing can be prepar	red except: (2) $B_2(CH_3)_4H_2$ (4) $NaBH_4$				
34.	Borax on heating wit (1) Co(BO ₂) ₂ (3) Co ₃ (BO ₃) ₂	h cobalt oxide forms	a blue bead of (2) CoBO ₂ (4)Na ₃ Co(BO ₃) ₂				
35.	The hydrides of grout (1) Ionic	p 14 elements are: (2) Oxidising	(3) Covalent	(4) None of these			
36.	Which gas is response (1) CO ₂	(2) SO ₂	effect: (3) CO	(4) SO ₃			
37.	Artificial gem used f (1) Graphite	or cutting glass is : (2) Diamond	(3) SiC	(4) CaCN ₂			
		NITROG	EN FAMILY				
38.	(1) Calcium nitride (3) Calcium cyanami	calcium carbide to gi de	(2) Calcium cyanide(4) Calcium nitrate				
39.	P ₂ O ₅ is used extensiv (1) Dehydrating ager (3) Reducing agent	vely as a: ht	(2) Catalytic agent(4) Preservative				
40.	 PH₃ produces smoky rings when it comes in contact with air. This is because (1) It is inflammable (2) It combines with water vapours. (3) It combines with nitrogen (4) It contains impurity of P₂H₄ 						
41.	 Which of the following is the correct statement for PH₃. (1) It is less basic than NH₃ (2) Its less poisonous than NH₃ (3) Bond angle of PH₃ > NH₃ (4) It does not show reducing properties 						
42.	Ammonia reacts with (1) N_2 and NH_4Cl	n excess of chlorine to	o form: (2) NCl ₃ and HCl				
Power by Website	y: v1810Net Info Solution Pvt. : www.edubull.com	Lta Mob no. : +91-	9350679141				

I

	(3) NH ₄ Cl and NCl ₃	(4) N_2 and HCl	
43.	Concentrated nitric acid reacts with iodine (1) HI (2) HOI (3) H	to give:- OIO ₂	(4) HOIO ₃
44.	 Each of the following is true of white and r (1) Are both soluble in CS₂ (2) Can be oxidised by heating in air (3) Consist of the same kind of atoms (4) Ccm be converted into one another 	ed phosphorus except	that they
45.	A gas which is used as anaesthetic in denta $(1) N_2$ (2) CO	l surgery is : (3) N ₂ O	(4) NH ₃
46.	The wrong statement about NH_3 is : (1) Itis oxidised with oxygen at 700°C in th (2) It gives reddish brown ppt with nessler' (3) It can be dried by P_2O_5 , H_2SO_4 and CaC (4) It gives white fumes with HCl	ne presence of platinum s reagent. Cl ₂	1
47.	On heating, ammonium dichromate and bas (1) N ₂ with ammonium dichromate and NC (2) N ₂ O with ammonium dichromate and N (3) N ₂ O with ammonium dichromate and N (4) N ₂ in both cases	rium azide separately,) with barium azide - VO_2 with barium azide VO with barium azide	we get :-
48.	Which one of the following acid post properties? (1) HNO ₃ (2) HCl	sesses oxidising, red $(3) H_2 SO_4$	ucing and complex forming (4) HNO ₂
49.	NO ₂ is formed when (1) Cu reacts with cone. HNO ₃ (3) Pb(NO ₃) ₂ is heated	(2) Zn reacts with co(4) All	one. HNO ₃
50.	P-oxide $\xrightarrow{H_2O}$ A $\xrightarrow{Heating}$ \xrightarrow{B} $\xrightarrow{Contain}_{P-H \text{ bond}}$ + $\overrightarrow{C}_{Acid}$	200°C →	
	Incorrect statement is :- (1) Gas B is PH ₃ (3) A is H3PO 3	(2) D is pyrophospheret(4) D on strong heat	oric acid ing gives P ₂ O ₃
51.	Which of the following does not produce N (1) Cu (2) I_2	NO ₂ gas with conc. HN (3) Ag	O ₃ ? (4) Au
52.	SO ₂ can acts as (1) Reducing agent (3) Bleaching agent	(2) Oxidising agent (4) All	

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Edubull

So A and B compour (1) Na ₂ SO ₂ Na ₂ S	ids are respectively :-	(2) NaCl NacCO2						
(1) Na_2SO_3 , Na_2S (2) $NaCl$, Na_2CO_3 (3) Na_2S , Na_2SO_2 (4) Na_2SO_2 , $KaSO_2$								
respectively Y turns acidified dichromate paper green while Z turns lead acetate paper black So A and B compounds are respectively :- (1) Na ₂ SO ₂ Na ₂ S (2) NaCl Na ₂ CO ₂								
Compounds A and I respectively Y turns	Bare treated with dilu acidified dichromate	te HCl sep <mark>ara</mark> tely. The paper green while Z t	e gases liberated are Y and Z urns lead acetate paper black.					
Compounds A and I	Bare treated with dilu	te HCl separately. The	e gases liberated are Y and Z					
Dry bleaching is don (1) Cl ₂	e by : (2) SO ₂	(3) O ₃	(4) None					
Dry bleaching is don	e hv :		(1) 2010					
The number of S–S t (1) Three	oonds in sulphur trioxie (2) Two	de trimer (S ₃ P ₉) is : (3) One	(4) Zero					
The number of S–S h	onds in sulphur trioxi	de trimer (S_3P_9) is :						
(1) Black	(2) Red	(3) Green	(4) Yellow					
H_2S gas changes a fil	ter paper dipped in lea	ad acetate solution into						
(1) $ZnSO_4$	$(2) \operatorname{CaSO}_4$	(3) BaSO ₄	$(4) PDSO_4$					
A black sulphide whe (1) $7nSO_4$	en treated with ozone l (2) CaSO	becomes white., The w (3) BaSO	thite compound is :					
A block outstide with	on tracted with access	popping white The	hite compound is .					
(3) bleaching agent		(4) all						
Ozone acts as (1) Oxidising agent		(2) reducing agent						
Ω zone acts as								
Conc.	, cus c4 + 2111							
(4) $CaF_2 + H_2SO_4$ —	\rightarrow CaSO ₄ + 2HF							
(3) NaHSO ₄ + NaCl \cdot	\longrightarrow Na ₂ SO ₄ + HCl							
Conc.	7 Turib 04 + 1101							
(2) NaCl + H_2SO_4 —	\rightarrow NaHSO ₄ + HCl							
(1) $2KD1 + H_2SO_4 - Conc.$	\rightarrow K ₂ SO ₄ +211DI							
(1) $2KBr + H_2SO_4 \longrightarrow K_2SO_4 + 2HBr$								
	or be used for the prep	aration of the halogen						
	Conc. (2) NaCl + H_2SO_4 — Conc. (3) NaHSO ₄ + NaCl - (4) CaF ₂ + H_2SO_4 — Conc. Ozone acts as (1) Oxidising agent (3) bleaching agent (3) bleaching agent (1) ZnSO ₄ H ₂ S gas changes a fil (1) Black The number of S–S b (1) Three Dry bleaching is don (1) Cl ₂ Compounds A and H respectively Y turns So A and B compound	Conc. (2) NaCl + H ₂ SO ₄ \longrightarrow NaHSO ₄ + HCl Conc. (3) NaHSO ₄ + NaCl \longrightarrow Na ₂ SO ₄ + HCl (4) CaF ₂ + H ₂ SO ₄ \longrightarrow CaSO ₄ + 2HF Conc. Ozone acts as (1) Oxidising agent (3) bleaching agent A black sulphide when treated with ozone I (1) ZnSO ₄ (2) CaSO ₄ H ₂ S gas changes a filter paper dipped in lea (1) Black (2) Red The number of S–S bonds in sulphur trioxid (1) Three (2) Two Dry bleaching is done by : (1) Cl ₂ (2) SO ₂ Compounds A and Bare treated with dilur respectively Y turns acidified dichromate So A and B compounds are respectively :- (1) Na ₂ SO ₂ Na ₂ S	Conc. (2) NaCl + H ₂ SO ₄ \longrightarrow NaHSO ₄ + HCl Conc. (3) NaHSO ₄ + NaCl \longrightarrow Na ₂ SO ₄ + HCl (4) CaF ₂ + H ₂ SO ₄ \longrightarrow CaSO ₄ + 2HF Conc. Ozone acts as (1) Oxidising agent (2) reducing agent (3) bleaching agent (4) all A black sulphide when treated with ozone becomes white., The w (1) ZnSO ₄ (2) CaSO ₄ (3) BaSO ₄ H ₂ S gas changes a filter paper dipped in lead acetate solution into (1) Black (2) Red (3) Green The number of S–S bonds in sulphur trioxide trimer (S ₃ P ₉) is : (1) Three (2) Two (3) One Dry bleaching is done by : (1) Cl ₂ (2) SO ₂ (3) O ₃ Compounds A and Bare treated with dilute HCl separately. The respectively Y turns acidified dichromate paper green while Z t So A and B compounds are respectively :- (1) Na ₂ SO ₃ , Na ₂ S (2) NaCl, Na ₂ CO ₃					

- 64. Which one of the following property is not correct for ozone?
 - (1) It oxidises lead sulphide
 - (3) It oxidises mercury

- (2) It oxidises potassium iodide
- (4) It cannot act as bleaching agent in dry state.
- **65.** By which of the following SO_2 is formed?
 - (1) Reaction of dilute H_2SO_4 with O_2
 - (2) Heating Fe₂(SO₄)₃
 - (3) Reaction of concentrated H_2SO_4 with Cu.
 - (4) None.
- 66. Pick out the statement/s that is/are wrong :-
 - (1) Oxygen is paramagnetic in all the three states of matter
 - (2) Ozone is diamagnetic
 - (3) Ozone is a linear molecule
 - (4) The O–O bonds in ozone have considerable double bond character
- 67. Column-I

Column-II

(A) Caro's acid

(B) Pofythionic acid

- (C) Pyrosulphuric acid
- (D) Thiosulphuric acid
- (1) A-p, B-q, C-r, D-s
- (1) A-s, B-p, C-r, D-q

(p) -S-S- bond (p) -S=S- bond

- (p) S O S bond
- (s) -S O O bond
 - (1) A<mark>-p, B-q, C-s, D</mark>-r
 - (1) A-q, B-s, C-r, D-p

(4) [[−]

HALOGEN FAMILY AND INERT GASES

- **68.** Select the correct statement (s) from the following-
 - (1) Fluorine displaces other halogens from the corresponding halides.
 - (2) Fluorine reads slowly with halogens
 - (3) Fluorine does, not decompose water
 - (4) Except fluorine, other halogens directly combine with carbon.
- 69. Which of the following is a false statement-
 - (1) Halogens are oxidizing agent
 - (2) Halogens show only (-1) oxidation state
 - (3) HF molecules form intermolecular H-bonds
 - (4) Fluorine is highly reactive

70. The halide which does not give a precipitate with AgNO₃ is-(1) E (2) Cl^{-} (3) Br^{-}

- (1) F (2) Cl^- (3) Br^-
- 71. Volatile nature of halogen is because :
 - (1) Halogen molecules are bonded by strong forces
 - (2) Halogen molecules are bonded by electrostatic forces
 - (3) The forces existing between the discrete molecule are only weak vander Waals force.
 - (4) Halogen molecules are more reactive
- 72. Iodine gas turns starch iodide paper:

(1) Blue	(2) Red	(3) Colourless	(4) Yellow			
Power by: VISIONet Info Solution Pvt. Ltd						
Website : www.edubull.com	M	b no. : +91-9350679141				

Power by Website	y: VISIONet Info Solution Pvt. : www.edubull.com	Ltd	350679141						
	(3) HXeF $_6^+$ and F ⁻ ic	ons	(4) none of these						
ð .	(1) H^+ and XeF_7^- ion	nyurous HF to give a g	(2) HF2- and XeF_5^+	ions					
07	VaE diagolare in		and conductive set of	on which contains					
04.	(1) XeO_3	(2) XeF_4	$(3) XeCl_4$	(4) XeO_2F_2					
87	The compound that a	annot he formed by y	anon is						
	(3) Decrease in polar	risability	(4) Increase in polari	i5ability					
	(1) Decrease in I.E.		(2) Monoatomic natu	ure					
81.	which factor Is mos	t responsible for the i	ncrease in boiling poin	nts of noble gases from He to					
01	Which forten In	t monomolible for (1)		ate of achie corrections II (
	(3) $Xe^{-} [PtF_6]^{+}$		(4) XeF_4						
80.	AeF_2 reacts with SbF (1) [XeF]+ [SbF_6]	¹ 5 10 IOFM:	(2) $[XeF_3]^{-1}[SbF_4]^{-1}$						
6 0	Vol monsterwith Chi	to formu							
	 (1) XeO₃ has four a and four π bonds (2) The hybridization of Xe in XeF₄ is sp³d² (3) Among noble gases, the occurrence of argon is highest in air ~ (4) Liquid helium is used as cryogenic liquid 								
79.	Which of the followit $(1) XeO_2$ has four as	ng is not correct : and four π bonds							
	· · · ·								
	(3) It is readily misci(4) It is less poisonou	ble with oxygen us than nitrogen							
	(2) It is lighter than r	nitrogen	under mgn pressure						
78.	Helium is added to o	xygen used by deep se	ea divers because:						
	(1) HCl	(2) HBr	(3) HI	$(4) H_2 S$					
77.	Which of the followi	ng gases can be dried	by concentrated H ₂ SO	4?					
76.	which one \cdot of the fol (1) I ₂	(2) Cl ₂	(3) Br ₂	with H_2O (4) F_2					
		(2) 11020203	(5) 11001						
75.	Which of the followi (1) Na ₂ SO ₂	ng does not decolouris	se iodine?	(4) NaOH					
	 (1) If deep red vapour is evolved (2) The vappur when passed into NaOH solution gives a yellow solution of Na₂CrO₄ (3) Chorine gas is evolved (4) Chromyl chloride is formed 								
	warmed with conc. F	H_2SO_4 :							
74.	Which of the followi	ing statements is not co	orrect when a mixture	of NaCl and $K_2Cr_2O_7$ is gently					
	(1) Interhalogen com(3) Both the above	pound	(2) Pseudohalogen c(4) None of the abov	ompound /e					
13.	BrF ₅ 18 a:								

I

84.	SbF_5 reacts with XeF_4 to form an adduct. respectively	The shapes of cation and anion in the adduct are				
	(1) square planar, trigonal bipyramidal(3) square pyramidal, octahedral	(2) T-shaped, octahedral(4) square planar, octahedral				
85.	Which of the following noble gas does not f (1) Kr (2) Ne	form clathrate compound? (3) Xe (4) Ar				

- 86. An inorganic salt when heated with concentrated H_2SO_4 evolves a colourless pungent smelling gas but with concentrated H_2SO_4 and MnO_2 . Evolves a coloured pungent smelling gas which bleaches most litmus paper. The coloured gas is :-(1) NO₂ (2) Cl₂ (3) Br₂ (4) I₂
- 87. Identify the incorrect statement (Structure is including the location of lone pair of electrons):
 (1) XeO₂F₂ has 7 bonded electron pairs and one valence shell lone pair of electron. Its structure is square pyramidal with one pi bond.

(2) XeO_2F_2 has 6 bonded electron pairs and one valence shell lone pair of electrons. Its structure is trigonal bipyramidal with two pi bonds.

(3) XeF_6 has 6 bonded electron pairs and one valence shell lone pair of electrons. Its structure is pentagonal bipyramidal.

(4) XeF_2 has 5 electron pairs (bonded and valence shell lone pairs both) and its structure is trigonal bipyramidal.

ANSWER KEY

	EXERCISE-I (Conceptual Questions)												
1.	(3)	2.	(2)	3.	(2)	4.	(3)	5.	(1)	6.	(2)	7.	(3)
8.	(4)	9.	(4)	10.	(2)	11.	(4)	12.	(4)	13.	(1)	14.	(3)
15.	(3)	16.	(3)	17.	(1)	18.	(2)	19.	(2)	20.	(1)	21.	(1)
22.	(3)	23.	(2)	24.	(1)	25.	(2)	26.	(3)	27.	(3)	28.	(1)
29.	(2)	30.	(1)	31.	(3)	32.	(2)	33.	(3)	34.	(1)	35.	(3)
36.	(1)	37.	(3)	38.	(3)	39.	(1)	40.	(4)	41.	(1)	42.	(2)
43.	(3)	44.	(1)	45.	(2)	46.	(3)	47.	(4)	48.	(4)	49.	(4)
50.	(4)	<u>51</u> .	(4)	52.	(4)	53.	(1)	54.	(4)	55.	(4)	56.	(1)
57.	(4)	58.	(3)	59.	(1)	60.	(1)	61.	(3)	62.	(3)	63.	(1)
64.	(4)	65.	(3)	66.	(3)	67.	(3)	68.	(1)	69.	(2)	70.	(1)
71.	(3)	72.	(1)	73.	(1)	74.	(3)	75.	(3)	76.	(4)	77.	(1)
78.	(1)	79.	(1)	80.	(1)	81.	(4)	82.	(3)	83.	(2)	84.	(2)
85.	(2)	86.	(2)	87.	(1)								