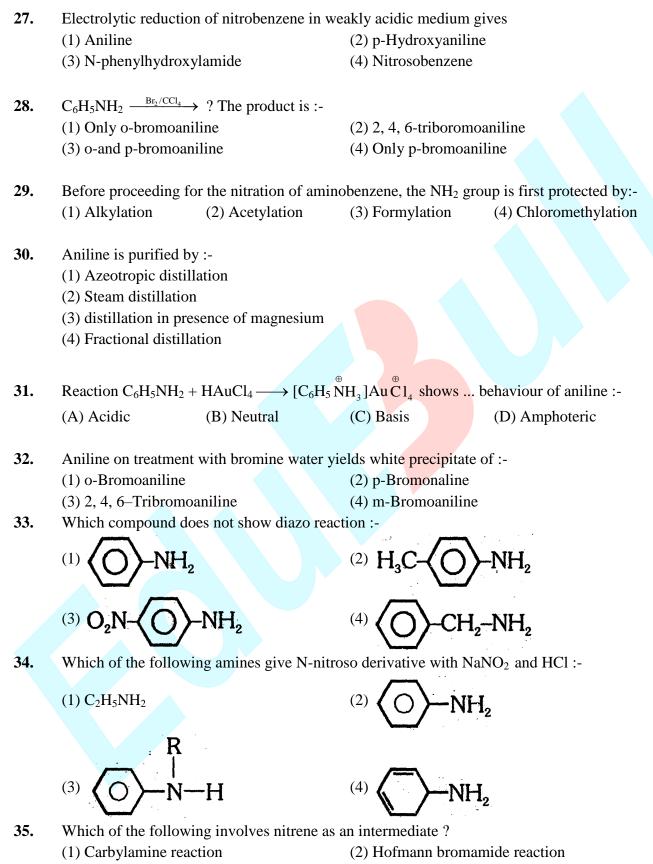
AMINE

- **1.** Among the following which one is not formed in hoffmann degradation. (1) RNCO (2) $R - MH_2$ (3) RCOMBr (4) RNC
- **2.** CH₃CH₂CONH₂ $\xrightarrow{\text{NaOH}}$ A, Aqueous solution of A
 - (1) Turns blue litmus to red
 - (2) Turns red litmus to blue
 - (3) Does not affect the litmus
 - (4) Decolourise the litmus
- 3. Ethanamine can be obtained if the following compound is heated with $[KOH + Br_2]$ (1) Ethanamide (2) Methanamide (3) Propionamide (4) All the above
- 4. $CH_3CONH_2 \xrightarrow{P_2O_5} A \xrightarrow{Na/EtOH} B$ Reaction II is called
 - (1) Clemensen
 - (2) Stephen
 - (3) Mendius
 - (4) Bauveault-blank reduction

5. CH_3CONH_2 , Br_2 & KOH give CH_3NH_2 as the product. The intermediates of the reaction are :-


(a) CH₃−−C −−	NHBr	(b) CH ₃ –N = C	C = O
(c) CH ₃ NHBr		(d) CH ₃ -C	
The correct ans	wer is :-		
(1) a, b	(2) a, c	(3) b, d	(4) c, d

- 6. In which case alkylamine is not formed :-
 - (1) $R-X + NH_3 \longrightarrow$ (2) $R-CH = NOH + [H] \xrightarrow{Na} alc. \rightarrow$ (3) $R-CN + H_2O \xrightarrow{H^+}$ (4) $RCONH_2 + 4[H] \xrightarrow{LiAlH_4} \rightarrow$
- 7. Tertiary amine is obtained in the reaction :-
 - (1) Aniline $\xrightarrow{CH_{3}I} \xrightarrow{CH_{3}I}$ (2) Aniline $\xrightarrow{CH_{3}I}$
 - (3) Nitrobenzene $\xrightarrow{\text{Sn/HCl}}$ (4) None of the above
- 8. $C_2H_5NO_2$ cannot be prepared by the reduction of (1) $C_2H_5NO_2$ (2) $CH_3CH = NOH$ (3) C_2H_5NC (4) CH_3CN
- 9. Gabriel reaction for the synthesis of amines, involves the use of

Build Up Your Understanding

				Edubull								
	(1) 1° amide	(2) 2° amide	(3) Imides	(4) Aliphatic amide								
10.	Gabriel phthalim	ide reaction is used in th	he synthesis of									
	(1) Primary arom	atic amines	(2) Secondary amin	ies								
	(3) Primary aliph	atic amines	(4) Tertiary amines									
11.	The reaction · [C	U Dr NU light fact	on axomple of									
11.	(1) Ammonolysis	$_{2}H_{5}Br + NH_{3}$] is in fact	an example of									
	(2) Nucleophilic	•										
	-	s as well as nucleophilic	substitution									
	(4) None											
12.	Melting points are normally the highest for											
	(1) Tertiary amid	es (2) Secondary am	ides (3) Primary amides	s (4) Amines								
13.	Solubility of ethy	vlamine in water is due	to									
	(1) Low molecula	ar weight										
		s present in ethyl alcoho	ol									
		H-bonding with water										
	(4) Being a deriv	ative of ammonia										
14.	Which of the foll	owing compound libera	ates CO ₂ when treated w	ith NaHCO ₃								
	(1) CH ₃ COCH ₂ N		(2) CH ₃ NH ₂									
	(3) (CH ₃) ₄ $\overset{\oplus}{\text{NOH}}^{\Theta}$		(4) $CH_3 \overset{\oplus}{NH_3} \overset{\Theta}{Cl}$									
15.	-			C = O when treated with t-butyl								
	(1) t-butylamine	ide, the compound obta (2) n-butylamine	(3) Isobutane	(4) n-butane								
	(1) t-butyrannine	(2) n-butylannie	(3) Isobutalle	(4) n-butane								
		С₄н₅сно										
16.	$C_2H_5NH_2$											
		C ₆ H ₅ SO ₂ Cl d										
	Which product is	a schiff's base :-										
	(1) a	(2) b	(3) c	(4) d								
17.	Acidic nature of	amino group is shown b	by the reaction :-									
		$Cl \rightarrow RCl + N_2 + H_2O$	j									
		$a \rightarrow 2RNH.Na + H_2$										
		$HNO_2 \rightarrow R.CH_2OH + 1$	$N_2 + H_2O$									
	(4) $R.NH_2 + HCl$	$\rightarrow R \overset{\oplus}{NH_3} \overset{\Theta}{Cl}$										
18.	The reagent used	in the conversion of C ₂	2H5NH2 to C2H5Cl woul	d be								
	(1) SO_2Cl_2	(2) $SOCl_2$	(3) NOCl	(4) All								
	oy: VISIONet Info Solution e : www.edubull.com		91-9350679141									

19.	(1) $\operatorname{RCONH}_2 + \operatorname{NaNH}_2$ (2) RNH_2	ses in the reaction (2) RNH ₂ + Na (4) None of the above						
	(3) Both the above (4) Non	e of the above						
20.	If primary amines are treated with ketones the product (1) Urea (2) Guanidine (3) Ami							
21.	CH ₃ CONH ₂ , KOH, Br ₂ Reactants of reaction-II are CH ₃ NH ₂ , CHCl ₃ , KOH The intermediate species of reaction-I and reaction-I (1) Carbonium ion, carbene (2) Nitr	and reaction-II are respectively. (2) Nitrene, carbene (4) Carbocation, carbanion						
22.	(1) Acetyl chloride, and methanamine (2) Ace	tyl chloride and ethanamine tyl chloride and diethylamine						
23.	(1) CH_3 - CH - NH_2 CH_3 CH_3	(4) $CH_3 - CH - CH_2 - CH_3$ NH ₂						
24.		$H_3 \overset{\Theta}{O}H$ (4) $R \overset{\oplus}{N} H_3 \overset{\Theta}{C}l$						
25.	Match list I with list II and select the correct answer List I	using the codes given below :- List II						
	[Reagent](A)Ammonical AgNO3a.(B)HIO4b.(C)Cold dil. Alkaline KMnO4c.(D)Chloroform + NaOHd.Codes :ABCD	[Used as test reagent fir] Primary amine Aldehyde Vicinal–OH groups Double bond						
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
26.	 Which one of the following aromatic amino compou (1) N,N–Dimethylaniline (2) Ben (3) N–methylaniline (4) Anil 	zylamine						
	wer by: VISIONet Info Solution Pvt. Ltd bsite : www.edubull.com Mob no. : +91-9350679141							

- (3) Reimer tiemann reaction
- (4) Friedal crafts reaction
- Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141

Edubull

36.	Which of the following does not reduce tollen's reagent :-	
	(1) CH_3CHO (2) $HCOOH$ (3) C_6H_5NHOH (4) $C_6H_5NH_2$	
37.	 Aniline can be obtained by :- (1) Benzoyl chloride and ammonia (2) Reduction of benzamide (3) Phenol and ammonia in presence of ZnCl₂ (4) Benzoic anhydride and ammonia 	
38.	Aniline on direct nitration produce :-(1) o-Nitroaniline(2) m-Nitroaniline(3) p-Nitroaniline(4) All	
39.	Nitration of acetanilide followed by hydrolysis gives (1) o-Nitroaniline (2) m-Nitroaniline (3) o-&p-Nitroaniline (4) o-Nitroanilinium ion	
40.	$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl} A$, which is the incorrect structure of the product 'A' :-	
	(1) $C_6H_5 - N = N - Cl$ (2) $[C_6H_5 \overset{\oplus}{N_2}] \overset{\Theta}{Cl}$ (3) $[C_6H_5 - \overset{\oplus}{N} \equiv N] \overset{\Theta}{Cl} (4) [C_6H_5 - N \equiv \overset{\Theta}{N}] \overset{\Theta}{Cl}$	
41.	Choroform and ethanolic KOH is used as a reagent in the following reaction :- (a) Hoffmann carbylamine reaction (b) Hoffmann degradation reaction (c) Reimer – tiemann reaction (d) Hoffmann mustard oil reaction Code is :- (1) Only for a (2) Only for a and b (3) Only for b and d (4) Only for a and c	
42.	Acetanilide when treated with bromine in acetic acid mainly gives :(1) o-Bromoacetanilide(2) N-Bromoacetanilide(3) p-Bromoacetanilide(4) m-Bromoacetanilide	
43.	Aromatic nitriles (ArCN) are not prepared by reaction (1) ArX + KCN (2) ArN_{2}^{+} + CuCN (3) $ArCONH_{2}$ + $P_{2}O_{5}$ (4) $ArCONH_{2}$ + $SOCl_{2}$	
44.	Aniline in a set of reactions yielded end product B The structure of the product D would be $\overbrace{O}^{NH_2} \xrightarrow{NaNO_2 + HCl} A \xrightarrow{CuCN} B \xrightarrow{H_2}_{Ni}$ $\overbrace{C}^{HNO_2} D$ (1) C ₆ H ₅ CH ₂ OH (2) C ₆ H ₅ CH ₂ NH ₂ (3) C ₆ H ₅ NHOH (4) C ₆ H ₅ NHCH ₂ CH ₃	
45.	In the reaction sequence identify the functional group present in A, B, C :- $A \xrightarrow{Sn/HCl} B \xrightarrow{HNO_2} C \xrightarrow{C_2H_5OH} C_6H_6$ (1) NO ₂ , NH ₂ , N=N (2) NO ₂ , NH ₂ , OH (3) -OH, -NH ₂ , -NO (4) -NH ₂ , -NO ₂ , -N=N-	

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

				Eaubuii
46.	$\phi - X \xrightarrow{\text{NaNO}_2/\text{HCl}} C_6 H_5 N_2$	$C1 \xrightarrow{Water} \phi - Y$	Y, In the above sequer	nce X and Y are :-
	(1) o-, p- and m-directing	-	(2) o-, p- and o-, p-	
	(3) m and m directing		(4) m and o, p direct	ting
47.	Which of the following con		-	-
	(1) 2,4, 6-Trinitrobenzoicac	id	(2) 2,. 4-Dinitrobenz	
	(3) o-Aminobenzoicacid		(4) o-Hydroxybenzo	picacid
48.	The gas leaked from a stron	a tank of the ur	vion corbido plant in bl	honal gas tragady was
40.	(1) Methylisocyanate	g tank of the un	(2) Methylamine	nopai gas tragetty was
	(3) Ammonia		(4) Phosgane	
	(5) / 1111101114		(1) I nosgano	
	ÇH,			
49.	CH-C-NC reduction			
.,,	$CH_3 - C - NC \xrightarrow{reduction} CH_3$			
			CLI-SA	
	Υ <mark>Γ</mark> ι			
	(1) CH_3 -C-NH ₂ CH ₃		(2) CH ₃ -C-NH-CI	H 3
	ĊH,		CH ₃	
	ÇH₃			
	(3) CH_3 - \dot{C} -NH- CH_2CH_3		(4) None	
	(3) CH ₃ -C-NH-CH ₂ CH ₃ CH ₃			
	1999년 2019년 1월 1일 1일 199 7년 1월 1997년			
50.	Reaction of RCN with sodiu	um and alcohol	leads to the formation	of :-
	(1) RCONH_2 (2) R	COO ⁻ NH ⁺ ₄	(3) RCH ₂ NH ₂	(4) $R(CH_2)_3NH_2$
51.	$C_6H_5NO_2 \xrightarrow{SnCl/HCl} A \xrightarrow{N}$	$\xrightarrow{\text{NaNO}_2/\text{HCl}} B$, In	the above sequence	benzene from B, is suitably
	obtained by using :-			
	(1) Ethanol (2) H	₃ PO ₂	(3) Both the above	(4) Methanol
52.	e e			acid sulphate $[C_6H_5N_2HCO_4]$:
	(1) CuBr, Δ (2) C	u Powder + HI	(3) KI, Δ	(4) None
53.	Which of the following is u			
	(1) Toluene (2) N	itrobenzene	(3) Benzene	(4)Aniline
54.	Match list I with II and choo	ose the correct :	answer from the codes	gives below :-
54.	List-I		List-(II)	
	(A) Aniline	a.	Used · in making azo	o dves
	(B) Nitrobenzene	a. b.	Sulpha drug	
	(C) Sulphanilamide	о. С.	Solvent in the friede	l crafts reaction
	-	U.	Sorvent in the mode	
Power b Website	y: VISIONet Info Solution Pvt. Ltd : www.edubull.com	Mob no. : +91-9	350679141	

(D)	Trin	itrotolu	ene		d.	Used as explosive
Code	e is:-					
	Α	В	С	D		
(1)	а	c	b	d		
(2)	а	b	c	d		
(3)	c	d	а	b		
(4)	d	c	b	a		

55.In the sandmeyer's reaction, -N=N-X group of diazonium salt is replaced by :-(1) Halide group(2) Nitro group(3) -OH group(4) -NHNH2 group

EXERCISE-I (Conceptual Questions) ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Que.	L	4	3	+	3	U	/	0	,	10	11	14	13	14	13
Ans.	4	2	3	3	1	3	1	3	3	3	3	3	3	4	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	2	3	3	4	2	3	2	4	3	2	1	2	2	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	3	4	3	2	4	3	4	3	1	4	3	1	1	1
Que.	46	47	48	49	50	51	52	53	54	55					
Ans.	2	1	1	2	3	3	3	2	1	1					