EXERCISE – I

CONCEPTUAL QUESTIONS

X-rays

1.	If the K_{α} radiation of Mo has a wavelength of 0.71 Å. The wavelength of the corresponding radiation of Cu : $[Z_{Mo} = 42, Z_{Cu} = 29]$								
	(1) 0.52 Å	(2*) 1.52 Å	(3) 2.52 Å	(4) 3.52 Å					
2.	In Coolidge tube the maximum energy of	e potential difference emitted X-rays will be	e between cathode ar	nd anticathode is 120 kV. The					
	(1^*) 1.2 × 10 ⁵ eV	(2) $10^{10} \mathrm{eV}$	(3) $10^{15} \mathrm{eV}$	(4) $10^{20} \mathrm{eV}$					
3.	If the X-ray tube is working at 25 kV then the minimum wavelength of X-rays will be (1*) 0.49 Å (2) 0.29 Å (3) 0.19 Å (4) 0.39 Å								
4.	The distance betwee which are diffracted	en interatomic lattice by this crystal will be	planes is 10Å. The r	naximum wavelength of X-rays					
	(1) 10 Å	(2*) 20 Å	(3) <mark>30 Å</mark>	(4) 40 Å					
5.	The structure of solid	ls is studied by							
	(1*) X-rays	(2) γ-rays	(3) Cosmic rays	(4) Infrared rays					
6.	50% of X-rays obtai potential different be passing through the s	ned from a Coolidge t etween the target and ame foil will be $(2^*) > 50\%$	tube pass through 0.3 the cathode in increa	mm thick aluminium foil. If the sed, then the fraction of X-rays					
	(1) 50%	(2*) > 50%	(3) < 50%	(4) 0%					
7.	When 50 keV electrowas found to be 0. wavelength of K_{α} -line (1) 0.25 Å	ons are made incident 5 Å. When the acce e from the same target $(2^*) 0.5$ Å	on a target material, t elerating potential is will be (3) 0.75 Å	the wavelength of K_{α} X-ray line increased to 100 kV, then the					
	(1) 0.23 A	(2) 0.3 A	(J) 0.75 A	(4) 1.0 A					
8. (1) wa (3) int	On increasing the filament current in X-ray tube :-) wavelength of X-rays increases(2) penetration power of X-ray increases(3) intensity of X-rays decreases(4*) intensity of X-rays increases								
9.	Which of the followi (1) α-rays	ng is not affected by el (2) β–rays	ectro-magnetic fields (3*) X-rays	(4) cathode-rays					
10. (1*) 62	Minimum wavelengt 2 kV (2) 6.2	h of X-ray is 2 Å, then 2 kV (3) 24	potential difference be .8 kV (4) 2.	etween anode and cathode is:- 48 kV					
11. (1) mo (2) of (3*) of	X-rays obtained by con- ono-chromatic all wave lengths below f all wave length above	oolidge tube are :- / a maximum wavelen e a minimum wave len	gth gth						

(4) of all wave length between a maximum and a minimum wave length

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Edubull

12.	X-ray is an electroma (1) an electric charge	gnetic radiation, so X-	ray photons carry	
(2) a II (2) hot	agnetic moment	ad magnatic mamont		
(3) DOL $(4*)$ ne	ither electric charge an	or magnetic moment		
(4.) 116	inter electric charge in	of magnetic moment		
13. (1) hyd	Characteristic X-rays lrogen is a gas	are not obtained in the	e spectrum of H-atom	because
(3*) en	ergy difference in energy	rgy levels of hydrogen	is much less	
(4) ene	rgy difference in energy	y levels of hydrogen i	s much high	
	igj anterenee in energ	Sy levels of hydrogen i	is mach mgn	
14.	Which of the followir	ng is related with chara	cteristic emission of X	X-rav
	(1) α -particle emissio	n	(2) electron emission	
	(3) positron emission	11	(4*) K-electron capt	iring
	(5) position emission			anng
15.	Penetration power of	X-rays depend on		
(1) cur	rent flowing in filamer	(2^*) at	oplied potential differe	ence
(3) nat	ure of target	(4) all	of the above	
(5) 1140	are of tanget	(1) 411		
16.	Which of the followir	ng have velocity equal	to light	
	(1) cathode rays	(2) anode rays	(3^*) X-rays	(4) position rays
	(1) ••••••••••••••••••••••••••••••••••••	(_) and at hajs	(0)111050	() position rujo
17.	The energy of charact	eristic X-rays photon	obtained from coolidg	e tube comes from
	(1) kinetic energy of.	incident electron.	(2) kinetic energy of	free electrons of target material
(3) kin	etic energy of ions of t	arget material (4*) el	ectron transition in ta	rget material
(-)	8,			6
18.	Absorption of X-ray i	s maximum in which o	of the following sheets	8
	(1) copper	(2) gold	(3) beryllium	(4*) lead
				× /
19.	In X-ray spectrum wa	we length λ of line K_{α}	depends on atomic nu	imber Z as
	(1) (7)	$(0) 0 (7 1)^2$		(1)
	(1) $\lambda \propto Z^2$	(2) $\lambda \propto (Z-1)^2$	$(3)\lambda \propto \frac{1}{(Z-1)}$	(4*) $\lambda \propto \frac{(Z-1)^2}{(Z-1)^2}$
20	If notantial difference	a applied to an V ray	tube is V welt then	minimum wavalangth of V rava
20.	n potential unification		tube is v voit, then	minimum wavelength of A-rays
		A)	124000	12.07
	$(1) \frac{1240}{$	$(2^*) \frac{12400}{2}$	$(3) \frac{124000}{124000}$	(4) $\frac{12.27}{5}$
	V	V	V	\sqrt{V}
21.	The minimum wavele	ength of X-rays produc	ed by electrons accele	erated by a potential difference of
	V volts is equal to			
	(1) eV	(2) eh	(2*) hc	(1) h
	$\frac{1}{hc}$	$(2) \frac{1}{cV}$	$(3^{\circ}) \frac{1}{\text{eV}}$	$(4) \overline{V}$
22.	In E.M. waves spectru	um X-rays region lies l	between	
(1) sho	rt radio waves and visi	ible region (2) vis	ible and ultraviolet reg	gion

(3*) gamma rays and ultra-violet region (4) short radio waves and long radio waves

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

23. If V be the accelerating voltage, then the maximum frequency of continuous X-rays is given by

(1)
$$\frac{eh}{V}$$
 (2) $\frac{hV}{e}$ (3*) $\frac{eV}{h}$ (4) $\frac{h}{eV}$

24. The shortest wave length emitted from an X-ray tube depends upon (1*) the voltage applied to the tube
(2) the nature of the gas in the tube
(3) the current in the tube
(4) the nature of target material

- 25. In an X-ray tube, the intensity of the emitted X-ray beam is increased by (1*) increasing the filament current
 (2) decreasing the filament current
 (4) decreasing the target potential
- 26. In an X-ray tube, electrons accelerated through a potential difference of 15000 V strike a copper target. The speed of the emitted X-rays from the tube is :-

[e = charge on electron, m = mass of electron, Z = atomic number of target]

(1)
$$\frac{\sqrt{2 \times 2e \times 1500}}{m}$$
 (2) $\frac{\sqrt{2 \times e \times 1500}}{m}$ (3) $\frac{\sqrt{2Ze \times 1500}}{m}$ (4*) 3×10^8 m/s

27. The momentum of a photon in an X-ray beam of 10^{-10} metre wavelength is (1) 1.5×10^{-23} kg-m/sec (2*) 6.6×10^{-24} kg-m/sec (3) 6.6×10^{-44} kg-m/sec (4) 2.2×10^{-52} kg-m/sec

28. The energy of a photon of light with wavelength 5000 Å is approximately x eV. This way the energy of an X-ray photon with wavelength 1 Å would be

(1) $\frac{x}{5000}$ eV (2) $\frac{x}{(5000)^2}$ eV (3*) $x \times 5000$ eV (4) $x \times (5000)^2$ eV

- **29.** The kinetic energy of an electron which is accelerated through a potential of 100 volts is $(1^*) 1.602 \times 10^{-17}$ joule (2) 418.6 calories (3) 1.16×10^4 eV (4) 6.626×10^{-34} watt-second
- 30. The wavelength of the most energetic X-ray emitted when a metal target is bombarded by electrons having kinetic energy 100 keV is approximately:
 (1) 12 Å
 (2) 4 Å
 (3) 0.31 Å
 (4*) 0.124 Å

31. For harder X-rays :-

- (1) the wavelength is higher
- (3*) the frequency is higher
- (2) the intensity is higher(4) the photon energy is lower
- 32. When cathode rays strike a metal target of high melting point with very high velocity, then :- (1*) X-rays are produced
 (2) a-rays are produced
 (3) p-rays are produced
 (4) ultrasonic waves are produced
- **33.** Penetrating power of X-rays can be increased by
 - (1*) increasing the potential difference between anode and cathode
- (2) decreasing the potential difference between anode and cathode
- (3) increasing the cathode filament current
- (4) decreasing the cathode filament current

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

34.	K_{α} characteristic X-ray refers to the tra (1*) n = 2 to n = 1 (2) n = 3 to n = 2	$\begin{array}{l} \text{ansition} \\ 2 \qquad (3) \text{n} = 3 \text{ to } \text{n} = \end{array}$	1 (4) $n = 4$ to $n = 2$								
35. (1) tran (2) tran (3*) th (4) nor	The production of characteristic X-rays nsfer of momentum in collision of electrons nsfer of energy in collision of electrons ne transition of electrons in heavy target ne of these	s is due to rons with the target ato with the target atom atoms from high to lo	om w energy level								
36.	X-rays are produced in X-ray tube operating at a given accelerating voltage. The wavelength of the continuous X-rays has values from (1) 0 to ∞ (2*) λ_{\min} to ∞ , where $\lambda_{\min} > 0$										
(3) 0 to	$0 \text{ to } \lambda_{\max}, \text{ where } \lambda_{\max} < \infty \qquad (4) \lambda_{\min} \text{ to } \lambda_{\max}, \text{ where } 0 < \lambda_{\min} < \lambda_{\max} < \infty$										
37.	The ratio of the energy of an X-ray photon of, wavelength 1 Å to that of visible light of wavelength, 5000 Å is: (1) 1 : 5000 (2*) 5000 : 1 (3) $1 : 25 \times 10^{6}$ (4) 25×10^{6}										
 38. (1) ator (2*) sq (3) squ (4) fou 	 According to Mosley's law, the frequency of a characteristic spectral line in X-ray spectrum varies as :- atomic number of the element square of the atomic number of the element of ourth power of the atomic number of the element 										
39. (2) X-r (3) wav (4) X-r	 39. For the structural analysis of crystals, X-rays are used because (1*) X-rays have wavelength of the order of interatomic spacing (2) X-rays are highly penetrating radiations (3) wavelength of X-rays is of the order of nuclear size (4) X-rays are coherent radiations 										
40. (1) cur (3) nat	What determines the hardness of the X rrent in the filament (2 ture of target (4	2-rays obtained from th2) pressure of air in the4*) potential difference	ne Coolidge tube : e tube e between cathode and target								
41. (1) X-r	The most penetrating radiation out of t rays(2) β-rays	he following is 3)_α-particles (4*) γ-rays								
42. (1) pen	 On increasing the number of electrons striking the anode of an X-ray tube, which one of the following parameters of the resulting X-rays would increase) penetration power (2) frequency (3) wavelength (4*) intensity 										
43.	For production of characteristics K β X (1) n = 2 to n = 1 (2) n = 3 to n = 2	2-ray, the electron trans $(3^*) n = 3 \text{ to } n = 3$	sition will be = 1 (4) $n = 4$ to $n = 2$								
44. (1) wil (3*) ur	If X-rays is passed through from strongIl deviate maximum(1) ndeviated	g magnetic field, then 2 2) will deviate minimu 4) none of these	X-rays : ım								

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Edubull

45.	Which of the f (1*) 0.25 Å	followin	ng wavelength (2) 0.5 Å	is not po	ossible for an X (3) 0.52 Å	-ray tuł	be which i (4) 0.34	is operated Å	at 40 kV
46.	If the operation (1) 4×10^4 m/s	g voltag sec	ge of X-ray tub (2*) 3×10^8 r	be is 50 k n/sec	V then velocit (3) 10^8 m/sec	y of X-1	rays (4) 3 m/s	sec	
47. (1) def (2) def (3) mo (4*) no	When X-rays lect right lect left ve in opposite ot deflect	are' proj direction	jected il1 stror	ng magne field	etic field it will	:-			
48. (1) hal	If voltage of X ved	K-ray tul (2*) re	be is doubled t mains constan	hen inter t (3) dou	nsity of X-rays Ibled	will :- (4) qua	adrupled		
49. (1) 2 k	If minimum w the minimum V	vaveleng operatir (2) 3 k	gth obtained in ng voltage of th V	n a X-ray he tube sl (3) 4 k	y tube is 2.5 × hould be V	10^{-10} m (4*) 5	ı. For this kV	minimum	wavelength
50. (1) tub	In X-ray tube, e voltage	wavele (2*) tai	ngth of X-ray rget material	is the cha (3) fila	aracteristic of ment current	(4) noi	ne of these	e	
51.	5000V is appl (1) 1.24×10^{-1}	ied on a ¹¹ m	n electronic X $(2^*) 2.48 \times 10^{-10}$	$-ray.$ The 0^{-10} m	en minimum w $(3) 3.72 \times 10^{-1}$	vaveleng ¹¹ m	gth of X-r (4) 4.96	ay will be $\times 10^{-11}$ m	
52. (1) equ (3*) eq	Pressure inside the pressure inside the pressure inside the pressure of 10^{-5} mm pressure the pressure of	e the X- of Hg 1 of Hg	ray tube is :	(2) equ (4) equ	al to 76 mm of al to 10 ⁻⁷ mm	f Hg of Hg			
53.	20 kV potentia (1*) 0.62 Å	al is app	olied across X- (2) 0.37 Å	ray tube,	, the minimum (3) 1.62 Å	wavele	ngth of X (4) 1.31	-ray emitte Å	d will be
54.	What is the minimum (1) $\frac{eV}{hc}$	inimum	wavelength o (2*) $\frac{hc}{eV}$	f X-rays	(3) $\frac{hc}{e}$		(4) $\frac{hc}{V}$		
55. (1) inc. (2) inc. (3*) in (4) nor	To increase the rease filament of rease filament of crease the volta ne of these	e hardno current voltage age appl	ess of X-rays i lied between c	n coolida athode ai	ge tube we sho nd anticathode	uld			
56. (1*) 1	For X-ray diff Å	raction, (2) 10	order of size o Å	of obstac (3) 20 4	le is : Å	(4) 30	Å		
57.	Voltage applie (1*) 1000 V	ed acros	s the X-ray tul (2) 100 V	be is	(3) 10 V		$(4) 10^6 V$	I	

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

58.	Which of the followin (1) 10,000 Å	ng is the wave length o (2) 1000 Å	f X-ray (3*) 1 Å	(4) 10^{-4} Å
59.	Lattice constant of a diffraction then the value $(1) 6 \times 10^{-8}$ cm	a crystal is 3×10^{-8} alue of λ will be $(2^*) 3 \times 10^{-8}$ cm	cm and glance angle (3) 1.5×10^{-8} cm	of X-ray is 30° for first order (4) 10^{-8} cm
		(2) $3 \times 10^{\circ}$ cm	(3) 1.3 × 10 cm	(4) 10 Cm
60.	λ_{min} of X-rays depend (1) Atomic number o (3) Both (1) and (2)	ls on f target	(2*) Energy of electro(4) None of these	on
61.	The order of energy of (1) MeV	of X-ray photon is (2*) keV	(3) eV	(4) GeV
62.	If vacuum tube is ope (1*) 1.93 Å	erated at 6.4 kV, what i (2) 1.53 Å	s the wavelength of X- (3) 2.67 Å	ray produced (4) 0.78Å
63.	When electron is inci $(1^*) \lambda_{\min}$ changes	dent on molybdenum t	hen by changing energ (2) λ _{min} remains cons	y of electron tant
(3) $\lambda_{K_{\alpha}}$	$_{\alpha}, \lambda_{K_{\beta}}$ changes	(4) $\lambda_{\rm m}$	$_{in}, \lambda_{K_{\alpha}}$ and $\lambda_{K_{\beta}}$ all cha	anges
64.	In Coolige tube the re	elation between used ve	oltage V and minimum	wavelength λ_{min} is
	(1) $\lambda_{min} \propto V$	(2) $\lambda_{\min} \propto \sqrt{V}$	(3) $\lambda_{\min} \propto \frac{1}{\sqrt{V}}$	(4*) $\lambda_{\min} \propto \frac{1}{V}$
65.	In an X-ray tube ac	celerating potential is	60 kV. What is the	maximum frequency of emitted
	X-ray? (1*) 1.45×10^{19} Hz	(2) 1.45×10^{15} Hz	(3) 1.25×10^{15} Hz	(4) $1.25 \times 10^{13} \text{ Hz}$
Atomi	c Structure			
66.	What is the waveleng	gth of the least energet	ic photon emitted in th	he Lyman series of the hydrogen
(1) 150) nm (2*) 1	22 nm (3) 102	2 nm (4) 82	nm
67.	What is the ratio of t	he shortest wavelength	of the Balmer series t	to the shortest wavelength of the
	Lyman series? (1*) 4 : 1	(2) 4 : 3	(3) 4 : 8	(4) 5 : 9
68.	Kinetic energy for Hy (1) –13.6 eV	ydrogen atom in first B (2*) 13.6 eV	ohr's orbit is (3) –27.2 eV	(4) –6.5 eV
69.	According to Bohr M $(1) - Z^2 / n$	lodel for Hydrogen, end (2) $-n / Z^2$	ergy is proportional to $(3^*) - Z^2 / n^2$: (4) $-n^2 / Z$
70.	In above question rad $(1^*) n^2 / Z$	lius is related as (2) n / Z	(3) n / Z ²	(4) n^2 / Z^2

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- **71.** If ionization potential of Hydrogen atom is 13.6 V then what is ionization potential of He atom ?(1) 27.6 V(2) 13.6 V(3*) 54.2 V(4) None of these
- 72. Which of the following statements is correct?
 (1) Lyman series is continuous
 (2) Balmer series lies in ultraviolet region
 (3*) Paschen series lies in infrared region
 (4) Brackett series lies in visible region
- **73.** According to the Bohr theory of Hydrogen atom, the speed of the electron, its energy and the radius of its orbit varies with the principal quantum number n, respectively, as

$$(1^*) \frac{1}{n}, \frac{1}{n^2}, n^2 \qquad (2) \frac{1}{n}, n^2, \frac{1}{n^2} \qquad (3) n^2, \frac{1}{n^2}, n^2 \qquad (4) n, \frac{1}{n^2}, \frac{1}{n^2}$$

74. If the ionization potential of hydrogen atom is 13.6 eV, its energy in then = 3 is approximately (1) -1.14 eV $(2^*) -1.51 \text{ eV}$ (3) -3.4 eV (4) -4.53 eV

EX	ERC	ISE-I	(Con	ceptua	al Que	stions	5)	1.		Build	Up Y	our	Jnde	rstan	ding
Que.	1	2	3	4	5	6	7	- 8	9	10	11	12	13	14	15
Ans.	2	1	1	2	1	2	2	4	3	2	3	4	3	4	2
Que.	16	17	18	19	20*	21	22	23	24	25	26	27	28	29	30
Ans.	3	4	4	4	2	3	3	3	1	1	4	2	3	1	4
Que.	31	32	33	34	35	36	37	38	39.	40	41	42	43	44	45
Ans.	3	1	1	1	3	2	2	2	1	4	4	4	3	3	1
Que.	46	-47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	2	4	2	4	2	2	3	1	2	3	1	1	3	2	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	
Ans.	2	1	1	4	1	2	1	2	3	1	3	3	1	2	