EXERCISE-I (Conceptual Questions)

Build Up Your Understanding

		COORDINATION COMPOUND			
1.	In the complex ion [Fe(EDTA)]- the coion is:- (1) C. N. = 6 O. N. = +3 (3) C. N. = 4 O. N. = +2	fordination number and oxidation state of central metal (2) C.N. =1 O. N. = -1 (4) C. N. = 3 O. N. = $+3$			
2.	. ,	on number of the central metal ion in the complex (2) C. N. = 6, O. N. = +4 (4) C. N. = 4, O. N. = +2			
3.	Select bidentate or didentate ligand from (1) CO (2) SCN	the following. (3) CH_3COO^- (4) $C_2O_4^{2-}$			
4.	The oxidation and coordination number $(1) +1, 3$ $(2) +2, 4$	of Pt in $[Pt(C_2H_4)Cl_3]$ + is respectively:- (3) +3, 6 (4) +2, 5			
5. 6.	The CN and ON of X in the compound (1) 10 and 3 (2) 1 and 6 What is the oxidation number of Fe in [1]	(3)6 and 4 (4) 6 and 2			
0.	(1) $+2$ (2) $+3$	(3) +1 (4) 0			
7.	The oxidation state of iron in Na ₄ [Fe(Cf $(1) + 1$ $(2) + 2$	$N)_5(NOS)$] is- (3) +3 (4) zero			
8.	Incorrect statement about DMG: (1) It is tetradentate ligand (3) dioxime of diacetyl	(2) Chelating ligand(4) in gravimetric determination of Ni is used			
		OMENCLATURE			
9.	K ₃ [Fe(CN) ₆] is :- (a) Potassium hexacyano ferrate (II) (b) Potassium hexacyano ferrate (III) (c) Potassium fern-cyanide (d) Hexacyano ferrate (III) potassium Correct answer is :- (1) Only (a) and (b) (3) Only (a) and (c)	(2) Only (b) and (c) (4) Only (b) and (d)			

Power by: VISIONet Info Solution Pvt. Ltd

- 10. Give the IUPAC name of the complex compound $(Co(NH_3)_4(H_2O)Br](NO_3)_2$.
 - (1) Bromoaquotetraamine Cobalt (III) nitrate
 - (2) Bromoaquotetraamino cobalt (III) nitrate
 - (3) Bromoaquatetraammine cobalt (III) nitrate
 - (4) Tetraammineaquabromido cobalt (III) nitrate
- **11.** Which of the following complex is anion:
 - (1) Fluoro pentaammine cobalt (III)
 - (2) Trioxalato ferrate (III)
 - (3) Penta Carbonyl iron (0)
 - (4) Dichloro diammine platinum
- 12. The chloro-bis (ethylenediamine) nitro cobalt (III) ion is:-
 - (1) $[Co(No_2)_2 (en)_2 Cl_2]^+$

(2) $[CoCl (No_2)_2 (en)_2]^+$

(3) $[Co(NO_2)Cl(en)_2]^+$

- (4) $[Co(en)Cl_2 (NO_2)_2]^-$
- 13. Which of the following complexes is not a chelate
 - (1) bis (dimethylglyoximato) nickel (II)
 - (2) Potassium ethylenediaminetetrathiocyanato chromate(III)
 - (3) Tetrammine dichlorocobalt (III) nitrate
 - (4) Trans-diglycinatoplatinum (II)
- 14. The correct IUPAC name of the complex $[Fe(C_5H_5)_2]$ is
 - (1) Cyclopentadienyl iron (II)
- (2) Bis (cyclopentadienyl) iron (H)
- (3) Dicyclopentadienyl ferrate (II)
- (4) Ferrocene
- 15. The correct name of $[Pt(NH_3)_4Cl_2]$ $[PtCl_2]$ is :-
 - (1) Tetraammine dichloro platinum (IV) tetrachloro platinate (II)
 - (2) Dichloro tetra ammine platinium (IV) tetrachloro platinate (II)
 - (3) Tetrachloro platinum (II) tetraammine platinate(IV)
 - (4) Tetrachloro platinum (II) dichloro tetraamine platinate (IV)
- 16. The IUPAC name of $K_2(Cr(CN)_2O_2(O)_2(NH_3))$ is :-
 - (1) Potassiumamminedicyano dioxoperoxochromate (VI)
 - (2) Potassiumamminecyperoxodioxochromium M
 - (3) Potassiumamminecyanoperoxodioxo chromium (VI)
 - (4) Potassiumamminecvanoperoxodioxo chromate (IV)
- 17. The IUPAC name for $(Co(NH_3)_6]$ $(Cr(CN)_6)$ is :-
 - (1) Hexaammine cobalt (III) hexacyanochromate (II)
 - (2) Hexacyanochromium cobalt hexaammine (VI)
 - (3) Hexaammine cobalt (III) hexacyanochromium (VI)
 - (4) Hexacyanochromium (III) hexaammine cobalt (III)
- **18.** The IUPAC name for $[Co(NCS) (NH_3)_5]Cl_2$ is :-
 - (1) Pentaammine (thiocyanato-N) cobalt (III) chlqritle ·.

Website: www.edubull.com

	(3) Pentaammine (isothiocyanato-N, S) cobalt (III) chloride (4) Pentaammine (mercapto-N) cobalt (III) chloride								
19.	IUPAC name of K ₂ [OsCl ₅ N] will be (1) Potassium pentachloroazido osmate (VIII) (2) Potassium pentachloroazido osmate (VI) (3) Potassium pentachloro nitrido osmate (VI) (4) Potassium nitro osmate (III)								
•••		RNER'S THEORY & EA							
20.	Which of the following has least (1) Co(NH ₃) ₄ Cl ₃ (3) Co(NH ₃) ₅ Cl ₃	(2) Co(NH3)3	vity in aqueous solution. (2) Co(NH ₃) ₃ Cl ₃ (4) Co(NH ₃) ₆ Cl ₃						
21.	If EAN of a central metal ion number of monodentet ligands p (1) 3 (2)4		and atomic number of X i	is 28. The					
22.	The EAN of cobalt in the complet (1) 27 (2) 36	ex ion $[Co(en)_2Cl_2]^+$ is :- (3) 33	(4) 35						
23.	The effective atomic number of (1) 35 (2) 27	Cr (atomic no. 24) in [Cr((3) 33	NH ₃) ₆]Cl ₃ is (4) 36						
24.	Which gives only 25% mole of A (1) PtCl ₂ . 4NH ₃ (3) PtCl ₄ . 4NH ₃	AgCl, when reacts with AgCl, when reacts with AgCl, 2) PtCl ₄ .5Nl (4) PtCl ₄ .3Nl	H_3						
25.	In the metal carbonyls of generand Cr the value of x will be responded in the control of the con	pectively:-	ich follows EAN rule) if M	l is Ni, Fe					
26.	A compound has the empirical formula CoCl ₃ .5NH ₃ . When an aqueous solution of this compound is mixed with excess silver nitrate, 2 mol of AgCl precipitate per mol of compound. On reaction with excess HCl, no NH ₄ ⁺ is detected. Hence it is (1) Co(NH) ₅ Cl ₂]Cl (2) [Co(NH) ₅ Cl]Cl ₂ (3) [Co(NH ₃) ₅ Cl ₃] (4) (Co(NH ₃) ₄ Cl ₂]Cl.NH ₃								
27.	Which of the following pair the EAN of central metal atom is not same? (1) $[Fe(CN)6]^{3-}$ and $[Fe(NH_3)_6]^{3+}$ (2) $[Cr(NH_3)_6]^{3+}$ and $[Cr(CN)_6]^{3-}$ (3) $[FeF_6]^{3-}$ and $[Fe(CN)_6]^{3-}$ (4) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$								
		LENCE BOND THEOR	Y						
28.	Which of the following compount (1) Tetracyanonickelate (II) ion (3) Hexaamine chromium (III) io	(2) Tetraamn	ninezinc (II) ion e silver (I) ion						

(2) Pentaammine (thiocyanato-S) cobalt (III) chloride

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

29.	The shape of the complex [Ag(NH ₃) ₂] ⁺ (1) Octahedral (3) Tetrahedral	is: (2) Square planar (4) Linear							
30.	Hexafluoroferrate (III) ion is an outer of (1) 1 (2) 5	orbital complex. The num (3) 4	mber of unpaired electrons are (4) Unpredictable						
31.	The shape of [Cu(NH ₃) ₄]SO ₄ is: (1) Square planar (3) Octahedral	(2) Pyramidal (4) Tetrahedral							
32.	Among the following ions, which one h (1) $[FeF_6]^{3-}$ (3) $[Cu(H_2O)_6]^{2+}$	nas the highest paramag (2) $[Fe(H_2O)_6]^{2+}$ (4) $[Zn(H_2O)_6]^{2+}$	the highest paramagnetism ? (2) $[Fe(H_2O)_6]^{2+}$ (4) $[Zn(H_2O)_6]^{2+}$						
33.	In the complex ion ML_6^{n+} , M^{n+} has fix crystal field theory, the magnetic proupaired electrons	operties of the comple	x ion correspond to how many						
	(1) 0 $(2) 5$	(3) 2	(4) 3						
34.	A magnetic moment of 1.73 BM will be (1) [Cu(NH ₃) ₄] ²⁺ (3) TiCl ₄	e shown by one among (2) [Ni(CN) ₄] ²⁻ (4) [CoCl ₆] ³⁻	of the following compounds.						
35.	The magnetic property and the shape of (1) Paramagnetic, Octahedral (3) Paramagnetic, tetrahedral	f [Cr(NH ₃) ₆] ³⁺ complex (2) Diamagnetic s (4) None of the ab	quare planar						
36.	Amongest the following ions which one (1) $(Cr(H_2O)_6]^{2+}$ (3) $[Cu(H_2O)_6]^{2+}$	e has the highest parama (2) [Fe(H ₂ O) ₆] ³⁺ (3) [Zn(H ₂ O) ₆] ²⁺	agnetism						
37.	Which of the following complexes is an $(1) [CoF_6]^{3-}$ $(2) [FeF_6]^{3-}$	n inner orbital complex (3) $(Cr(NH_3)_6]^{3+}$? (4) $[Fe(H_2O)_6]^{2+}$						
38.	The wrong statement is:- (1) Halide ligands forms high spin complex (2) Strong ligands form low spin complex (3) [FeF ₆] ⁻³ is inner orbital complex (4) [NiCl ₄] ⁻² is outer orbital complex								
39.	What is Incorrect for K ₄ [Fe(CN) ₆] (l) O.N of Iron is +2 (3) It exhibit paramagnetic character	(2) It exhibit diam (4) It involved d ² s	nagnetic character sp ³ -hybridisation						
40.	In which of the following molecules, conumber, in the hybridization:- (1) [Fe(CO) ₅] (2) IF ₇	central atom used orbita (3) Ni(CO) ₄	ls of different principle quantum (4) XeO ₄						

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

41.	What are the geometric shape and the the complex ion, $(Cu(NH_3)_4(OH_2)_2)^{2-1}$	e oxidation number of the copper atom, respectively, for ?	or
	(1) Tetrahedral; + 2(3) Linear; + 3	(2) Square planar; -2(4) Octahedral; +2	
42.	 The same as the magnetic moment Larger than the magnetic moment electrons in the fluoride complex Smaller than the magnetic morning unpaired electrons in the fluoride complex 	of the cyanide complex because there are more unpairement of the cyanide complex because there are more	re
43.	Which of the following. contains one u (1) $(Cu(NH_3)_2]^+$ (3) $(Cu(CN)_4]^{3-}$	inpaired electron in the 4p orbitals:- (2) $(Cu(NH_3)_4]^{2+}$ (4) $(Ni(CN)_4]^{2-}$	
44.	Which of the following complexes are (a) K ₄ [Os(CN) ₆] (b) (Mot Select the correct answer using the coc (1) a, b and c (3) a and c only	$(c) (Mn(CN)_6)^{4-}$	
45.	How many unpaired electrons are pres (1) 4 (2) 3	ent in the Brown Ring complex [Fe(H ₂ O) ₅ (NO)SO ₄ . (3) 0 (4) 5	
46.	Which of the following statements about (1) It is paramagnetic and high spin con (2) It is diamagnetic and high spin con (3) It is diamagnetic and low spin com (4) It is paramagnetic and low spin con (5)	mplex nplex plex	
47.	Which is true for $(Ni(en)_2)^{2+}$, $Z(Ni) = 2$ (1) paramagnetism, dsp^2 , square planar (2) diamagnetism, dsp^2 , square planar, (3) diamagnetism, sp^3 , tetrahedral, C.N. (4) pararriagnetism, sp^3 , tetrahedral, C.	c, C.N. of Ni = 2 C.N. of Ni = 4 J. of Ni = 4	
48.	Arrange the following in order of decret I: $(Fe(H_2O)_6)^{2+}$ III: $(Fe(CN)_6)^{4-}$ (1) IV, I, II, III (2) I, II, III, IV	easing number of unpaired electrons : II : $(Fe(CN)_6]^{3-}$ IV : $[Fe(H_2O)_6]^{3+}$ (3) III, II, I, IV (4) II, III, I, IV	
	,	IE COMPLEX AND STABILITY	
49.	Which one of these ions absorbs energ (1) $[Cu(NH_3)_4]^+$	y from visible spectrium : (2) $\left[\text{Cu}(\text{NH}_3)_4\right]^{+2}$	

Power by: VISIONet Info Solution Pvt. Ltd

Mob no.: +91-9350679141 Website : www.edubull.com

(3) $(Zn(H_2O)_6]^{+2}$

 $(4) [Co(H_2O)_6]^{+3}$

In the complex $[Ni(H_2O)_2(NH_3)_4]^{+2}$ the magnetic moment (μ) of Ni is : 50.

(1) Zero

(2) 2,83 BM

(3) 1.73 BM

(4) 3.87 BM

51. Which of the following system has maximum number of unpaired electrons:-

(1) d⁵ (Octahedral, low spin)

(2) d⁸ (Tetrahedral)

(3) d⁶ (Octahedral, low spin)

(4) d³ (Octahedral)

52. In an octahedral crystal field the t_2 , orbitals are

(1) Raised in energy by $0.4 \Delta_0$

(2) Lowered in energy by 0.4 Δ_0

(3) Raised in energy by $0.6 \Delta_0$

(4) lowered in energy by $0.6 \Delta_0$

If $\Delta_0 < P$, the correct electronic configuration for d⁴ system will be :-53.

(1) $t_{2g}^4 e_g^0$

(2) $t_{2a}^3 e_a^1$

(3) $t_{2g}^0 e_g^4$

Match List-I (Complex ions) with List-II (Number of Unpaired Electrons) and select the correct 54. answer using the codes given below the lists:-

List-I

List-II

(Complex ions)

(Number of Unpaired Electrons)

 $[\operatorname{CrF}_6]^4$ A.

One

 $[MnF_6]^{4-}$ В.

ii. Two iii. Three

C. $[Cr(CN)_6]^{4-}$

Four iv.

 $[Mn(CN)_6]^{4-}$ D.

Five v.

Code: A B \mathbf{C} D

iv (1)

ii v

(2) ii V iii

(3) iv ii

(4)

iii

55. Consider the following complex formation reactions geometrical isomerism and comment on their formation constant value

(i) Fe^{2+} (aq) + 6NH₃ $\hat{\ddagger}^{^{^{1}}}$ $[Fe(NH_{3})_{6}]^{2+}$

(ii) $Fe^{2+}(aq) + 3en \frac{2}{3} A^{K} = [Fe(en)_3]^{2+}$

(1) $K_f > K'_f$

(2) $K_f < K'_f$

(3) $K_f = K'_f$

(4) can not be compared

Select most stable complex :-**56.**

(1) $[Co(H_2O)_6]^{3+}$

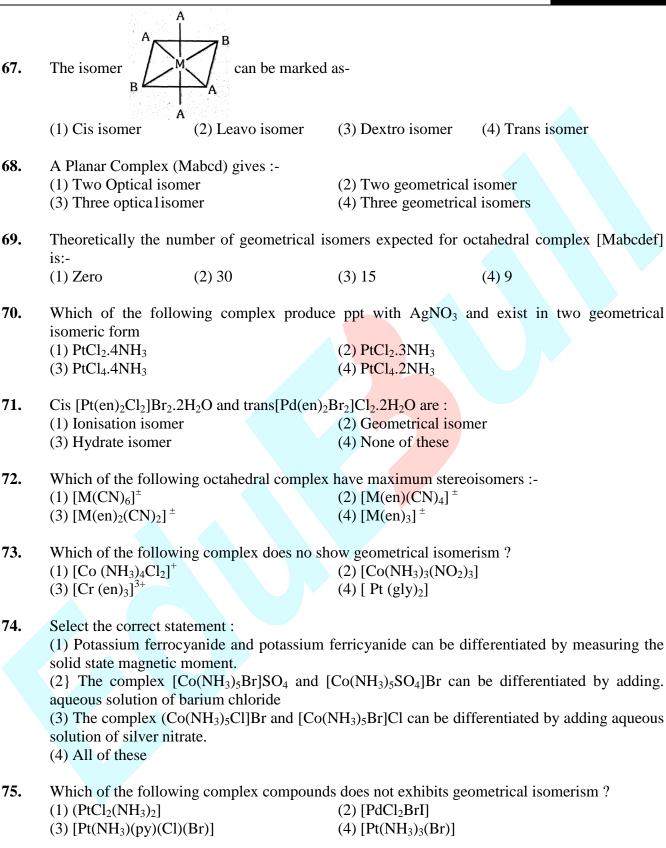
(2) $[Co(NH_3)_2(en)_2]^{+3}$ (4) $[Co(NH_3)_4(en)]^{+3}$

 $(3) [Co(en)_3]^+$

57. What will be the theoretical value of 'spin only' magnetic moment when Fe(SCN)₃ reacts with a solution containing F⁻ ions to yield a complex?

(1) 2.83 B.M.

(2) 3.87 B.M.


(3) 5.92 B.M.

(4) 1.73 B.M.

58.	Which one of the following high spin stabilization energy)?	n complexes has the largest CFSE (Crystal field							
	(1) (Mn(H2O)6]2+	(2) $[Cr(H_2O)]^{2+}$							
	$(3) \left(Mn(H_2O)_6 \right]^{3+}$	(2) $[Cr(H_2O)]^{2+}$ (4) $[Cr(H_2O)_6]^{3+}$							
	(3) (MIN(11 ₂ O) ₆]	(4) [CI(11 ₂ O) ₆]							
59.	Match List-I(Complex ions with List-II (CFSE) and select the correct answer using codes given below the lists:-								
	Column-I	Column-II							
	(P) $[Mn(H_2O)_6]^{2+}$ 1.	$0.6\Delta_0$							
	(Q) $[Cr(H_2O)_6]^{2+}$ 2.	$0.4 \Delta_0$							
	(R) $[Fe(H_2O)_6]^{2+}$ 3.	$3.0 \Delta_0$							
	(S) $(Cr(H_2O)_6]^{3+}$ 4.	$1.2 \Delta_0$							
		$1.2 \Delta_0$							
	· ·								
	-								
	(4) None of these								
	ISO	MERISM							
60.	A square planar complex is cis platin [Pt(l								
	(1) Geometrical isomerism	(2) Optical isomerism							
	(3) Linkage isomerism	(4) None							
61.	The two compounds sulphato pehta-ammine cobalt (01) bromide and sulphato penta-ammine cobalt (III) chloride represent :								
	(1) Linkage isomerism	(2) Ionisation isomerism							
	(3) Co-ordination isomerism	(4) No isomerism							
62.	Which of the following complex can not o	avhibit gaamatrigal isomarism							
04.	Which of the following complex can not e								
	(1) $[Pt(NH_3)_2C1 NO_2]$ (3) $[Cu(en)_2]^{+2}$	(2) [Pt(gly) ₂]							
	(3) [Cu(en) ₂]	(4) [Pt(H2O)(NH3)BrCl]							
63.	Which one of the following compounds w	vill exhibit linkage isomerism:-							
	(1) (Pt (NH ₃) ₂ Cl_2]	(2) $[Co(NH_3)_3 NO_2]Cl_2$							
	(3) (C<) (NJ-IJ4 Cl2lCl -	(4) [Co {en)2Cl2IC1							
64.	Out of the following which complex will								
	(1) [Pt(NH3)2Cl2]	$(2) \operatorname{Ni}(\operatorname{CO})_4$							
	(3) $Na[Ni(CN)_4]$	$(4) K(Ag(CN)_2]$							
65.	Which of the following complex will show options isomerism?								
00.	(1) [Cr(NH ₃) ₆] ²⁺	(2) $[Ni(H_2O)_6]^{2+}$							
	(3) [Pt(NH3)3]Br]NO3	(2) [Cr(en) ₃]Cl ₃							
	(3) [1 ((1113]3D1]11O3	(1) [CI(CII)3]CI3							
66.	The compound [Cr(H ₂ O) ₆]Cl ₃ and [Cr(H ₂ O	O) ₄ Cl ₂].2H ₂ O represent-							
	(1) Linkage isomerism	(2) Hydration isomerism							
	(3) Ligand isomerism	(4) No of these							

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

76. The pair of molecules that exhibit geometrical isomerism are

(1) $[Cr(NH_3)_4Cl_2\}$ +and $[Co(NH_3)_4Cl_2]^+$

Power by: VISIONet Info Solution Pvt. Ltd

	(2) $[Cr(NH_3)_5Cl]^{2-}$ (3) $[Cr(NH_3)_6]^{3+}$ a (4) All of the above	and [Co(NH ₃) ₅ Cl] ²⁺ nd [Co(NH ₃) ₆] ³⁺ re show geometric ison	merism							
		ORGANOMET	ALLIC COMPOU	JNDS						
77.	Which of the follo (1) NH ₃	wing is π -acid ligand (2) CO	(3) gly	(4) ethylene diamine						
78.	 Which of the following statement is/are wrong: (a) Al₄C₃ is an organometallic compound (b) Metal carbonyls are organometallic compounds (c) TEL is 1t bonded organometallic compound (d) Frankland reagent is σ - bonded organometallic compound The answer is:- 									
	(1) c and d	(2) a and c	(3) a and b	(4) All are correct						
79.	(1) Organic compo	ound	(2) Complex c	etal carbon bonds are called: (2) Complex compound (4) OMC compounds						
80.	Which of the following statement is/are wrong: (a) Al_4C_3 is an organometallic compound (b) Metal carbonyls are organometallic compounds (c) TEL is 1t bonded organometallic compound (d) Frankland reagent is σ - bonded organometallic compound The answer is:- (1) c and d (2) a and c (3) a and b (4) All are correct Compounds which contain one or more metal carbon bonds are called: (1) Organic compound (2) Complex compound									
81.	 (1) FeCO₃ and Fe₃C are organometallic compounds (2) In ferrocene ligand is cyclopentadienyl (3) Pb (C₂H₅)₄ is π-bonded OMC 									
82.	(1) The transference of electrons from ligands to metal(2) The transference of electrons from filled metal orbitals to anti-bonding orbitals of ligands(3) Both the. above									
83.		•		(4) Na ₂ lNi(CN) ₄]						
84.			-							
85.	formula :- (1) [Fe(H ₂ O)5NO	⁺]+	(2) [Fe(H ₂ O) ₆]	2+						

Power by: VISIONet Info Solution Pvt. Ltd

86. In a ferric salt on adding KCN a prussian blue is obtained which is:

(1) $K_3(Fe(CN)_6]$

(2) $Fe_3[FE(CN)_6]_4$

(3) FeSO₄[Fe(CN)₆]

(4) $Fe_4[Fe(CN)_6]_3$

87. Hypo is used .in photography because it is :-

(1) A strong reducing agent

- (2) A strong oxidising agent
- (3) A strong complexing agent
- (4) Photo sensitive Compound

88. The solubility of AgBr in hypo solution is due to the formation of :-

 $(1) Ag_2SO_3$

 $(2) Ag_2S_2O_3$

 $(3) (Ag(S_2O_3)]^-$

 $(4) (Ag(S_2O_32)^{3-}$

89. Which of the following is related to Nessler's reagent?

(1) $PtCl_4 + KCl \rightarrow$

(2) AgCl + NH₃ \rightarrow

(3) $AgBr + Na_2S_2O_3 \rightarrow$

 $(4) \text{ HgI}_2 + \text{Kl} \rightarrow$

90. $K_4[Fe(CN)_6]$ reacts with FeCl₃ to form :-

 $(1)K_3Fe(CN)_6$

 $(2) K_4(Fe(CN)_3Cl_3]$

(3) K₃[Fe(CN)₅Cl]

(4) KFe[Fe(CN)₆]

91. A reagent used for identifying nickel ion is :

(1) Potassium ferrocyanid

(2) Phenolphthalein

(3) Dimethyl glyoxime

(4) EDTA

92. Which one of the following statement Is false for nickel-dimethylglyoximate complex?

- (1) The stability of complex is only due to the presence of intra-molecular hydrogen bonding
- (2) The complex is stable, only because dimethyl glyoxime ligand is a stronger ligand
- (3) The complex is stable as it has five membered chelate rings as well as intra molecular hydrogen bonding
- (4) (1) and (2) both

93. $CuCl_2 + K_4[Fe(CN)_6 \rightarrow Chocolate brown ppt (X) Select the correct statement for (X) :$

- (1) Its IUPAC name is copper(I) hexacyanoferrate (II)
- (2) It reacts with excess potassium cyanide forming an another soluble complex which has tetrahedral geometry.
- (3) It has 'spin only' magnetic moment equal to $\sqrt{36}$ B.M.
- (4) 2 and 3 both

94. It is an experiment fact that :

DMG + Ni(II)salt $+ NH_4OH \longrightarrow Red ppt.$

Which of the following is wrong about this red ppt:

- (1) It is a non-ionic complex
- (2) It involves intra molecular H-bonding
- (3) Ni(II) is sp³ hybridised
- (4) It is a diamagnetic complex

Power by: VISIONet Info Solution Pvt. Ltd

- Wilkinson's catalyst react with H_2 to form an octahedral complex in which Rh(Z=45) has the **95.** following electronic configuration in the ligand field $t_{2g}^{2,2,2}$, $t_{g}^{0,0}$. Then which of the following is correct about this new complex
 - (1) It is paramagnetic
 - (2) Its IUPAC name is chlorodlhydridotris (triphenylphosphine) rhodium (III) (3) Hybridisation of Rh(I) is d²sp³

 - (4) None of these

ANSWER KEY

EXERCISE-I (Conceptual Questions)													
1. (1) 2. (4) 3. (4) 4. (2) 5. (4) 6. (3) 7. (2)													
	. ,				` '								
8.	(1)	9.	(2)	10.	(4)	11.	(2)	12.	(3)	13.	(3)	14.	(2)
15.	(1)	16.	(1)	17.	(1)	18.	(1)	19.	(3)	20.	(2)	21.	(2)
22.	(2)	23.	(3)	24.	(4)	25.	(2)	26.	(2)	27.	(4)	28.	(3)
29.	(4)	30.	(2)	31.	(1)	32.	(1)	33.	(2)	34.	(1)	35.	(1)
36.	(2)	37.	(3)	38.	(3)	39.	(3)	40.	(1)	41.	(4)	42.	(2)
43.	(2)	44.	(2)	45.	(2)	46.	(3)	47.	(2)	48.	(1)	49.	(2)
50.	(2)	51.	(4)	52.	(2)	53.	(2)	54.	(3)	55.	(2)	56.	(3)
<i>5</i> 7.	(3)	58.	(4)	59.	(1)	60.	(1)	61.	(4)	62.	(3)	63.	(2)
64.	(1)	65.	(4)	66.	(2)	67.	(4)	68.	(4)	69.	(3)	70.	(3)
71.	(4)	72.	(3)	73.	(3)	74.	(4)	<i>75.</i>	(4)	76.	(1)	77.	(2)
78.	(2)	79.	(4)	80.	(3)	81.	(2)	82.	(3)	83.	(1)	84.	(3)
85.	(1)	86.	(4)	87.	(3)	88.	(4)	89.	(4)	90.	(4)	91.	(3)
92.	(4)	93.	(2)	94.	(3)	95.	(2)						

Power by: VISIONet Info Solution Pvt. Ltd