ORGANISM TO SOME TERMINOLOGY

1.	Endemic plants -	
	(1) Cosmopolitan	(2) Occur in a particular area
	(3) Occur at high altitudes	(4) Occur on north pole
2	In an account of manufaction and demonstrations are	n distinguis saggested
2.	Increase of population under optimum co.	
	(1) Reproductive ability	(2)Secondary production
	(3) Biotic potential	(4) Biomass
3.	Occurence of endemic species in South A	merica and Australia due to :-
	(1) These species has been extinct from o	
	(2) Continental separation	
	(3) There is no terrestrial route to these pl	aces
	(4) Retrogressive evolution	
	(1) 23012 8 2002 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	
4.	In a population unrestricted reproductive	canacity is called as:
••	(1) Biotic potential (2) Fertility	(3) Carrying capacity (4) Birth rate
	(1) Brotte potential (2) Fortiffy	(5) Carrying capacity (1) Bitai rate
5.	What is true for individuals of same speci	es:
	(1) Live in same niche	(2) Live in same habitat
	(3) Interbreeding	(4) Live in different habitat
	(e) morerous	(1) Zivo in direction interior
6.	When the two ecosystems overlap each or	ther the area is called.
	(1) Ecotone (2) Niche	(3) Edge effect (4) Ecotypes
	(2) 200000	(1) <u>Lossipes</u>
7.	The community which starts succession a	t a place is termed
. •		ity (3) Pioneer community (4) Primary community
	(1) 011111111111111111111111111111111111	(c) 1 1011001 00111111111111 (1) 1 1 1 1 1 1 1 1 1 1 1 1
8.	Earliest settlers on barren lands or the farm	mers of nature are
	(1) Diatoms (2) Lichens	(3)Moss & grasses (4) Ferns
	(1) Bratonis (2) Elenens	(b) 11000 ca grasses (1) 101115
9.	In plant succession last community is call	ed:
	(1) Ecotone	(2) Climax community
	(3) Seral community	(4) Ecosystem
	(c) Sold community	(1) Leosystem
10.	Group of two or more than two plant spec	ties is called as:-
	(1) Plant community (2) Animal ecosyst	
	(2) 1 min community (2) 1 minut coosyst	(1) Deological mole

11. Stable plant community formed during succession is called-

				Edu
	(1) Sere community	7	(2) Climax commu	nity
	(3) Dominant comm	nunity	(4) Ecotone	
12.	Succession in a wat	er body leads to forma	tion of	
	(1) Mesophytic veg	etation	(2) Xerophytic vege	etation
	(3) Halophytic vege	etation	(4) Epiphytic veget	ation
13.	Competition for for	od, light and space is m	ost severe in-	
	(1) Closely related	species growing in the	same area (in the same	e niche)
	(2) Closely related	species growing in diff	erent habitat	
	(3) Distantly related	d species growing in th	e same habitat	
	(4) Distantly related	d species growing in di	fferent habitat	
14.	Most successful par	rasites are those which	do not	
	(1) Grow free	(2) Kill their host	(3) Reproduce sexu	ally (4) Survive in soil
15.	The basic unit of ed	cological study is :-		
	(1) species	(2) organism	(3) community	(4) biosphere
16.	Mycorrhizae relation	onship between fungi a	nd roots <mark>of higher plan</mark>	ts is ?
	(1) Parasitic relation	nship	(2) Saprophytic rela	ntionship
	(3) Symbiotic relati	onship	(4) Epiphytic relation	onship
17.	Parasites adversely	affect:		
	(1) Survival of host		(2) Growth of host	
	(3) Reproduction po		(4) All of the above	
	(e) reproduction p	01 11050	.,, in or the doore	

18. Identify the correct match:-

Column – I	Column – I
(i) Species diversity	(a) Great influence on community stability
(ii) Species dominance	(b) Zonation according to the need of light
(iii) Stratification	(c) Different types of species in a community
(iv) Keystone species	(d) Highest number of type of species

(1) i-c, ii-b, iii-a, iv-d (2) i-c, ii-d, iii-b, iv-a (3) i-b, ii-a, iii-d, iv-c (4) i-b, ii-d, iii-a, iv-c

Edubull **19.** The given diagram is related to which stage of succession? (1) Pioneer community (2) Reed swamp stage (3) Submerged plant stage (4) Submerged free floatins plant stage 20. The group of organisms of different species forms a:-(1) Community (4) Biome (2) Population (3) Ecosystem 21. Consider the following statements and select the option which includes all the correct ones only: (a) Succession is parallel with the changes in the physical environment. (b) As succession proceeds, the number and types of animals and decomposers also change. (c) Littoral zone has high diversity. (d) Key stone species are abundantly found in a community. (3) a, c and d (1) a, band d (2) b, c and d (4) a, band c 22. Which of the following is an epiphyte? (1) Orchid (2) Lianas (3) Santalum (4) Mango 23. The correct statement for parasites is/are:-(a) Host specific parasites & hosts tend to co-evolve (b) Parasites have highly developed sense organs (c) Parasites may reduce population density of host (d) Parasites have highly developed digestive system · (1) a and b (2) n and c (3) a and c (4) a and d ECOLOGY - ECOSYSTEM TO PRODUCTIVITY 24. In an ecosystem: (1) Primary producers are more than primary consumers (2) Primary consumers are larger than primary producers (3) Secondary consumers are larger than primary producers (4) Primary consumers are least depend on primary producers 25. Ecosystem term coined by -(1) Odum (3) Reiter (4) Tansley (2) Mishra **26.** Large ecosystems are called -(4) Biocoenosis (1) Biomes (2) Ecotone (3) Ecads

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

27.	Which one is not a	functional aspect of eco	osytem?	
	(1) Energy flow	(2) Productivity	(3) Decomposition	(4) Stratification
28.	Vultures in an ecos	ystem are –		
	(1) Predators	(2) Scavangers	(3) Consumers	(4) Top carnivores
29.	The maximum ener	rgy is stored at which of	f the following trophic	level in any ecosystem –
	(1) Producers	(2) Herbivores	(3) Carnivores	(4) Top carnivores
30.	The source of energ	gy in an ecosystem is –		
	(1) Sunlight	(2) DNA	(3) ATP	(4) RNA
31.	Ecosystem may be	defined as –		
	(1) A localized asso	ociation of several plant	ts and animals	
	(2) Different comment.	nunities of plants, anima	als and microbes togeth	er with thier physico-chemical
		nunities of plants microl	hes plus their physico-o	chemical environment
	(4) None of the abo	-	pras aren prijsteo e	Memear environment
32.	The importance of	ecosystem lies in –		
	(1) Flow of energy	(2) Cycling of mate	rials (3) Both the above	e (4) None of the above
33.	Ecosystem is –			
	(1) Any functional abiotic factors	unit that includes the v	whole community in a	given area interacting with the
	(2) A group of gree	en nlants		
	, , ,	nals interacting with en	vironment	
	(4) Man and pets li			
34.		ecosystem is symbol or		
	(1) Gardner	(2) Odum	(3) Tansley	(4) Reiter
35.	Largest ecosystem	of the world are		
	(1) Forests	(2) Grass lands	(3) Great lakes	(4) Oceans
36.	Which of the follow	ving is a man made arti	ficial ecosystem	
	(1) Grassland ecosy	ystem	(2) Forest ecosystem	1
	(3) Ecosystem of an	rtificial lakes & dams	(4) None of these	
37.	A pond is a:-			
	(1) Biome		(2) Natural ecosyste	
	(3) Artificial ecosy	stem	(4) Community of p	lants & animals

Power by: VISIONet Info Solution Pvt. Ltd Website: www.edubull.com

Mob no.: +91-9350679141

38.	Nepenthes (Insecti	vorous pitcher plant) is	-		
	(1) Producer	(2) Consumer	(3) Both 1 & 2	(4) None of these	
39.	Which one is omni	vorous –			
	(1) Frog	(2) Lion	(3) Deer	(4) Man	
40.	Which biotic comp	onents mainly help in 1	recycling of minerals:	-	
	(1) Producers	(2) Consumers	(3) Decomposers	(4) All the above	
41.	Trophic levels are	formed by –			
	(1) Only plants		(2) Only carnivore	s	
	(3) Only animals		(4) Origanisms linl	ked in food chain	
42.	In a forest ecosyste	em green plants are –			
	(1) Primary produc	eers	(2) Consumers		
	(3) Primary consur	ners	(4) Decomposers		
43.	(1) Convert organic	• •	ganic compounds		
44.	With regard to eco	logical food chain, man	ı is a -		
	(1) Consumer		(2) Producer		
	(3) Both consumer	& producer	(4) decomposer		
45.	A plant, being eate	n by a herbivore which	in turn is eaten by a c	arnivore makes ~	
	(1) Food chain	(2) Web of Food	(3) Omnivores	(4) Interdependence	
46.	When peacock, eat	s snake which eats inse	ects depends on green	plants, the peacock is -	
	(1) a primary const	umer	(2) a primary decomposer		
	(3) a final decompo	oser of plants	(4) the apex of the	food pyramid	
47.	adversely affected (1) Mineral mover (2) Herbivores will (3) Energy flow wi	because - ment will be blocked I not receive solar energ	gy	e ecosystem functioning will be	
48.	Bamboo plant is gr	owing in a far forest th	en what will be the tro	ophic level of it :-	

	(1) First trophic level (T₁)(3) Third trophic level (T₃)	(2) Second trophic(4) fourth trophic le	\ _/			
	•	. ,				
49.	Path of energy flow in an ecosystem	is:				
	(1) Herbivorous \rightarrow producer \rightarrow carnivorous \rightarrow decomposer					
	(2) Herbivorous \rightarrow carnivorous \rightarrow properties of the properties of the contract of the contr	$roducer \rightarrow decomposer$				
	(3) Producer \rightarrow carnivorous \rightarrow herbi	vorous → decomposer				
	(4) Producer \rightarrow herbivorous \rightarrow carni	$vorous \rightarrow decomposer$				
50.	Pyramids of energy are -					
	(1) Always upright (2) Always Inv	verted (3) Mostly upright	(4) Mostly inverted			
51.	The ecological pyramid of numbers i	n pond ecosystem is -				
	(1) Upright	(2) Inverted				
	(3) May upright or Inverted	(4) First upright the	en inverted			
52.	An ecosystem resists change because	e it is in a state of-				
	(1) Homoeostasis	(2) Regular Illumin	nation			
	(3) Static Imbalance	(4) Food accumina	tion			
53.	What is true about any ecosystem					
	(1) It is self regulatory					
	(2) It is self sustained					
	(3) Top carnivores have climax troph	nic level position				
	(4) All	The second secon				
54.	The Pyramid of numbers in grassland	d ecosystem will be-				
	(1) Upright (2) Inverted	(3) Irregular	(4) Linear			
55.	Which ecosystem has maximum nun	nber of producers in an unit	area -			
	(1) Pond (2) Grassland	(3) Forest	(4) Tundra			
56.	The storage of energy at consumer le	evel is known as-				
	(1) Grass primary production	(2) Secondary prod	luctivity			
	(3) Net primary productivity	(4) Net productivity	· ·			
57.	Gross primary productivity is -	(·) - · · · · · · · · · · · · · · · · ·	J			
	(1) Rate at which organic molecules	are formed in an autotroph				
	(2) Rate at which organic molecules	=	1			
	(3) Storage of organic molecules in t					
	(4) Rate at which organic molecule\$	•	er trophic level.			
	EGGY CGY ADIO					

ECOLOGY – ABIOTIC FACTOR TO BIOSPHERE

58.	Carbon cycle inclu	ides (the following is a	logical sequence)-			
	(1) Producer- cons	umer- decomposer	(2) Decomposer -	(2) Decomposer - consumer – producer		
	(3) Producer- deco	omposer- consumer	(4) Consumer- pro	(4) Consumer- producer- decomposer		
59.	The bulk of nitrog	en in nature is fixed by	<i>!</i> —			
	(1) Lighting		(2) Chemical indu	stries		
	(3) Denitrifying, b	acteria	(4) Symbiotic bac	teria		
60.	60. The flow of n	naterials from non livi	ing components to liv	ing components and back to th	ıe	
	non living compor	nents in a more or less	cyclic manner is called	d a-		
	(1) Gaseous cycle		(2) Sedimentary c	ycle		
	(3) Biogeochemica	al cycle	(4) Hydrologic cy	rcle		
61.	Which is best for p	olant growth –				
	(1) Loamy soil	(2) Silt	(3) Sandy soil	(4) Clay soil		
62.	The least porous so	oil among the followin	ng —			
	(1) Loamy soil	(2) Clay soil	(3) Sandy soil	(4) Peaty soil		
63.	The science dealin	g with soil is called –				
	(1) Pedology	(2) Acarology	(3) Geology	(4) Palaeantology		
64.	A good soil is that	which -				
	(1) holds whole of	the water entering into	o it			
	(2) Allows limited	amount of water into	it			
		ter to percolate slowly				
	(4) Allows the wat	ter to pass very quickly	from it			
·=	TT1 11 11	6 1 11 1 1		. 1 701		
65.		surface is usually darke	er then the soil about	one mater down. This is becaus	e	
	the top soil is		(2) Diehenin enee	nio mostton		
	(1) Young & wet	Ma	(2) Richer in orga	nic matter		
	(3) Richer in Ca &	. IVIg	(4) Dry			
66.	A soil is said to be	fertile when				
	(1) It is rich in org	anic matter				
	(2) It has capacity	to hold water				
	` '	y to hold nutrients				
	(4) It holds water of	& all essential nutrient	s in a definite proporti	on		
67.	What is the best pl	H of the soil for cultiva	ation of plants:-			
	(1) 3.4 - 5.4	(2) 6.5 - 7.5	(3) 4.5 - 8.5	(4) 5.5 - 6.5		
(0	F .	. 11 1				

68. Forests near equator region are called –

	(1) Deciduous		(2) Tropical rain forests		
	(3) Coniferous for	ests	(4) Temperate fo	rests	
69.	Grass lands with s	cattered trees are called	1 —		
	(1) Pampas	(2) Stepps	(3) Prairies	(4) Savanna	
70.	Temperate evergre	en forests in India four	nd in-		
	(1) Himalaya	(2) W. Bengal	(3)Andman	(4) Rajasthan	
71.	Which biome refer	rs to arctic desert –			
	(1) Tundra	(2) Taiga	(3) Savannah	(4) Thar desert	
72.	Which biome is m	ost rich in fauna and fl	ora –		
	(1) Deciduous fore	ests	(2) Chaparral		
	(3) Tropical rain fo	prests	(4) Taiga		
73.	Autumn colouration of leaves appear only in –				
	(1) Tropical regions		(2) evergreen plants		
	(3) temperate decid	duous plants	(4) deserts		
74.	Veldts of Africa & Pampas of south America are				
	(1) Rain forest biomes		(2) Chaparral bio	omes	
	(3) Temperate bion	mes	(4) Grassland bio	omes	
75.	Savannahs are:				
	(1) Tropical rain fo	orest	(2) Desert		
	(3) Grassland with	scattered trees	(4) Dense forest	with dose canopy	
76.	All the living orga	nisms and non-living f	actors of indicates th	e earth constitute-	
	(1) Biosphere	(2) Community	(3) Biome	(4) Association	
77.	The term biospher	e is used for the zone o	f the earth where life	e exists -	
	(1) On the lithosph	nere			
	(2) In the hydrospl	nere			
	(3) In the lithosphe	ere and hydrosphere			
	(4) In the lithospho	ere, hydrosphere and at	mosphere		
78.	A biosphere is con	nposed of			
	(1) Living organis	ms			
	(2) Living organis	ms + Lithosphere			
	(3) Living organis	ms + lithosphere + atm	osphere		
	(4) Living organisms + lithosphere + atmosphere + hydrosphere				

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Vebsite: www.edubull.com Mob no.: +91-9350679141

ECOLOGY-POLLUTION

79.	Bloom occurs in - (1) Oligotrophic lake	(2) Eutrophic lake	(3) Fast flowing river	(4) Rain water
80.	Rhododendron is char	racteristic vegetation o	f -	
	(1) Tropical region	(2) Mangrove	(3) Alpine region	(4) Epiphytes
81.	Which of the following	ng plant has become a	water weed in this cou	ntry -
	(1) Typha	(2) Trapa	(3) Cyperus	(4) Eichornia
82.	What is not useful to	increase agriculture pro	oduction	
	(1) Mechanisation of	agriculture	(2) Enhanced irrigation	on facilities
	(3) Use of fertilizers		(4) Deforestation	
83.	Which is normally no	t an air pollutant -		
	(1) CO	(2) SO ₂	(3) Hydrocarbons	(4) CO ₂
0.4	A			
84.	Acid rains are due to $(1) O_3$	(2) $SO_2 + NO_2$	(3) CO	(4) CO ₂
	(1) 03	(2) 502 11102	(5) CO	(4) CO2
85.	What is found in phot	cochemical smog -		
	(1) CO	(2) NO ₂	(3) Ozone	(4) 2 and 3 both
86.	Lichens in a habitat in	ndicates-		
	(1) Zinc in soil		(2) Copper in soil	
	(3) Carbon minixide i	n air	(4) Lack of air polluti	on
87.	Green house effect ma	ainly due to -		
07.	(1) SO_2	(2) CO_2	(3) CO	(4) O_2
88.	Which pollutant exhib	oits biomagnfication in	food chain-	
	(1) DDT	(2) SO2	(3) CO	(4) PAN
89	Which will not cause	any atmoshperic pollu	tion	
0,7	(1) Hydrogen	(2) Sulphur dioxide		(4) Carbon monoxide
	(1) 11) 11 1811	(-) ~	(-,	(), (), (), (), (), (), (), (),
90.		g is the main factor of v	<u>-</u>	
	(1) Smoke	(2) Industrial waste	(3) Detergent	(4)Ammonia
91.	Main air pollutant am	ong the following is -		
•	(1) CO	(2) CO_2	(3) N_2	(4) Sulphur
92.	-	tant for water pollution		(4) €
Power by	(1) Sound	(2) SO ₂	(3) Salts of arsenic	(4) Sewage

Website: www.edubull.com Mob no.: +91-9350679141

93. Which of the following atmospheric pollutants is not produced by the exhaust of r in Delhi-			mot	or vehicle				
	(1) SO ₂		(2) Hydrocarb	on gase	es			
	(3) Fly ash		(4)CO		-			
94.	Pollution can be con	ntrolled by -						
	(1) Sewage treatment	nt						
	(2) Checking atomic	e blasts						
	(3) Manufacturing e	electrically operated vel	nicles					
	(4) All the above							
95.	If water pollution co	ontinues at its present ra	ate, it Will event	tually-				
	(1) Stop water cycle)						
	(2) Prevent precipita	ation						
	(3) Make oxygen m	olecules unavailable to	water plants.					
	(4) Make nitrate mo	lecules unavailable to v	water plants.					
96.	Exposure of plan characterstically in	ts to high fluoride	concentration	results	in	necrosis	or	chlorosis
	(1) Petiole but not in	n lamina	(2) Only mid	rib in la	mina			
	(3) Leaf tip and leaf	margins	(4) Stem tips	only				
97.	In cities like Bomba	y and Calcutta the maj	or air pollut <mark>ant</mark> s	are -				
	(1) Ozone		(2) Carbon me	onoxide	and	oxides of	Sulp	hur
	(3) Hydrocarbons as	nd hot air	(4) Algal spor	res and r	narsł	n gas		
98.	_	id rains in industrial cit			of at	mospheric	e pol	lution by
		e of NO ₂ and SO ₂ by b	•					
		e of CO ₂ by burning of	fuel like, wood	d and ch	araco	ol, cutting	of f	orests and
	increased animal po	*						
		e of NH3 by industrial	-	-				
		se of CO in atmospher	•	e combu	ıstior	of coke,	char	acoal and
	other carbonaceous	fuels in pandty of oxyg	en,					
99.	Which is the greates	st air pollutant these day	vs					
	(1) Factories	or uni ponouni mese uni	(2) Motor veh	icles				
	(3) Domestic applia	nces	(4) animals					
100.	Removal of the soil	by the action of wind a	and water is kno	wn as-				
	(1) Erosion	(2) Fossilization	(3) Leaching		(4)	Calcificati	on	
101.	Eutrophication refer	rs to-						

	(1) High production in an aquatic ecosystem (2) Low production in an aquatic ecosystem				
	(3) Low production is	n a terrestrial	(4) Stable production in a terrestrial ecosystem		
102.	Photochemical smog	was first observed in	-		
	(1) London	(2) Los Angeles	(3) Paris	(4)Tokyo	
103.	Domestic waste will	lead to			
	(1) Biodegradable po	ollution	(2) Nondegradable	oollution	
	(3) Thermal pollution		(4) Air pollution		
104.	The major source of	BOD in the river Gang	ga is-		
	(1) Leaf litter		(2) Fishes		
	(3) Human waste		(4) Aquatic plants		
105.	If a lake is contaminate	ated with DDT, its high	hest concentration wo	uld be found in -	
	(1) Primary consume	er	(2) Secondary consu	imer	
	(3) Tertiary consume	er	(4) None of these		
106.	The most harmful air	r pollutant produced by	v automobiles is -		
	(1) HNO ₂	(2) NO	(3) SO ₂	(4) CO	
	(1) 111 (3)	(=)110	(8) 2 32	(.)	
107.	Sewage water can be	purified by-			
	(1) Aquatic plant	(2) Micro organism	(3) Penicillin	(4) Fishes	
108.	Major pollulant in Je	et plane emission is -			
100.	(1) SO_2	(2) CFC	(3) CO	(4) CC1 ₄	
	(1) 502	(2) CI C	(3) CO	(4) CC14	
109.	It is said that Tajmah	al may be destroyed d	ue to		
	(1) Flood in Yamuna	river			
	(2) Air pollutants rel	eased from oil refinery	of Mathura		
	(3) Decomposition o	f marble as a result of	high temperature		
	(4) All the above				
110	N. 14	1. 6			
110.	Meltingof the ice cap	•	(A) E GEG :	. 1	
	(1) Depletion of ozor	•		=	
	(3) Excess C02 in the	e atmosphere	(4) Excess water rai	n	
111.	Cotton dust is an imp	portant pollutant in -			
	(1) Delhi	(2)Ahmedabad	(3) Madras	(4) Calcutta	
112.	Some effects of SO ₂	and its transformation	products on plant incl	lude -	
	(1) Chlorophyll destruction (2) Plasmolysis				

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

	(3) Golgi body destruction	(4) None			
113.	All the following contribute to pollution exc	cent -			
	(1) Thermal power plant	(2) Automobiles			
	(3) Nuclear power plant	(4) Hydroelectric pov	ver project		
114.	The molecular action_ of ultraviolet light is	<u> </u>			
	(1) Destruction of hydrogen bonds in DNA	•			
	(3) Formation of pyrimidine	(4) Formation of sticl	ky metaphase		
115.	Spraying of DDT on crops produces pollution	on of -			
	(1) Soil and water only	(2) Air and soil only			
	(3) Air, soil and water	(4) Air and water onl	y		
116 5					
116. V	What is B.O.D. :-				
	(1) The amount of O_2 utilised by organisms in water				
	(2) The amount of O_2 utilized by micro organical to O_2 are continuously as O_2 are continuously as O_2 are continuously as O_3 .	-	ion		
	(3) The total amount of 0 2 present in water				
	(4) All of the above				
117.	What is the intensity of sound in normal cor	nversation			
11,,	(1) 10 - 20 decibal (2) 30 - 60 decibal		(4) 120 - 150 decibal		
	(2) 20 20 20 20 20 20 20 20 20 20 20 20 20	(6) 13 3 3 3 3 3 3	(1) === ================================		
118.	Which of the following is absent in polluted	l water:-			
	(1) Hydrilla (2) Water hyacinth (3) La	rva of stone fly (4) Blu	ue green algae		
119.	Maximum green house gas released by which	·			
	(1) India (2) France (3) Ch	ina (4) Bı	ritain		
120.	Ozone layer of upper atmosphere destroyed	hy:			
120.	(1) Sulphurdioxide	(2) Carbondioxide			
	(3) Chlorofluorocarbon	(4) Smog			
	(0) 0	(1) 23338			
121.	Most hazardous metal pollutant of automobi	ile exhaust is:			
	(1) Hg (2) Cd	(3) Pb	(4) Cu		
122.	B.O.D. is connected with				
	(1) Organic matter (2) Microbes	(3) Both	(4) None		
123.	Phytotron is a device by which -				
143.	(1) electrons are bombarbed				
	(2) protons are liberated				
	(3) plants are grown i? controlled environments	ent			
	(3) plants are grown it controlled chyllolling	CIII			

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

	(4) Mutations are produced in plants									
124.	Which is not a renewable source-									
	(1) Forest (2) (Coal	(3) Water	(4) Forest organism						
125.	Biosphere refers to									
	(1) Plants of the world		(2) Special plants							
	(3) Area occupied by living	ng beings	(4) Plants of a particular area							
126.	Which of the following is the non conventional source of energy									
	(1) Coal		(2) Petroleum							
	(3) Electricity from nuclea	r power plants	(4) Solar radiations							
127.	Petroleum resource is									
	(1) Renewable		(2)Non renewable							
	(3) Synthetic		(4) Infinite& nonco	onventional						
128.	Red data book is famous for	or-								
120.	(1) Extinct plants and anin		(2) Extinct plants o	nlv						
	(3) Endangered plants and		(4) Extinct animals							
129.	Green book contains:-									
	(1) The list of endangered	plants								
	(2) The list of extinct plant									
	(3) The list of rare plants grown in botanical gardens									
	(4) Flora of certain area									
130.	The method by which endangered plant species are conserved in a botanical garden or in some									
	controlled circumstances -									
	(1) Afforestation		(2) In situ conservation							
	(3) Ex situ conservation		(4) None of the abo	ove						
131.		of plant species due to human								
	activities-	5 11	(0) 5:	(4) 7						
	(1) Earthquakes (2) I	Pollution	(3) Diseases	(4) Evolution						
132.	The main aim of plant con	servation is-								
	(1) To conserve the necess	(1) To conserve the necessary ecological activities and life supporting systems								
	(2) To conserve species diversity and range of genetic meterial									
	(3) Both the above									
	(4) None of the above									
133.	Which of the following spe	ecies in an endan	gered state							

(1) Indian bustard & rhino

(2) Asiatic donkey

(3) Black buck

- (4) All the above
- 134. Wild life protection act was enacted in India in
 - (1) 1947
- (2) 1962
- (3) 1972
- (4) 1992
- 135. Number of wild life is continuously decreasing. What is the main reason of this:-
 - (1) Predation

(2) Cutting down of forest

(3) Destruction of habitat

- (4) Hunting
- **136.** One of the following is associated with the conservation of forests
 - (1) Kaziranga
- (2) Ghana
- (3) Silent valley
- (4) Gir

Website: www.edubull.com Mob no.: +91-9350679141

ANSWER KEY

EXERCISE-I (Conceptual Questions)

1.	(2)	2.	(3)	3.	(2)	4.	(1)	5.	(3)	6.	(1)	7.	(3)
8.	(2)	9.	(2)	10.	(1)	11.	(2)	12.	(1)	13.	(1)	14.	(2)
15.	(2)	16.	(3)	17.	(4)	18.	(2)	19.	(2)	20.	(1)	21.	(4)
22.	(1)	23.	(3)	24.	(1)	25.	(4)	26.	(1)	27.	(4)	28.	(2)
29.	(1)	30.	(1)	31.	(2)	32.	(3)	33.	(1)	34.	(3)	35.	(4)
36.	(3)	37.	(2)	38.	(3)	39.	(4)	40.	(3)	41.	(4)	42.	(1)
43.	(2)	44.	(1)	45.	(1)	46.	(4)	47.	(1)	48.	(1)	49.	(4)
50.	(1)	51.	(1)	52.	(1)	53.	(4)	54.	(1)	<i>55.</i>	(1)	56.	(2)
<i>5</i> 7.	(1)	58.	(1)	59.	(4)	60.	(3)	61.	(1)	62.	(2)	63.	(1)
64.	(3)	65.	(2)	66.	(4)	67.	(4)	68.	(2)	69.	(4)	70.	(1)
71.	(1)	72.	(3)	73.	(3)	74.	(4)	75.	(3)	76.	(1)	77.	(4)
78.	(4)	79.	(2)	80.	(3)	81.	(4)	82.	(4)	83.	(4)	84.	(2)
85.	(4)	86.	(4)	87.	(2)	88.	(1)	89.	(1)	90.	(2)	91.	(1)
92.	(4)	93.	(3)	94.	(4)	95.	(3)	96.	(3)	97.	(2)	98.	(1)
99.	(2)	100.	(1)	101.	(1)	102.	(2)	103.	(1)	104.	(3)	105.	(3)
106.	(4)	107.	(2)	108.	(2)	109.	(2)	110.	(3)	111.	(2)	112.	(1)
113.	(4)	114.	(1)	115.	(3)	116.	(2)	117.	(2)	118.	(3)	119.	(3)
120.	(3)	121.	(3)	122.	(3)	123.	(3)	124.	(2)	125.	(3)	126.	(4)
127.	(2)	128.	(3)	129.	(3)	130.	(3)	131.	(2)	132.	(3)	133.	(4)
134.	(3)	135.	(3)	136.	(3)								

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141