INTRODUCTION

- 1. The formula weight of H_2SO_4 is 98. The weight of the acid in 400 mL of 0.1 M solution is :-
 - (1) 2.45 g
- (2) 3.92 g
- (3) 4.90 g
- (4) 9.8 g

- 2. Normality of 2 M sulphuric acid is :-
 - (1) 2 N
- (2) 4 N
- (3) N/2
- (4) N/4

- 3. If pH = 3.31, then find out $[H^+]$ (Approxy)
 - $(1) 3.39 \times 10^{-4}$
- $(2)\ 5\times10^{-4}$
- $(3)\ 3.0\times10^{-3}$
- (4) None

- **4.** If $[OH^-] = 5.0 \times 10^{-5}$ M then pH will be :-
 - $(1) 5 \log 5$
- $(2) 9 + \log 5$
- $(3) \log 5 5$
- $(4) \log 5 9$

- 5. Basicity of H_3PO_3 and H_3PO_2 are respectively:
 - (1) 1 and 2
- (2) 2 and 3
- (3) 3 and 2
- (4) 2 and 1
- **6.** Find out pH of solution having 2×10^{-3} moles of OH ions in 2 litre solution:
 - (1) pH = 3
- (2) pH = 3 + log 2
- (3) pH = 3 log 2
- (4) pH = 11
- 7. pH of tomato juice is 4.4. Then concentration of H_3O^+ will be:-
 - $(1) 39 \times 10^{-4}$
- $(2) 3.9 \times 10^{-5}$
- $(3) 3.9 \times 10^{-4}$
- $(4)\ 3.9\times10^5$
- 8. 8 g NaOH is dissolved in one litre of solution, the molarity of the solution is:-
 - (1) 0.2 M
- (2) 0.4 M
- (3) 0.02 M
- (4) 0.8 M
- 9. The amount of acetic acid present in 100 mL of 0.1 M solution is :-
 - (1) 0.30 g
- (2) 3.0 g
- (3) 0.60 g
- (4) None
- 10. The number of milli equivalents of acid in 100 mL of 0.5 N HCl solution is :-
 - (1)50
- (2) 100
- (3) 25
- (4) 200
- 11. If the molar concentration of PbI₂ is 1.5×10^{-3} mol L⁻¹, the concentration of iodide ions in g ion L⁻¹ is:-
 - $(1) 3.0 \times 10^{-3}$
- $(2) 6.0 \times 10^{-3}$
- $(3) 0.3 \times 10^{-3}$
- $(4)\ 0.6 \times 10^{-6}$

OSTWALD'S DILUTION LAW

- 12. Order of dissociation of 0.1 N CH₃COOH is :-
 - $(1)\ 10^{-5}$
- $(2)\ 10^{-4}$
- $(3)\ 10^{-3}$
- $(4)\ 10^{-2}$
- 13. If a is the degree of dissociation of weak dibasic organic acid and y is the hydrogen ion concentration, what is the initial concentration of acid:-
 - $(1) \ \frac{\alpha(y)^{-1}}{2} M$
- $(2) y(\alpha)^{-1} M$
- $(3) \frac{y(\alpha)^{-1}}{2}M$
- (4) None of them

14.	The degree of dissociation of acetic acconcentration of the acid). What is the	pH of the solution:-	•
	(1) 1 (2) 2	(3) 3	(4) 4
15.	Ostwald's dilution law is not applicable (1) Strong electrolytes are completely in (2) Strong electrolytes are volatile (3) Strong electrolytes are unstable (4) Strong electrolytes often contain metable (4) Strong electrolytes often contain metable (5)	onized	ecause:-
16.	The degree of ionization of a compoun (1) Size of the solute molecules (3) Nature of the container	d depends upon: (2) Nature of the so (4) The amount of c	
17.	Find out K_a for 10^{-2} M HCN acid, having (1) $K_a = 10^{-4}$ (2) $K_a = 10^{-2}$	ng pOH is 10:- (3) $K_a = 10^{-5}$	(4) None of them
18.	Which of the following will occur is constant temperature:- (1) Percentage ionization will increase (3) K _a will increase		se to 0.01 M
19. 20.	The pH of 0.15 M solution of HOCl (K (1) 4.42 (2) 2.92 The extent of ionization increases (wea (1) With the increase in concentration of (2) On decreasing the temperature of so (3) On addition of excess of water to th (4) On stirring the solution vigorously	(3) 3.42 ak electrolytes) of solute olution	(4) None
21.	If K_a of HCN = 4×10^{-10} , then the pH or (1) 4.2 (2) 4.7	-	=
22.	The molarity of nitrous acid at which is (1) 0.3333 (2) 0.4444	ts pH becomes 2. $(K_a = 4.6)$ (3) 0.6666	5×10 ⁻⁴) (4) 0.2222
23.	Correct statement for HCN weak acid at (1) $\alpha = \frac{K_a}{[H^+]}$ (3) (1) & (2) both	at 25°C temperature. :- $(2) \alpha = \frac{K_a \times [OH^-]}{K_w}$ $(4) K_b = C\alpha^2$	<u> </u>
24		ATION OF WATER	
24.	Ionic product of water will increase, if (1) Dissociation the pressure (3) Add OH	:- (2) Add H ⁺ (4) Increase the tem	nperature

				Edubull	
	$(1) [H^{+}] + [OH^{-}]$	$(2) [H^{+}]^{2}$	(3) $[OH^{-}]^{2}$	$(4) [H^{+}] - [OH^{-}]$	
26.	At 25°C, the dissoc	iation constant for p	oure water is given by:	-	
	$(1) (55.4 \times 10^{14})^{-1}$	(2) 1×10 ⁻¹⁴	$(3) \ \frac{1 \times 10^{-14}}{18}$	(4) None of these	
27.	1 /	nstant of water \times [H] nstant of water \times [H] D] and [H $^{+}$]	=		
28.	Addition of H ⁺ and (1) 10 ⁻¹⁴	OH ⁻ ion's concentra (2) 10 ⁻¹²	ation at 90°C (3) 2×10 ⁻⁶	$(4)\ 10^{-7}$	
29.	At 90°C, pure water (1) 10 ⁻⁶	r has $[H_3O^+] = 10^{-6.7}$ (2) 10^{-12}	$^{7} \text{ mol } L^{-1} \text{ what is the v}$ (3) 10^{-67}	alue of K_W at 90° C. (4) $10^{-13.4}$	
30.	At 373 K, temperate (1) < 7	ure the pH of pure H $(2) > 7$	H_2O can be :- (3) = 7	(4) = 0	
31.	The common ion ef (1) BaCl ₂ + Ba(NO (3) NH ₄ OH + NH ₄ O	3)2	ich of the following se (2) NaCl + HCl (4) None	ets of solutions :-	
32.	Basic strength of N (1) Increases (2) Remains unchar (3) Decreases (4) Sometimes incre				
33.	(1) The ionization c(2) Water is a strong(3) The value of ion	g electrolyte nic product of water	ent: roduct of water are san is less than that of its i a litre of water is 6.02	ionisation constant.	
34	If it is known that I	HaS is a weak acid	and it is ionized into	$2H^{+}$ and S^{-2} . Then in this solution	าท

If it is known that H_2S is a weak acid and it is ionized into $2H^+$ and S^{-2} . Then in this solution HCl is added so, pH becomes less, then what will happen:-(1) Decrease in S⁻² ion concentration (2) Concentration of S⁻² is not affected (3) Increase in S⁻² ion concentration (4) It is not possible, to add HCl in solu

(4) It is not possible, to add HCl in solution

SALTS, TYPES OF SALT & CONJUGATE TEHORY

35. Which of the following is not an acidic salt:-

- (1) NaHSO₄
- (2) HCOONa
- (3) NaH₂PO₃

(4) None of them

36. Which is a basic salt :-

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

				Edub
	(1) PbS	(2) PbCO ₃	(3) PbSO ₄	(4) 2PbCO ₃ Pb(OH) ₂
37.	The process of ne (1) H ⁺ ions (3) Both H ⁺ and (eutratlisation invariably	results in the product (2) OH ⁻ ions (4) Molecules of	
38.	Which of the foll (1) Na ₂ S	owing is an acid salt :- (2) Na ₂ SO ₃	(3) NaHSO ₃	(4) Na ₂ SO ₄
39.	The mixed salt ar (1) CH(OH)COC CH(OH)COC		(2) NaKSO ₄	
	(3) CaCl2	1.0	(4) All	
		HYDROL	YSIS OF SALTS	
40.	At 90°C, the pH α (1) < 7	of 0.1 M NaCl aqueous (2) > 7		(4) 0.1
41.	What will be the (1) 6.5	pH of 1.0 M ammonium (2) 7.5	format solution, If I	$X_a = 1 \times 10^{-5} : -$ (4) 9.0
42.	Which salt will n (1) KCl	ot undergo hydrolysis :- (2) Na ₂ SO ₄	(3) NaCl	(4) All
43.	Maximum efficie (1) Al ⁺³	ncy of cationic hydrolys (2) Ga ⁺³	sis will be shown by (3) Tl ⁺¹	:- (4) Tl ⁺³
44.	$HCOO^- + H_2O$ $_{\hat{x}}$	^† HCOOH + OH is	related :-	
	$(1) h = \sqrt{K_h}$	$(2) h = \sqrt{\frac{K_h}{C}}$	$(3) h = \sqrt{\frac{K_h}{V}}$	$(4) K_{h} = \sqrt{hc}$
45.	The pH of aqueon (1) 7	us solution of sodium ac (2) Very low	cetate is:- $(3) > 7$	(4) < 7
46.	If pK _b for CN ⁻ at (1) 12	25°C is 4.7. The pH of (2) 10	0.5 M aqueous NaCl (3) 11.5	N solution is :- (4) 11
47.	The highest pH v (1) 0.1 M NaCl (3) 0.1 M CH ₃ CC		(2) 0.1 M NH ₄ Cl (4) 0.1 M CH ₃ Co	

(1) 7

48.

pH of K_2S solution is :-

(2) Less than 7

(3) More than 7

(4) 0

- 49. For anionic hydrolysis, pH is given by:-
 - (1) $pH = \frac{1}{2}pK_W \frac{1}{2}pK_b \frac{1}{2}logc$
- (2) $pH = \frac{1}{2}pK_W \frac{1}{2}pK_a \frac{1}{2}pK_b$
- (3) $pH = \frac{1}{2}pK_W \frac{1}{2}pK_a \frac{1}{2}logc$
- (4) None of above
- A weak acid react with strong base, ionization constant of weak acid is 10⁻⁴. Find out **50.** equilibrium constant for this reaction :-
 - $(1) 10^{-10}$
- $(2)\ 10^{10}$
- $(3)\ 10^{-9}$
- $(4) 10^9$
- 51. Hydroxyl ion concentration [OH⁻] in the case of sodium acetate can be expressed as (where K_a is dissociation constant of CH₃COOH and C is the concentration of sodium acetate):-
 - (1) $[OH^-] = (CK_w.K_a)^{1/2}$

(2) $[OH^{-}] = C.K_w \sqrt{K_a}$

 $(3) [OH^{-}] = \left(\frac{C.K_w}{K}\right)^{1/2}$

(4) $[OH^{-}] = C.K_a.K_w.$

- **52.** Consider:-
 - (a) FeCl₃ in water Basic

- (b) NH₄Cl in water Acidic
- (c) Ammonium acetate in water Acidic
- (d) Na₂CO₃ in water Basic

- (1) b and d
- (2) b only
- (3) a and c
- (4) d only
- **53.** Which of the following salts undergoes hydrolysis in water:
 - (1) Na₃PO₄
- (2) CH₃COONa
- (3) NaNO₃
- (4) Both of (1) and (2)
- 54. A salt 'X' is dissolved in water of pH = 7. The resulting solution becomes alkaline in nature. The salt is made up of:-
 - (1) A strong acid and strong base
- (2) A strong acid and weak base
- (3) A weak acid and weak base
- (4) A weak acid and strong base
- K_a for cyano acetic acid is 3.5×10^{-3} . Then the degree of hydrolysis of 0.05M sodium cyano 55. acetate solution will have the following value :-
 - $(1) 4.559 \times 10^{-6}$
- $(2) 5.559 \times 10^{-6}$
- (3) $6.559 \times 10^{-6+}$ (4) 7.559×10^{-6}
- Degree of Hydrolysis of $\frac{N}{100}$ solution of KCN is **56.**

(Given Ka = 1.4×10^{-9}) (1) 2.7×10^{-3} (2) 2.7×10^{-2}

- $(3)\ 2.7\times10^{-4}$
- $(4) 2.7 \times 10^{-5}$

SOLUBILITY & SOLUBILITY PRODUCT (K_{sn})

- The solubility product of sparingly soluble univalent salt is defined as the product of ionic 57. concentration in a :-
 - (1) 1 M solution

(2) Concentration solution

(3) Very dilute solution

- (4) Saturated solution
- **58.** In solubility of salts M_2X , QY_2 and PZ_2 equal, then the relation between their K_{sp} will be :-
 - (1) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(PZ_2)$
- (2) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(PZ_2)$

(3)
$$K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_2)$$

(4)
$$K_{sp}(M_2X) = K_{sp}(QY_2) = K_{sp}(PZ_2)$$

- The expression of solubility product of mercurous iodide is :-**59.**
 - (1) $[2 \text{ Hg}^+]^2 \times 2[\Gamma]^2$

(2) $[Hg^{++}]^2 \times [2\Gamma]^2$

(3) $[Hg_2^{2+}] \times [\Gamma]^2$

- (4) $[\mathrm{Hg}^{2+}]^2 \times [\Gamma]^2$
- At 25°C, the K_{sp} value of AgCl is 1.8×10^{-10} . If 10^{-5} moles of Ag⁺ are added to solution then K_{sp} **60.** will be :-
 - $(1) 1.8 \times 10^{-15}$
- $(2)\ 1.8\times10^{-10}$
- $(3)\ 1.8\times10^{-5}$
- $(4) 1.8 \times 10^{+10}$
- At 25°C, required volume of water, to dissolve 1 g BaSO₄ ($K_{sp} = 1.1 \times 10^{-10}$) will be (Molecular 61. weight of $BaSO_4 = 233$)
 - (1) 820 L
- (2) 1 L
- (3) 205 L
- (4) 430 L
- Concentration of Ag⁺ ions in saturated solution of Ag₂CrO₄ at 20°C is 1.5×10⁻⁴ mol L⁻¹. At **62.** 20°C, the solubility product of Ag₂Cr₄ is :-
 - $(1)\ 3.3750\times10^{-12}$
- (2) 1.6875×10^{-10}
- $(3) 1.68 \times 10^{-12}$
- $(4) \ 1.6875 \times 10^{-11}$
- How many grams of CaC₂O₄ will dissolve in distilled water to make one litre saturated **63.** solution? Solubility product of CaC_2O_4 is 2.5×10^{-9} mol² L⁻² and its molecular weight is 128.
 - (1) 0.0064 g
- (2) 0.0128 g
- (3) 0.0032 g
- If the concentration of CrO_4^{2-} ion in a saturated solution of silver chromate will be 2×10^{-4} M, 64. solubility product of silver chromate will be -
 - $(1) 4 \times 10^{-8}$
- $(2) 8 \times 10^{-12}$
- $(3)\ 32\times10^{-12}$
- $(4) 6 \times 10^{-12}$
- If the solubility of AgCl (formula mass = 143) in water at 25° C is 1.43×10^{-4} g/100 mL of **65.** solution then the value of K_{sp} will be :-
 - $(1)\ 1\times10^{-5}$
- $(2) 2 \times 10^{-5}$
- $(3)\ 1\times10^{-10}$
- $(4) 2 \times 10^{-10}$
- If the salts M_2X , QY_2 and PZ_3 have the same solubilities, their K_{sp} values are related as- (S < 1)66.
 - (1) $K_{sp}(M_2X) = K_{sp}(QY_2) < K_{sp}(PZ_3)$
- (2) $K_{sp}(M_2X) > K_{sp}(QY_2) = K_{sp}(PZ_3)$
- (3) $K_{sp}(M_2X) = K_{sp}(QY_2) > K_{sp}(PZ_3)$
- (4) $K_{sp}(M_2X) > K_{sp}(QY_2) > K_{sp}(PZ_3)$
- The solubility product of As₂S₃ is given by the expression :-67.
 - (1) $K_{sp} = [As^{3+}] \times [S^{-2}]$ (3) $K_{sp} = [As^{3+}]^3 \times [S^{-2}]^2$

(2) $K_{sp} = [As^{3+}]^1 \times [S^{-2}]^1$ (4) $K_{sp} = [As^{3+}]^2 \times [S^{-2}]^3$

- If the solubility of PbBr₂ is 'S' g molecules per litre, considering 100% ionization its solubility **68.** product is :-
 - $(1) 2S^3$
- $(2) 4S^2$
- $(3) 4S^3$
- $(4) 2S^4$
- If the solubility of lithium sodium hexeafluoro aluminate Li₃Na₃(AlF₆)₂ is 'S' mol L⁻¹. Its **69.** solubility product is equal to :-
 - $(1) S^8$
- (2) $12 S^3$
- $(3) 18 S^3$
- $(4) 2916 S^8$

Edubull One litre of saturated solution of CaCO₃ is evaporated to dryness, when 7.0 g og residue is left. 70. The solubility product for CaCO₃ is:- $(1) 4.9 \times 10^{-3}$ $(3) 4.9 \times 10^{-9}$ $(4) 4.9 \times 10^{-7}$ $(2) 4.9 \times 10^{-5}$ APPLICATION OF SOLUBILITY PRODUCT (K_{sn}) 71. At 30°C. In which of the one litre solution, the solubility of Ag₂CO₃ (solubility product = 8×10^{-12}) will be maximum: (1) 0.05 M Na₂CO₃ (2) Pure water $(3) 0.05 \text{ M AgNO}_3$ (4) 0.05 M NH₃ 72. Solubility of AgBr will be minimum in :-(1) Pure water (2) 0.1 M CaBr₂ (4) 0.1 M AgNO₃ (3) 0.1 M NaBr **73.** In which of the following, the solution of AgSCN will be unsaturated:-(1) $[Ag^{+}] \times [SCN^{-}] = K_{sp}$ $(2) [Ag^{+}] \times [SCN^{-}] < K_{sn}$ $(4) [Ag^+] \times [SCN^-]^{-2} < K_{sp}$ (3) $[Ag^{+}] \times [SCN^{-}] > K_{sp}$ Correct order of solubility product is :-**74.** (1) $CaCrO_4 > SrCrO_4 > BaCrO_4$ (2) BaCrO₄ > SrCrO₄ > CaCrO₄ (3) $CaCrO_4 > BaCrO_4 > SrCrO_4$ (4) SrCrO₄ > BaCrO₄ > CaCrO₄ **75.** If 's' and 'S' are respectively solubility and solubility product of a sparingly soluble binary electrolyte then:-(3) $s = S^{1/2}$ (4) $s = \frac{1}{2} S$ (2) $s = S^2$ (1) s = SThe solubility product of CuS, Ag₂S and HgS are 10^{-37} , 10^{-44} and 10^{-54} respectively. The **76.** solubility of these sulphides will be in the order (2) $Ag_2S > HgS > CuS$ (1) $HgS > Ag_2S > CuS$ $(3) CuS > Ag_2S > HgS$ (4) Ag₂S > CuS > HgS77. If the maximum concentration of PbCl₂ in water is 0.01 m at 298 K, Its maximum concentration in 0.1 M NaCl will be:- $(3) 4 \times 10^{-2}$ $(4) 4 \times 10^{-4} \text{ M}$ $(1) 4 \times 10^{-3} \text{ M}$ $(2) 0.4 \times 10^{-4} \text{ M}$ M_2SO_4 (M⁺ is monovalent metal ion) has a K_{sp} of 1.2×10^{-5} at 298 K. The maximum **78.** concentration of M⁺ ion that could be attained in a saturated solution of this solid at 298 K is:- $(1) 3.46 \times 10^{-3} \text{ M}$ $(2) 2.89 \times 10^{-2} \text{ M}$ $(3) 2.8 \times 10^{-3} \text{ M}$ (4) 7.0×10^{-3} M Which of the following has maximum solubility (K_{sp} value is given in brackets):-**79.** (1) HgS (1.6×10^{-54}) (2) PbSO₄ (1.3×10^{-8}) (4) MnS (1.4×10^{-10}) (3) $ZnS(1.2\times10^{-28})$ Maximum soluble is :- (K_{sp} is given) (1) CuS (8.5×10^{-36}) (2) CdS (3.6×10^{-28}) (3) ZnS (1.2×10^{-28}) (4) MnS (1.4×10^{-10}) **80.**

81. In which of the following, the solubility of AgCl will be maximum

Power by: VISIONet Info Solution Pvt. Ltd

	(1) 0.1 M AgNO ₃	(2) Water	(3) 0.1 M NaCl	(4) 0.1 M KCl
82.	The solubility produ	ct of three sparingl	y soluble salts are giver	n below:
	No. Forn	nula Se	olubility product	
	1. PQ		4.0×10^{-20}	
	PQ_2		3.2×10^{-14}	
	3. PQ ₃		2.7×10^{-35}	
	The correct order of	decreasing molar s		
	(1) 1, 2, 3	(2) 2, 1, 3	(3) 3, 2, 1	(4) 2, 3, 1
	(1) 1, 2, 3	(2) 2, 1, 3	(3) 3, 2, 1	(4) 2, 3, 1
83.	K _{sp} value is more fo	r :-		
	(1) CuS	(2) NiS	(3) PbS	(4) CdS
84.	The K _{op} value for G	d(OH) ₂ is 2.8×10 ⁻²³	the pH at which Gd(C	OH) ₃ begins to precipitate is :-
• ••	(1) 6.08	(2) 5.08	(3) 8.47	(4) 4.08
	(1) 0.00	(2) 3.00	(3) 0.47	(+) +.00
85.	If the solubility pr	oduct AgBrO ₃ an	d Ag_2SO_4 are 5.5×10	$^{-5}$ and 2×10^{-5} respectively, the
	relationship between	n the solubilities of	these can be correctly r	represented as:-
	(1) $sAgBrO_3 > sAg_2$		(2) sAgBrO3 = sA	-
	(3) sAgBrO3 < sAg2		(4) Can't predict	
86.	0.5 M HCl solution	has ions Hg ⁺⁺ , Cd ⁺	+, Sr ⁺⁺ , Fe ⁺⁺ , Cu ⁺⁺ . To	pass the H ₂ S gas in this solution,
	which are precipitat			
	(1) Cd^{+2} , Fe^{+2} , Sr^{+2}		$(2) \text{ Cd}^{+2}, \text{ Hg}^{+2}, \text{ C}^{-1}$	u ⁺²
	(3) Hg^{+2} , Cu^{+2} , Fe^{+2}		(2) Cd ⁺² , Hg ⁺² , C (4) Cu ⁺² , Sr ⁺² , Fe	+2
87.	Solubility product of	of Mg(OH) ₂ is 1×1	0 ⁻¹¹ . At what pH, prec	cipitation of Mg(OH)2 will begin
	from 0.1 M Mg^{2+} so	lution :-		
	(1) 9	(2) 5	(3) 3	(4) 7
88.	-		Fe(OH) ₂ is not precipitate	ated because :-
	(1) The K_{sp} for Fe(C			
	(2) To precipitate Fe	$e(OH)_2$, only small	[OH ⁻] is needed	
	(3) $Fe(OH)_2$ is a wear	ak electrolyte		
	(4) The oxidation st	ate of Fe in Fe(OH)	$_{2}$ is +2.	
00		0.01.34.77. +2	1001 M G 2+:	. II G 77 G-2
89.	A solution, containi	ng U.UI M Zn an	d 0.01 M Cu is satur	ated by passing H_2S gas. The S^{-2}
				10^{-22} and 8.0×10^{-36} respectively.
	Which of the follow	_		
	(1) ZnS will precipi		(2) CuS will prec	ipitate
	(3) Both ZnS and Co	uS will precipitate	(4) Both Zn^{2+} and	Cu ²⁺ will remain in the solution
90.	Consider (i) $7n(OU$), (ii) Cr(OH), (iii)	Mg(OH), (iv) Al(OH)	3 which hydroxide is precipitated
<i>7</i> 0.	by NH ₄ OH containing		$\text{Wig}(\text{OH})_2 \text{ (IV) Al}(\text{OH})$	3 which hydroxide is precipitated
	•	•	(2) only iv	(4); ii iii and iv
	(1) i, ii	(2) ii, iv	(3) only iv	(4) i, ii, iii and iv

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141 What will happen if the pH of the solution of 0.001 M Mg(NO₃) solution is adjusted to pH = 9 $(K_{sp} Mg(OH)_2 = 8.9 \times 10^{-12})$

(1) ppt will take place

(2) ppt will not take place

(3) Solution will be saturated

(4) None of these

92. The solubility product constant Ksp of $Mg(OH)_2$ is 9.0×10^{-12} . If a solution is 0.010 M with respect to Mg^{2+} ion, what is the maximum hydroxide ion concentration which could be present without causing the precipitation of $Mg(OH)_2$:-

 $(1) 1.5 \times 10^{-7} \text{ M}$

(2) 3.0×10^{-7} M

(3) 1.5×10^{-5} M

 $(4) 3.0 \times 10^{-5} \text{ M}$

93. When HCl gas is passed through a saturated solution of common salt, pure NaCl is precipitated because:-

(1) The impurities dissolve in HCl

(2) HCl is slightly soluble in water

(3) The ionic product $[Na^+] \times [Cl^-]$ exceeds the solubility product of NaCl

(4) The solubility product of NaCl is lowered by Cl⁻ from aq. HCl

A solution is a mixture of 0.06 M KCl and 0.06 M KI. AgNO₃ solution is being added drop by drop till AgCl starts precipitating $(K_{sp} \text{ AgCl} = 1 \times 10^{-10} \text{ and } K_{sp} \text{ AgI} = 4 \times 10^{-16})$. The concentration of Iodide ion at this stage will be nearly equal to:-

 $(1) 4.0 \times 10^{-5} \text{ M}$

 $(2) 2.4 \times 10^{-7} \text{ M}$

 $(3) 2.0 \times 10^{-8} \text{ M}$

 $(4) 4 \times 10^{-8} \text{ M}$

Why only As^{3+} gets precipitated as As_2S_3 and not Zn^{2+} as ZnS when H_2S is passed through an acidic solution containing As^{3+} and Zn^{2+} :-

(1) Enough As³⁺ are present in acidic medium

(2) Zinc salt does not ionise in acidic medium

(3) Solubility product of As₂S₃ is less than that of ZnS

(4) Solubility product changes in presence of an acid

96. H₂S is passed through a solution of cations in HCl medium to precipitate cation of :-

(1) II-A group of cation analysis

(2) II-B group of cation analysis

(3) IV group of caiton analysis

(4) Both II-A and II-B gps

97. To have more sulphide ion concentration, H₂S should be passed through:-

(1) 1 N HCl solution

(2) 0.1 N HCl solution

(3) A neutral solution such as water

(4) An ammonical soluiton

98. The solubility product of hydroxides of Mg^{+2} , Zn^{+2} and Fe^{+3} decreases as K_{sp} $Mg(OH)_2 > K_{sp}$ $Zn(OH)_2 > K_{sp}$ $Fe(OH)_3$. The order of precipitation of hydroxides is :-

(1) $Fe(OH)_3$, $Zn(OH)_2$, $Mg(OH)_2$

(2) Mg(OH)₂, Zn(OH)₂, Fe(OH)₃

(3) $Zn(OH)_2$, $Fe(OH)_3$, $Mg(OH)_2$

(4) Zn(OH)₂, Mg(OH)₂, Fe(OH)₃

FEW IMPORTANT POINTS

99. Two monobasic weak acids have the same concentration of H⁺ ions. What is the relationship between dissociation constant and dilution.

(1) $Ka_1 V_1 = Ka_2 V_2$

(2) $Ka_1 V_2 = Ka_2 V_1$

(3) $[Ka_1 V_2]^{1/2} = Ka_2 V_2$

(4) $Ka_1 V_1 = [Ka_2 V_2]^{1/2}$

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

 т	b.	Ш

			Eddball
100.	What is the molar concentration of chlorid 3.0 M NaCl and 200 mL of 4.0 M solution		btained by mixing 300 mL of
	(1) 5.0 M (2) 1.8 M	(3) 1.6 M	(4) None of these
101.	The pH of a 0.1 M formic acid 0.1 % disso weak monobasic acid (same concentration)	which is 1% dissociate	ed.
	(1) 2 $(2) 3$	(3) 1	(4) 4
	r	Н	
102.	pH of water is 7. When any substance Y is Y is a salt of:		en pH becomes 13. Substance
	(1) Strong acid and strong base	(2) Weak acid and w	eak base
	(3) Strong acid and weak base	(4) Weak acid and str	
103.	Minimum nH is shown by aquaque solution	of.	
103.	Minimum pH is shown by aqueous solution (1) 0.1 M BaCl ₂ (2) 0.1 M Ba(NO ₃) ₂		(4) 0.1 M Ba(OH) ₂
104.	Given :-		
	(a) $0.005 \text{ M H}_2\text{SO}_4$	(b) 0.1 M Na ₂ SO ₄	
	(c) 10 ⁻² M NaOH	(d) 0.01 M HCl	
	Choose the correct code having same pH:-		
	(1) a, c, d (2) b, d	(3) a, d	(4) a, c
105.	What is H ⁺ ion concentration of 5×10^{-3} M I	H-CO- colution having	a 10% dissociation
103.	(1) 10^{-3} (2) 10^{-2}	(3) 10^{-1}	(4) 5×10^{-2}
106.	A metal hydroxide of molecular formula l	$M(OH)_4$ is 50% ionize	d. Its 0.0025 M solution will
	have the pH:-		
	(1) 12 (2) 2	(3) 4	(4) 11.7
107.	In the following solution, the concentration	n of different acids ar	re give, which mixture of the
	acid has highest pH:-		
	(1) $\frac{M}{10}$ H ₂ SO ₄ , $\frac{M}{20}$ HNO ₃ , $\frac{M}{10}$ HClO ₄	(2) $\frac{M}{20}$ H ₂ SO ₄ , $\frac{M}{10}$ H	$1NO_3, \frac{M}{20}HClO_4$
	10 20 10	20 10	20
	(3) $\frac{M}{20}$ H ₂ SO ₄ , $\frac{M}{10}$ HNO ₃ , $\frac{M}{40}$ HClO ₄	$(4) \frac{M}{}$ H ₂ SC	$O_4, \frac{M}{5} HNO_3, \frac{M}{5} HClO_4$
	20 12504, 10 11403, 40	20 11250	5 5 5
108.	If $100 \text{ mL of pH} = 3 \text{ and } 400 \text{ mL of pH} = 3$	is mixed what will be	the nH of the mixture
100.	_		_
	(1) 3.2 (2) 3.0	(3) 3.5	(4) 2.8
109.	10 ⁻⁶ M HCl is diluted to 100 times. Its pH i	c •	
109.			(4) 0.5
	(1) 6.0 (2) 8.0	(3) 6.95	(4) 9.5
110.	pH of 0.001 M acetic acid would be:-		
	(1) 2 $(2) > 3$	(3) 7	(4) 14
	· · · · · · · · · · · · · · · · · · ·	. ,	
111.	At 90°C, the pH of 0.001 M KOH solution	will be :-	
	y: VISIONet Info Solution Pvt. Ltd		
Website	: www.edubull.com Mob no. : +91-93	350679141	

	(1) 3		(2) 11	(3) 5	(4) 9
112.	The pH of so (1) Reduced (3) Reduced	to half		. Its H ⁺ ion concentrati (2) Doubled (4) Increased by 100	
113.	A solution ha (1) Highly ac (3) Moderate	cidic	equal to 13 at 298 K. T	The solution will be :- (2) Highly basic (4) Unpredictable	
114.	The pH of the	e solutio	n containing 10 mL of	f a 0.1 M NaOH and 1	0 mL of 0.05 M H ₂ SO ₄ would
	(1) Zero		(2) 1	(3) > 7	(4) 7
115.	(a) The pH of (b) The conjuctor (c) Autoprotes	f 1.0×10 agate bas olysis co	ng statements are (is) of the solution of HCl is see of H ₂ PO ₄ is HPO ₄ ² instant of water increase	s 8. se with temperature.	
	(d) When a neutralization			otic acid is titrated a	gainst a strong base, at half
	(1) a		(2) a, b	(3) a, b, d	(4) b, c
116.	In a solution hydrogen ion (1) 100 times	concent		led in order to reduce (3) 3 times	the pH = 2 . The increase in (4) 5 times
117.	The hydroger	n ion cor	ncentration in a given s	solution is 6×10^{-4} M. I	ts pH will be :-
	(1) 6		(2) 3.22	(3) 4	(4) 2
118.	The pOH or l	beer is 1		concentration will be	:-
	(a) 10^{-10}		(b) $\frac{\text{Kw}}{10^{-10}}$	(c) $\frac{\text{Kw}}{10^{-8}}$	(d) 10^{-4}
	(1) a, d		(2) b, c	(3) a, b, c	(4) None
119.	An aqueous s (1) Basic	solution	whose pH = 0 is :- (2) Acidic	(3) Neutral	(4) Amphoteric
120.	•		on produced when an queous solution of stro	•	strong acid pH 5 is mixed the
	(1) 3.3		(2) 3.5	(3) 4.5	(4) 4.0
121.	_	ve solution	on of KOH were prepa	are as –	
	First	\rightarrow	0.1 moles in 1 L		
	Second	\rightarrow	0.2 moles in 2 L		
	Third	\rightarrow	0.3 moles in 3 L		
	Fourth	\rightarrow	0.4 moles in 4 L		
Power by	y: VISIONet Info So	lution Pvt. I	Ltd		

Website: www.edubull.com Mob no.: +91-9350679141

	Fifth →	0.5 moles in 5 L		
	The pH of resultant s		(2) 12	(A) 7
	(1) 2	(2) 1	(3) 13	(4) 7
122.	The pH of a 0.02 M a	ammonia solution whic	ch is 5% ionized will b	e :-
	(1) 2	(2) 11	(3) 5	(4) 7
	•		· ,	
123.	For $\frac{N}{10}$ H ₂ SO ₄ , pH v	value is ·-		
140.	- 0			
	(1) 1	(2) 0.586	(3) 0.856	(4) None
124.	Δn aqueous solution	of HCl is 10^{-9} M HCl.	The nH of the solution	n should be :-
147,	(1) 9	(2) Between 6 and 7	_	(4) Unpredictable
	(-, -	()		
125.			- ·	ich one of the following is the
		ous solution of this acid		
	(1) 0.1	(2) 0.05	(3) 0.2	(4) 0.5
126.	How many moles of	HCl must be removed	d form 1 litre of aquec	ous HCl solution to change its
	pH from 2 to 3:-			
	(1) 1	(2) 0.02	(3) 0.009	(4) 0.01
107	O ~ NaOH and 40 ~	II CO are proport in a	The of the colution	What is its all
127.	8 g NaOH and 4.9 g l (1) 1	H ₂ SO ₄ are present in or (2) 13	(3) 12	(4) 2
	(1) 1	(2) 13	(3) 12	(4) 2
128.		lution whose 100 mL co		ssolved in it :-
	(1) 10.699	(2) 11.699	(3) 12.699	(4) 13.699
129.	One litre solution or	ontoine 1 M HOCL IK	$r = 10^{-8}$ 1 and 1 M N	IaOH. What is the pH of the
147.	solution :-		ra – 10 j and 1 wi iv	aOII. What is the pit of the
	(1) 8	(2) 11	(3) 5	(4) 2
130.				that it gives a pH = 13 :-
	(1) 10^{-13} g	$(2) 10^{-1} g$	(3) 1.0 g	(4) 4.0 g
131.	0.001 mol of the stro	ong electrolyte M(OH) ₂	has been dissolved to	make a 20 mL of its saturated
	solution. Its pH will b			
	(1) 13	(2) 3.3	(3) 11	(4) 9.8
122	Chasse the wrong st	stomant.		
132.	Choose the wrong sta	atement :- ation : $[H^+] = [OH^-] = A$	Tv.	
			•	
		ution: $[H^+] > \sqrt{K_w}$ and	•	
		on: $[H^+] < \sqrt{K_w}$ and $[$	•	
	(4) For a neutral solu	ition at all temperatures	$s [H^+] = [OH^-] = 10^{-7} N$	M
122	The all of 0.1 M colu		las improposas in order	
133.	y: VISIONet Info Solution Pvt. 1	ution of the following s	Salts increases in order	:-
	: www.edubull.com	Mob no.: +91-93	350679141	

	: www.edubull.com	Mob no. : +9	01-9350679141	
	v: VISIONet Info Solution Pvt.	Ltd		
	(1) 4 mL	(2) 7.95 mL	of 2 M HCN solution is (3) 2 mL	(4) 9.3 mL
143.				H of 9, the volume of 5 M KCN
	(3) Keeping the pH of	constant	(4) Solution will b	oe neutral
142.	The buffer solution p (1) Increasing the pl	H value	(2) Decreasing the	-
	(4) None of them			
	(2) HCOOH + CH ₃ C (3) 40 mL 0.1 M Na	COONa	И НСI	
141.	Which can act as but (1) NH ₄ OH + NaOH			
	(1) KOH and H₂SO₄(3) Oxalic acid and I		(2) NaOH and CF (4) Ba(OH) ₂ and I	
140.	-		ator for the titration be	
139.	What is the suitable (1) Methyl orange (3) Phenolphthalein	indicator for titration	n of NaOH a <mark>nd ox</mark> alic (2) Methyl red (4) Starch solution	
	(1) 7.74	(2) 4.74	(3) 2.37	(4) 9.26
138.	pK _b for NH ₄ OH at concentration of NH	_	_	asic buffer containing equimolar
	(3) Increases by one		(4) Increases tenfo	
13/.	tenfold. The pH of the (1) Decreases by one	he solution :-	(2) Increases by o	
137.	, ,			ation of acid to salt is increased
150.	base is unsuitable fo (1) NaOH		(3) KOH	(4) NH ₄ OH
136.	, ,	. ,	· ,	olphthalein as an indicator, which
	to get a buffer soluti (1) 50 mL			(4) 39.6 mL
135.	, ,		` '	M sodium format must be added
	2:1 what will be the (1) Increase	e value of pH of buff (2) Decrease	fer :- (3) No effect	(4) N.O.T.
134.		the ratio of concentr		FOR H ₄ OH is 1 : 1 when it changes in
	(s) Her truer tru	·	. ,	
	(1) NaCl < NH ₄ Cl < (3) HCl < NaCl < Na		(2) NaCN < NH ₄ O (4) HCl < NH ₄ Cl	

E	
d	
u	
b	
u	
Ш	
ı	

144.	Buffering action of a salt to acid is equal to		H and CH ₃ COONa is	maximum when the ratio of
	(1) 1.0	(2) 100.0	(3) 10.0	(4) 0.1
145.	The pink colour of ph (1) Negative ion	nenolphthalein in alkal (2) Positive ion	ine medium is due to - (3) OH ⁻ ions	(4) Neutral form
146.	Which indicator work (1) Phenolphthalein (3) Methyl red	cs in the pH range 8 – 9	9.8 (2) Methyl orange (4) Litmus	
147.		[base] = 1:10	H - pK _b = 1 only under (2) [Conjugate acid] = (4) N.O.T	
148.	For weak acid strong (1) Potassium di-chro (3) Litmus	base titration, the indicomate	cator used is :- (2) Methyl orange (4) Phenolphthalein	
149.	From the following in (1) CH ₃ COOH + NaOH (3) HCl + NaOH	_	vl orange is a best indic (2) H ₂ C ₂ O ₄ + NaOH (4) CH ₃ COOH + NH	
150.	are:-			itration of H ₃ PO ₄ with NaOH
	(1) 3	(2) 1	(3) 2	(4) 0
151.				0^{-4} g ion L ⁻¹ . The H ⁺ ion 1 M CH ₃ COOH will be :- (4) 5×10^{-6}
152.	A certain acidic buff 10^{-10} . The pH of the		qaul concentration of 2	X^- and HX. The K_b for X^- is
	(1) 4	(2) 7	(3) 10	(4) 14
153.		HCl acid is added to 1	00 mL of a buffer solu	tion of pH 4.0. The pH of the
	solution (1) Becomes 7	(2) Does not change	(3) Becomes 2	(4) Becomes 10
154.	The pH of blood is blood. This phenome		d H ₂ CO ₃ in the body	and chemical constituents of
	(1) Colloidal	(2) Buffer action	(3) Acidity	(4) Salt balance
155.	Phenolphthalein is not (1) NaOH against ox (3) NaOH against H ₂		titrating (2) NaOH against HO (4) Ferrous sulphate a	

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141

156.	Which of the following (1) H ₃ PO ₄ + NaH ₂ PO (3) NH ₄ Cl	ing solutions does not a O_4	act as buffer :- (2) H ₃ PO ₄ (4) CH ₃ COOH + CH	I ₃ COONa
157.	approximate pH of ($K_a = 10^{-5}$):-		acetate solution will have an
	(1) 4	(2) 5	(3) 6	(4) 7
158.		en the pH of the resulti		
160.		acid solution is neutr then pH of the solution (2) 10.3010		a KOH solution to it. If K_a (4) 4.3010
161.	What will be the [OI	0.2 M NH ₄ OH and 0.2 H of the resulting solution (2) 5×10 ⁻¹⁰		of 0.001 M HCl is added to it. (4) None of these
162.	Hunderson equation (1) [Acid] = [Conjug (3) [Acid] = [Conjug	gate base]	applicable to an acidic (2) [Acid] ×10 = [Co (4) None of these	
163.			dissolved in 0.001 M at this solution: K_b (NH ₄) $(3) 9.0 \times 10^{-3}$	ammonium chloride solution, $O(H) = 1.8 \times 10^{-5}$:- (4) 3.0×10^{-4}
164.	When 0.02 moles of 5.80. What is its buff (1) 0.4		litre of buffer solution (3) -0.05	n, its pH changes from 5.75 to (4) 2.5
165.	Calculate the pH of NH ₄ Cl. K _b for NH ₃ =	a buffer prepared by = 1.8×10^{-5} :-	mixing 300 cc of 0.3	M NH ₃ and 500 cc of 0.5 M
	(1) 8.1187	(2) 9.8117	(3) 8.8117	(4) None of these
166.				litre of an aqueous solution) to obtain a buffer solution of
		$(2) \ 3.52 \times 10^{-2} \ \mathrm{M}$	$(3) 2.52 \times 10^{-2} M$	(4) $1.52 \times 10^{-2} \text{ M}$
167.		es of propanoic acid (K		dissolved in a buffer solution 152 moles of salt, at 25°C:
	(1) 5.11	(-)	(5) 5.11	(. / 0.11

Mob no.: +91-9350679141

156.

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

168.	Calculate the pH of a buffer solution prepared by dissolving 30 g of Na ₂ CO ₃ in 500 mL of an aqueous solution containing 150 mL of 1 M HCl.									
	Ka for $HCO_3^- = 5.63 \times 10^{-11} \left[log \left(\frac{133}{150} \right) = -0.05 \right]$ (1) 8.197 (2) 9.197 (3) 10.197 (4) 11.197									
	(1) 8.197	(2) 9.197	(3) 10.197	(4) 11.197						
169.				f CH ₃ COONa + 1 mole of HCl per 1 mole of acetic acid per litre :- (4) 2 : 3						
170.	When 20 mL of $\frac{M}{20}$ NaOH are added to 10 mL of $\frac{M}{10}$ HCl, the resulting solution will :-									
	(1) Turn blue litmus (3) Turn methyl ora	s red	(2) Turn phenolphthalein solution(4) Will have no effect on either red or blue litmus							
171.	10 mL of a solution change the pH of so (1) Adding 1 mL w (3) Adding 5 mL of	olution :- ater	H ₄ Cl + 0.01 M NH ₄ OH. Which addition would not (2) adding 5 mL of 0.1 M NH ₄ Cl (4) Adding 10 mL of 0.1 M NH ₄ Cl							
172.	$\frac{N}{10}$ acetic acid was titrated with $\frac{N}{10}$ NaOH. When 25%, 50% and 75% of titration is over the pH of the solution will be :-[$K_a = 10^{-5}$] (1) $5 + \log 1/3$, $5 + \log 3$ (2) $5 + \log 3$, 4 , $5 + \log 1/3$ (3) $5 - \log 1/3$, 5 , $5 - \log 3$ (4) $5 - \log 1/3$, 4 , $5 + \log 1/3$									
			AND BASE							
173.	The conjugated acid (1) O ₂ ⁺	d of O ⁻² ion's is :- (2) H ⁺	(3) H ₃ O ⁺	(4) OH ⁻						
174.	Ionization constant of AOH and BOH base K_{b_1} and K_{b_2} .Their relation $pK_{b_1} < pK_{b_2}$									
	Conjugate of follow (1) AOH	ving base, does not sho (2) BOH	ow maximum pH: (3) Both of them	(4) NOT						
175.	Select the species w (a) H ₂ O Correct code is:-	which can function as - (b) NH ₄ ⁺	-Lewis base, bronsted (c) N ⁻³	l acid and bronsted base:-						
	(1) Only a	(2) a, b	(3) a, c	(4) b, c						
176.		show acid behavior: (2) $\left[\text{Fe}(\text{H}_2\text{O})_6 \right]^{+3}$	(3) HPO ₄ ⁻²	(4) ClO ₃						
177.	An example of Lew (1) CaO	vis acid is :- (2) CH ₃ NH ₂	(3) SO ₃	(4) None of these						

Power by: VISIONet Info Solution Pvt. Ltd Website: www.edubull.com Mob no.: +91-9350679141

178.	In the reaction $NH_3 + H_2O$ $\hat{\dagger}$ $\uparrow \uparrow$ $NH_4^+ + OH^-$ water behaves as :-								
	(1) Acid	(2) Base	(3) Neutral	(4) Both acid & Base					
179.	Which acts as Lewis (1) PH ₃	base in the reaction BC (2) BCl ₃	$Cl_3 + :PH_3 \rightarrow Cl_3B \leftarrow 1$ (3) Both 1 & 2	PH ₃ (4) None					
180.	Which acts as Lewis (1) Cl ⁻	acid in the reaction Sn(2) SnCl ₂	$Cl_2 + 2Cl^- \longrightarrow [SnCl_4]$ (3) SnCl ₄	[1] ⁻² (4) None					
181.	The conjugated base (1) CH ₃ NH ₂	of $(CH_3)_2 \stackrel{+}{N}H_2$ is :- (2) $(CH_3)_2 N^+$	(3) (CH ₃) ₂ N	(4) (CH ₃) ₂ NH					
182.	Which equilibrium can be described as Lewis acid base reaction but not Bronsted acid base reaction: $(1) H_2O + CH_3COOH \hat{\ddagger}\hat{}^{\dagger} H_3O^+ + CH_3COO^-$ $(2) 2NH_3 + H_2SO_4 \hat{\ddagger}^{\dot{}}^{\dot{}} 2NH_4^+ + SO_4^{2-}$ $(3) NH_3 + CH_3COOH \hat{\ddagger}^{\dot{}}^{\dot{}} NH_4^+ + CH_3COO^-$ $(4) Cu^{+2} + 4NH_3 \hat{\ddagger}^{\dot{}}^{\dot{}} [Cu(NH_3)_4]^{2+}$								
183.	Conjugate base of hy (1) HN ₃	drazoic acid is :- (2) N_3^-	(3) N ³ -	(4) N_2^-					
184.	NH ₃ gas dissolves in (1) An acid	water to give NH ₄ OH (2) A base	, in this reaction, water (3) A salt	acts as :- (4) A conjugate base					
185.	Conjugate acid of Zn (1) Zn(OH) ⁺	$(OH)_2$ is :- (2) $Zn(OH_3)^-$	(3) Zn^{2+}	(4) None					
186.	When ammonia is ad (1) OH	ded to water it decrease (2) H ₃ O ⁺	es the concentration of (3) NH ₄ ⁺	which of the following ion (4) None					
187.	The strongest acid among the following is :- (1) ClO ₃ (OH) (2) ClO ₂ (OH) (3) SO(OH) ₂ (4) SO ₂ (OH) ₂								
188.	Which of the following (1) CH ₃ NH ₄ ⁺	ng is not a Bronsted ac (2) CH ₃ COO ⁻	id :- (3) H ₂ O	(4) HSO ₄					
189.	Which of the following (1) Stanus, chloride, (2) Only BF ₃		a Lewis acid BF ₃ , SnCl ₂ , SnCl ₄ :- (2) BF ₃ , Stanus chloride (4) BF ₃ , stanus chloride, stanic chloride						

Power by: VISIONet Info Solution Pvt. Ltd Website: www.edubull.com Mob no.: +91-9350679141 190. In the reaction $HNO_3 + H_2O \hat{1}^{\uparrow} + H_3O^+ + NO_3^-$ is $(1) H_2O$ $(2) H_3O^ (3) NO_3^-$ (4) H_3O^+ and NO_3^- The conjugate base of the weak acid in the reaction $HBr + H_2O$ $^{\uparrow}$ $^{\uparrow}$ $^{\uparrow}$ $H_3O^+ + Br^-$ is 191. (1) HBr $(2) H_2O$ $(3) Br^{-}$ $(4) H_3O^-$ 192. In the reaction, AlCl₃ + Cl⁻ \rightarrow [AlCl₄]⁻, AlCl₃ acts as :-(4) Lewis acid (1) Salt (2) Lewis base (3) Bronsted acid Mg^{2+} is ---- than Al^{3+} :-193. (1) Strong Lewis acid (2) Strong Lewis base (3) Weak Lewis acid (4) Weak Lewis base The two Bronsted bases in the reaction $HC_2O_4^- + PO_4^{3-}$ $\hat{\uparrow}$ $\hat{\uparrow}$ $HPO_4^{2-} + C_2O_4^{2-}$ are 194. (1) $HC_2O_4^-$ and PO_4^{2-} (2) HPO_4^{2-} and $C_2O_4^{2-}$ (3) PO_4^{3-} and $C_2O_4^{2-}$ (4) $HC_2O_4^-$ and HPO_4^{2-} The compound HCl behaves as --- in the reaction, $HCl + HF \stackrel{?}{}_{\perp} \stackrel{?}{\uparrow} H_2^+Cl + F^-$ 195. (1) Strong acid (2) Strong base (3) Weak acid (4) Weak base Which of the following is not a lewis base :-196. $(2) O^{2-}$ $(3) H_2O$ $(4) I^{+}$ (1) NH₃197. Which of the following is bronsted Lowry acid:-(1) SO_4^{2-} (2) H_3O^+ $(3) OH^{-}$ (4) Cl⁻

198. The conjugated base for bicarbonate ion is :-

(1) CO_3^{2-}

(2) HCO₃

(3) CO₂

(4) H₂CO₃

199. Conjugated base of OH is:-

 $(1) H_2O$

(2) H_3O^+

 $(3) H^{+}$

 $(4) O^{2-}$

200. HCl does not behave as acid in :-

(1) NH₃

(2) C₂H₅OH

 $(3) H_2O$

 $(4) C_6 H_6$

201. Which of the following is a base according to Lowry – Bronsted concept -

(1) I^{-}

 $(2) H_3O^+$

(3) HCl

 $(4) NH_4^+$

202. In which of the following reactions NH₃ acts as acid

(1) $NH_3 + HCl \rightarrow NH_4Cl$

(2) $NH_3 + H^+ \rightarrow NH_4^+$

Power by: VISIONet Info Solution Pvt. Ltd

Website : www.edubull.com Mob no.: +91-9350679141

(3) $NH_3 + Na \rightarrow NaNH_2 + \cdots$	$\frac{1}{2}$ H ₂
---	------------------------------

(4) NH₃ cannot act as acid

203. According to Bronsted concept, the acids in the following reaction

 $NH_3 + H_2O$ $\hat{\uparrow}$ $\hat{\uparrow}$ $NH_4^+ + OH^-$

(1) NH_3 and NH_4^+

(2) H₂O and OH⁻

(3) H_2O and NH_4^+

(4) NH₃ and OH⁻

204. Consider the following reactions:-

(i)
$$CO_3^{2-} + H_2O \hat{\dagger} \hat{\uparrow} + HCO_3^{-} + OH^{-}$$

(ii)
$$CO_2 + H_2O$$
 $\hat{\ddagger}$ $\uparrow \uparrow$ H_2CO_3

(iii)
$$NH_3 + H_2O$$
 $\hat{\dagger}$ $\hat{\uparrow}$ NH_4OH

(iv)
$$HCl + H_2O$$
 $^{\uparrow}$ $^{\uparrow}$ $Cl^- + H_3O^-$

Which of the pairs of reactions proves that water is amphoteric in character :-

- (1) (i) and (ii)
- (2) (ii) and (iii)
- (3) (iii) and (iv)
- (4) (i) and (iii)

205. CH₃COO⁻ ion is a :-

(1) Weak conjugate base

(2) Strong conjugate base

(3) Weak conjugate acid

(4) Strong conjugate acid

206. Which of the following is strongest conjugate base

- (1) ClO₄
- (2) HCO $_{3}$
- $(3) F^{-}$
- $(4) HSO_4^-$

Which of the following species can act as Lewis base:-207.

- (1) AlCl₃
- $(2) Cu^{2+}$
- (3) NH₃
- (4) BF₃

208. A compound having the formula NH₂CH₂COOH may behave :-

(1) Only as an acid

- (2) Only as an base
- (3) Both as an acid and base
- (4) Neither acid nor base

209. BF₃ is acid according to :-

(1) Lewis

(2) Arrhenius

(3) Bronsted and Lowery

(4) Madam Curie

210. Which of the following can act both as Bronsted acid and Bronsted base:-

- (1) Na₂CO₃
- $(2) O^{2-}$
- (3) CO_3^{-2}
- (4) NH₃

211. The strongest conjugate base is :-

- (1) NO_3^-
- $(2) Cl^{-}$
- (3) SO_4^{2-}
- $(4) CH_3COO^-$

212. Aluminum chloride is :-

- (1) Bronsted Lowry acid

(2) Arrhenius acid

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com

(3) Lewis acid (4) Lewis base 213. Water is a :-(1) Protogenic solvent (2) Protophilic solvent (3) Amphiprotic solvent (4) Aprotic solvent 214. Ammonium ion is :-(1) A conjugate acid (2) A conjugate base (4) Both an acid and a base (3) Neither an acid nor a basic 215. Species which do not act both as Bronsted acid and base is :- $(4) OH^{-1}$ $(1) (HSO_4)^{-1}$ (2) Na₂CO₃(3) NH₃216. Which on e of the following is strong Lewis base & Bronsted acid & Bronsted base:-(1) NH₃ $(2) PH_3$ (3) CH₄ (4) BH₃217. Which of the following pair is Lewis acid & Lewis base & Product of these is also Lewis base (2) SiCl₄, 2Cl⁻ (3) CH₂[⊕] (4) None of these (1) BF₃m NH₃ 218. Which of the following is not a correct statement (1) Arrhenius theory of acids-bases is capable of explaining he acidic or basic nature of the substance in the solvents other than water (2) Arrhenius theory does not explain acidic nature of AlCl₃ (3) The aqueous solution of Na₂CO₃ is alkaline although it does not contain OH ions (4) Aqueous solution of CO₂ is acidic although it does not contain H⁺ ions For the reaction $NH_4^+ + S^{-2} \hat{\ddagger} \hat{\uparrow} NH_3 + HS^-$, NH_3 and S^{-2} are a group of :-219. (2) Bases (3) Acid-base pair (1) Acids (4) None of these 220. According to Lewis concept acid & base pair is - $(1) HO^{-}, H^{+}$ $(2) Ag^{+}, Cl^{-}$ (3) BF₃, NH₃ (4) None of these **ANSWER KEY EXERCISE-I** (Conceptual Questions) 1. 2. 3. 4. 7. (2) (2) (2) (2) 5. (4) 6. (4) (2) **12.** 8. (1) 9. (3) **10.** (1) 11. (1) (4) **13.** (3) **14.** (1) **15.** (1) **16.** (2) **17.** (4) **18.** (1) **19.** (2) 20. (3) 21. (4) 22. 24. (4) 23. (3) (4) 25. (1) **26.** (1) 27. (1) 28. (3) 29. **30.** (1) 31. 32. **33.** (4) 34. **35.** (2) (4) (3) (3) (1) **36. 38. 39. 40.** 42. (4) 37. (4) (2) (1) 41. (4) (3) (1) **43.** 44. (2) **45.** (3) **46. 47.** (3) **48.** (3) 49. (3) (1) (3) **50.** (2) 51. (3) **52. 53.** (4) 54. (4) **55.** (4) **56.** (2) (3) 57. (4) **58.** (4) **59. 60.** 61. (4) **62.** (3) **63.** (1) (3) (2) **64. 68. 70.** (3) **65.** (3) **66.** (3) **67.** (4) (3) **69.** (4) (1) 71. 72. **73.** (2) 74. *75.* **76.** (4) 77. (4) (4)(2)(3) (1) Power by: VISIONet Info Solution Pvt. Ltd Website: www.edubull.com Mob no.: +91-9350679141

												Edubull	
78.	(2)	79.	(2)	80.	(4)	81.	(2)	82.	(4)	83.	(2)	84.	(3)
85.	(3)	86.	(2)	87.	(1)	88.	(1)	89.	(2)	90.	(2)	91.	(2)
92.	(4)	93.	(3)	94.	(2)	95.	(3)	96.	(4)	97.	(4)	98.	(1)
99.	(2)	100.	(1)	101.	(2)	102.	(4)	103.	(3)	104.	(3)	105.	(1)
106.	(4)	107.	(3)	108.	(2)	109.	(2)	110.	(3)	111.	(4)	112.	(3)
113.	(1)	114.	(4)	115.	(4)	116.	(2)	117.	(2)	118.	(4)	119.	(2)
120.	(1)	121.	(3)	122.	(2)	123.	(1)	124.	(2)	125.	(2)	126.	(3)
127.	(2)	128.	(3)	129.	(2)	130.	(3)	131.	(1)	132.	(4)	133.	(4)
134.	(2)	135.	(3)	136.	(4)	137.	(1)	138.	(4)	139.	(3)	140.	(3)
141.	(3)	142.	(3)	143.	(3)	144.	(1)	145.	(1)	146.	(1)	147.	(3)
148.	(4)	149.	(3)	150.	(1)	151.	(1)	152.	(1)	153.	(2)	154.	(2)
155.	(4)	156.	(3)	157.	(1)	158.	(1)	159.	(1)	160.	(1)	161.	(1)
162.	(2)	163.	(2)	164.	(1)	165.	(3)	166.	(4)	167.	(2)	168.	(3)
169.	(3)	170.	(4)	171.	(1)	172.	(1)	173.	(4)	174.	(2)	175.	(1)
176.	(4)	177.	(3)	178.	(1)	179.	(1)	180.	(2)	181.	(4)	182.	(4)
183.	(2)	184.	(1)	185.	(1)	186.	(2)	187.	(1)	188.	(2)	189.	(4)
190.	(3)	191.	(2)	192.	(4)	193.	(3)	194.	(3)	195.	(4)	196.	(4)
197.	(2)	198.	(1)	199.	(4)	200.	(4)	201.	(1)	202.	(3)	203.	(3)
204.	(3)	205.	(2)	206.	(2)	207.	(3)	208.	(3)	209.	(1)	210.	(4)
211.	(4)	212.	(3)	213.	(3)	214.	(1)	215.	(2)	216.	(1)	217.	(3)
218.	(1)	219.	(2)	220.	(3)								