INTRODUCTION

- 1. All reactions which have chemical disintegration
 - (1) Is reversible
 - (2) Is reversible and endothermic
 - (3) Is exothermic
 - (4) Is reversible or irreversible and endothermic or exothermic
- 2. Which of the following is a characteristic of a reversible reaction :
 - (1) Number of moles of reactants and products are equal
 - (2) It can be influenced by a catalyst
 - (3) It can be influenced by a catalyst
 - (4) None of the above
- **3.** Which of the following is a characteristic of a reversible reaction :

(1) $Fe_2O_3 + 6HCl \rightarrow 2FeCl_3 + 3H_2O$	(2) NH ₃ + H ₂ O + NaCl \ddagger \uparrow	$NH_4Cl + NaOH$
--	---	-----------------

(3)
$$\operatorname{SnCl}_4 + \operatorname{Hg}_2\operatorname{Cl}_2 \stackrel{\circ}{+} \stackrel{\circ}{\uparrow} \operatorname{SnCl}_2 + 2\operatorname{HgCl}_2$$
 (4) $2\operatorname{Cu} + 2\operatorname{I}_2 + 4\operatorname{K}^+ \stackrel{\circ}{+} \stackrel{\circ}{\uparrow} \operatorname{Cu}^{+2} + 4\operatorname{KI}$

4. Select the endothermic reaction :-(1) $2H_2 + O_2 \rightarrow 2H_2O$ (3) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ (4) $3O_2 + C_2H_5OH \rightarrow 2CO_2 + 3H_2O$

FACTORS AFFECTING RATEOF REACTION

- 5. In an elementary reaction $A + 2B \rightarrow 2C + D$. If the concentration of A is increased four times and B is decreased to half of its initial concentration then the rate becomes (1) Twice (2) Half (3) Unchanged (4) One fourth of the rate
- 6. $2A_{(g)} + B_{(g)} \ddagger \uparrow \uparrow$ Product is an elementary reaction, If pressure is increased three times of the initial pressure, the velocity of forward reaction will be of the previous velocity :-
 - (1) 9 times (2) 27 times (3) $\frac{1}{9}$ times (4) $\frac{1}{27}$ times
- 7. The role of catalyst in a chemical reaction is :-
 - (1) To help attain equilibrium in a shorter time
 - (2) To lower the activation energy
 - (3) To shift the equilibrium in such a way as to increase the concentration of the product(4) Both 1 & 2

EQUILIBRIUM AND CHEMICAL PROCESS

- 8. $x \ddagger \uparrow \uparrow y$ reaction is said to be in equilibrium, when :-
 - (1) Only 10% conversion x to y takes place.
 - (2) Complete conversion of x to y takes place
 - (3) Conversion of x to y is only 50% complete
 - (4) The rate of change of x to y is just equal to the rate of change of y to x in the system
- 9. In the chemical reaction $N_2 + 3H_2$ $\ddagger \uparrow \uparrow 2NH_3$ at equilibrium, state whether :-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- (1) Equal volumes of $N_2 \& H_2$ are reacting
- (2) Equal masses of $N_2 \& H_2$ are reacting
- (3) The reaction has stopped
- (4) The same amount of ammonia is formed as is decomposed into N_2 and H_2
- **10.** Active mass of 5 g CaO :-(1) 56 (2) 1
 - (3) 3.5 (4) 2
- **11.** Ratio of active masses of $22g CO_2$, $3g H_2$ and $7g N_2$ in a gaseous mixture :-(1) 22:3:7(2) 0.5:3:7(3) 1:3:1(4) 1:3:0.5
- 12. Which of the following example shows effect of catalyst on reversible reaction
 - (1) It gives new reaction path with low activation energy.
 - (2) It shifts equilibrium right side.
 - (3) It decrease kinetic energy of activated molecules.
 - (4) It decrease rate of backward reaction.
- **13.** Select the correct statement from the following :-
 - (1) Equilibrium constant changes with addition of catalyst.
 - (2) Catalyst increases the rate of forward reaction.
 - (3) The ratio of mixture at equilibrium does not changed by catalyst.
 - (4) Catalyst are active only in solution.
- 14. In reversible chemical reaction equilibrium will be establish when :-
 - (1) Reactant completely converted into product
 - (2) Rate of forward and backward reaction is equal
 - (3) Minimum yiled of product
 - (4) Concentration of reactant and product is equal

LAW OF MASS ACTION

- **15.** In a chemical equilibrium, the rate constant for the backward reaction is 7.5×10^{-4} and the equilibrium constant is 1.5. The rate constant for the forward reaction is :-(1) 2×10^{-3} (2) 5×10^{-4} (3) 1.12×10^{-3} (4) 9.0×10^{-4}
- **16.** The equilibrium concentration of $[B]_e$ for the reversible reaction A $\hat{\ddagger}$ $\hat{\uparrow}^{\dagger}$ B can be evaluated by the expression :-

(1) $K_{c}[A]_{e}^{-1}$ (2) $\frac{k_{f}}{k_{b}}[A]_{e}^{-1}$ (3) $k_{f}k_{b}^{-1}[A]_{e}$ (4) $k_{f}k_{b}[A]^{-1}$

- 17. In this reaction $Ag^+ + 2NH_3$ $\ddagger \uparrow \uparrow Ag (NH_3)_2^+$ at 298K molar concentration of Ag^+ , Ag $(NH_3)_2^+$ and NH_3 is 10^{-1} , 10^{-1} and 10^3 . The value of K_C at 298K for this equilibrium :-(1) 10^{-6} (2) 10^6 (3) 2×10^{-3} (4) 2×10^6
- **18.** Equilibrium constant of some reactions are given as under :-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

	(1) x ‡ ^⁺ y	$K = 10^{-1}$	(2) y ‡ ^† z	$\mathbf{K} = 2 \times 10^{-2}$
	(3) P ‡ ^⁺ Q	$K = 3 \times 10^{-4}$	(4) R ‡ˆ⁺ S	$K = 2 \times 10^{-3}$
	Initial concentration Review the above r respectively were of	of the reactants for eac eaction and indicate highest concentration :	h reaction was taken to the reactions in whic	b be equal : h the reactants and products
	(1) d, c	(2) c, a	(3) a, d	(4) b, c
19.	At 1000 K, the value	of K_p for the reaction	:	
	$A(g) + 2B(g) \ddagger \uparrow \uparrow$	3C(g) + D(g)		
	is 0.05 atm the value (1) 20000 R	of K _c in terms of R wo (2) 0.02 R	build be : (3) 5×10^{-5} R	(4) $5 \times 10^{-5} \times \mathrm{R}^{-1}$
20.	For the reaction C(s)	$+ CO_2(g) \stackrel{2}{\ddagger} \stackrel{2}{\uparrow} \stackrel{2}{\dagger} 2CC$	O(g) the partial pressur	e of CO and CO_2 are 2.0 and
	4.0 atm. respectively	at equilibrium. The K	o for the reaction is	
	(1) 0.5	(2) 4.0	(3) 8.0	(4) 1
21.	For which reaction is	$K_p = K_c :-$		
	(1) 2NOCl(g) ‡ˆ†	$2NO(g) + Cl_2(g)$	(2) $N_2(g) + 3H_2(g)$ $\hat{\ddagger}$	† 2NH ₃ (g)
	(3) $H_2(g) + Cl_2(g) \ddagger d$	^† 2HCl(g)	(4) $2SO_2(g) + O_2(g)$	‡^† 2SO₃(g)
22	For the reaction			
22.	CuSO ₄ .5H ₂ O _(s) \div \uparrow	$CuSO_4 . 3H_2O_{(s)} + 2I_2$	$H_2O_{(\sigma)}$	
	Which one is correct	representation :-	- (6)	
	(1) $K_p = p_{H_2O}^2$	(2) $K_c = [H_2O]^2$	$(3) K_p = K_c (RT)^2$	(4) All
	17			
23.	$\log \frac{K_p}{K_c} + \log RT = 0$) is true relation ship fo	or the following reaction	on :-
	(1) $PCl_5 \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} PCl_3$	$+ Cl_2$	(2) $2SO_2 + O_2 \stackrel{2}{\ddagger} \stackrel{2}{\uparrow} \stackrel{1}{\uparrow}$	2SO ₃
	(3) $N_2 + 3H_2 \ddagger \uparrow \uparrow 2$	2NH ₃	(4) (2) and (3) both	
24.	For which reaction at	t 298 K, the value of $\frac{k}{k}$	$\frac{X_p}{X_c}$ is maximum and m	inimum respectively :-
	(a) N_2O_4 \ddagger $\uparrow \uparrow$ 2NO	D_2	(b) $2SO_2 + O_2 \stackrel{2}{\ddagger} \stackrel{2}{\uparrow} \stackrel{1}{\uparrow}$	2SO ₃
	(c) $X + Y \hat{\ddagger} \hat{\uparrow} 4Z$		(d) A + 3B ‡ˆ⁺ 7C	2
	(1) d, c	(2) d, b	(3) c, b	(4) d, a

25. Consider the two gaseous equilibrium involving SO_2 and the corresponding equilibrium constants at 299 K

$$SO_{2}(g) + \hat{\ddagger} \hat{\uparrow} \frac{1}{2} O_{2}(g) \hat{\ddagger} \hat{\uparrow} SO_{3}(g); K_{1}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com $4SO_{3}(g)$ $\frac{1}{2}$ $\frac{1}{7}$ $\frac{1}{4}$ $SO_{2}(g) + 2O_{2}(g)$; K₂

(1)
$$K_2 = \frac{1}{(K_1)^4}$$
 (2) $K_2 = K_1^4$ (3) $K_2 = \left(\frac{1}{K_1}\right)^{\frac{1}{2}}$ (4) $K_2 = \frac{1}{K_1}$

26. For the reactions ;- A $\ddagger \uparrow \dagger$ B ; K_C = 2, B $\ddagger \uparrow \dagger$ C ; K_C = 4, C $\ddagger \uparrow \dagger$ D ; K_C = 6 K_C for the reaction A $\ddagger \uparrow \dagger$ D :-(1) 12 (2) 4 / 3 (3) 24 (4) 48

27. If A $\ddagger \uparrow \uparrow$ B (K_c = 3), B $\ddagger \uparrow \uparrow \uparrow$ C (K_c = 5), C $\ddagger \uparrow \uparrow \uparrow$ D (K_c = 2) The value of equilibrium constant for the above reaction are given, the value of equilibrium constant for D $\ddagger \uparrow \uparrow \uparrow$ A will be :-(1) 15 (2) 0.3 (3) 30 (4) 0.03

- 28. Which Oxide of Nitrogen is most stable :-(1) 2 NO_{2 (g)} $\ddagger \uparrow \dagger N_{2 (g)} + 2O_{2 (g)} K = 6.7 \times 10^{16} \text{ mol } L^{-1}$ (2) 2 NO_(g) $\ddagger \uparrow \dagger N_{2 (g)} + O_{2 (g)} K = 2.2 \times 10^{30}$ (3) 2 N₂O_{5 (g)} $\ddagger \uparrow \dagger 2N_{2(g)} + 5O_{2 (g)} K = 1.2 \times 10^{34} \text{ mol}^5 L^{-5}$ (4) 2 N₂O_(g) $\ddagger \uparrow \dagger 2N_{2(g)} + O_{2 (g)} K = 3.5 \times 10^{33} \text{ mol } L^{-1}$

29. The equilibrium constant in a reversible reaction a given temperature :-

- (1) Depends on initial concentration of the reactants.
- (2) Depends on the concentration of the products at equilibrium
- (3) Does not depend on the initial concentrations
- (4) It is not characteristic of the reaction
- 30. Which one of the following statements is correct about equilibrium constant :-
 - (1) Equilibrium constant of a reaction changes with temperature

(2) Equilibrium constant of a reaction depends upon the concentration of reactants with which we start.

(3) Equilibrium constant of a reaction, $3Fe(s) + 4H_2O(g) \ddagger \uparrow Fe_3O_4(s) + 4H_2(g)$ is same

whether, the reaction is carried out in an open vessel or a closed vessel.

(4) Equilibrium constant of a reaction becomes double if the reaction is multiplied by 2 throughtout.

31. For a reaction $N_2 + 3H_2$ $\ddagger \uparrow \uparrow 2NH_3$, the value of K_C does not depends upon :-

(a) Initial concentration of the reactants

(b) Pressure

(c) Temperature

- (d) Catalyst
- (1) Only c (2) a, b, c (3) a, b, d (4) a, b, c, d

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	

32. For any reversible reaction if concentration of reactants increases then effect on equilibrium constant :-

(1) Depends on amount of concentration	(2) Unchange
(3) Decrease	(4) Increase

33. Effect of increasing temperature on equilibrium constant is given by $\log K_2 - \log K_1 = \frac{-\Delta H}{2.303R}$

 $\begin{bmatrix} \frac{1}{T_2} - \frac{1}{T_1} \end{bmatrix}$. Then for an endothermic reaction the false statement is :-(1) $\begin{bmatrix} \frac{1}{T_2} - \frac{1}{T_1} \end{bmatrix}$ = positive (2) log K₂ > log K₁ (3) ΔH = positive (4) K₂ > K₁

34. The equilibrium constant for the reaction Br_2 $\hat{\ddagger}$ $\hat{\uparrow}$ $\hat{\uparrow}$ 2Br at 500 K and 700 K are 1×10^{-10} and 1×10^{-5} respectively. The reaction is :-(1) Endothermic (2) Exothermic (3) Fast (4) Slow

35. In an experiment the equilibrium constant for the reaction $A + B \ddagger \uparrow \uparrow V + D$ is K when the initial concentration of A and B each is 0.1 mol L⁻¹ Under the similar conditions in an another Experiment if the initial concentration of A and B are taken 2 and 3 mol L⁻¹ respectively then the value of equilibrium constant will be :-

(1) $\frac{K}{2}$ (2) K (3) K^2 (4) $\frac{1}{K}$

36. In system A(s) ⁺/_‡ [^]/_† 2B (g) + 3C (g) at equilibrium if concentration of 'C' is doubled then concentration of B at equilibrium.
(1) Double its original concentration
(2) Half its original concentration
(3) 2√2 its original concentration
(4) ¹/_{2√2} its original concentration

37. For the reaction, $H_2(g) + I_2(g) \div \uparrow f$ 2HI(g) equilibrium constant, K_P changes with :-(1) Temperature(2) Total pressure(3) Catalyst(4) Amount of H_2 and I_2 present

38. The equilibrium constant (K_P) for the reaction PCl₅ (g) $\ddagger \uparrow \dagger$ PCl₃(g) + Cl₂(g) is 16. If the volume of the container is reduced to one half its original volume, the value of K_P for the reaction at the same temperature will be :-(1) 32 (2) 64 (3) 16 (4) 4

39. The equilibrium constant for the reaction :

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

 $N_2(g) + O_2(g) \ddagger \uparrow \dagger 2NO(g)$ at 2000 K is 4×10^4 . In presence of catalyst the equilibrium is established ten times faster at the same temperature. What is the value of equilibrium constant in presence of catalyst :-(2) 4×10^{-4} (1) 40×10^{-4} $(3) 4 \times 10^4$ (4) None The equilibrium constant of the reaction $H_2(g) + I_2(g) \ddagger \uparrow \dagger 2HI(g)$ is 64. If the volume of the **40.** container is reduced to one fourth of its original volume, the value of the equilibrium constant will be (3) 64(4) 128(1) 16(2) 32If some He gas in introduced into the equilibrium $PCl_5 \stackrel{*}{}_{\pm} \stackrel{\wedge}{}_{\mp} PCl_3 + Cl_2$ at constant pressure 41. and temperature then equilibrium constant of reaction : (1) Increase (2) Decrease (3) Unchange (4) Nothing can be said 42. List X List Y (A) Active mass (i) $\Delta n = 0$ (ii) Molar concentration (B) Dynamic nature (C) A + heat $\frac{2}{3}$ \hat{T} B (iii) Vant hoff's equation (D) $\log(K_{P_2}/K_{P_1}) = \frac{\Delta H}{2.303R} \left| \frac{1}{T_1} - \frac{1}{T_2} \right|$ (iv) adaptation if temperature increases (E) $2A(g) + B(g) \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} 3C(g)$ (v) Chemical equilibrium Correct match list X and Y (1) A-(v), B-(ii), C-(iii), D-(i), E-(iv) (2) A-(v), B-(iv), C-(iii), D-(ii), E-(i) (3) A-(ii), B-(v), C-(iv), D-(iii), E-(i) (4) None of these DEGREE OF DISSOCIATION AND APPLICATION OF LAW OF MASS ACTION For the reaction : $P \div \uparrow R$. Initially 2 mol of P was taken. Up to equilibrium 0.5 mol of P 43. was dissociated. What would be the degree of the dissociation :-(1) 0.5(2)1(3) 0.25(4) 4.2The dissociation of CO₂ can be expressed as $2CO_2 \ddagger \uparrow \dagger 2CO + O_2$. If the 2 mol of CO₂ is **44**. taken initially and 40% of the CO₂ is dissociated completely. What is the total number of moles at equilibrium :-(1) 2.4(2) 2.0(3) 1.2(4)5In A₃(g) $\frac{1}{2}$ $\frac{1}{7}$ 3A (g) reaction, the initial concentration of A₃ is "a" mol L⁻¹. If x is degree of 45. dissociation of A₃. The total number of moles at equilibrium will be :-(1) $a - \frac{ax}{3}$ (2) $\frac{a}{3} - x$ $(3)\left(\frac{a-ax}{2}\right)$ (4) None of these

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- In the reaction $2P(g) + Q(g) \stackrel{*}{=} \stackrel{\wedge}{}^{+} 3R(g) + S(g)$. If 2 mol each of P and Q taken initially in a 46. 1L flask. At equilibrium which is true :-(1) [P] < [Q](2) [P] = [Q](3)[Q] = [R](4) None of these
- In a 13 L vessel initially following reaction occur $C(s) + S_2(g) \ddagger \uparrow T CS_2(g)$ by 12 g C, 64 g 47. S_2 , 76 g CS_2 at 1027°C temperature then total pressure is. (1) 200(2) 158 R (3) 100 R (4) 79 R

The reaction A + B $\frac{1}{2}$ \hat{T} C + D is studied in a one litre Vessel at 250°C. The initial **48.** concentration of A was 3n and of B was n. After equilibrium was attained then equilibrium concentration of C was found to be equal to equilibrium concentration B. What is the concentration of D at equilibrium :-

 $(2)\left(3n-\frac{n}{2}\right) \qquad (3)\left(n+\frac{n}{2}\right)$ $(1) \frac{n}{2}$ (4) n

49. $X_2 + Y_2 \stackrel{*}{\pm} \stackrel{*}{\uparrow} 2XY$ reaction was studied at a certain temperature. In the beginning 1 mole of X_2 was taken in a one litre flask and 2 moles of Y_2 was taken in another 2 litre flask. What is the equilibrium concentration of X_2 and Y_2 ? (Given equilibrium concentration of [XY] = 0.6mol L^{-}).

 $(1)\left(\frac{1}{3}-0.3\right),\left(\frac{2}{3}-0.3\right)$ $(2)\left(\frac{1}{3}-0.6\right), \left(\frac{2}{3}-0.6\right)$ (4)(1-0.3),(2-0.3)(3)(1-0.3), (2-0.3)

50. If the pressure of N₂ and H₂ mixture in a closed apparatus is 100 atm and 20 % of the mixture reacts then the pressure at the same temperature would be -(1) 100(2)90(3) 85(4) 80

51. In a 20 litre vessel initially 1 - 1 mole CO, H₂O, CO₂ is present, then for the equilibrium of $CO + H_2O$ \ddagger \uparrow $CO_2 + H_2$ following is true :-

(1) H ₂ , more then 1 mole	(2) CO, H_2O , H_2 less than 1 mole
(3) $CO_2 \& H_2O$ both more than 1 mole	(4) All of these

52. If 340 g of mixture of N₂ and H₂ in the correct ratio gave a 20% yield of NH₃. The produced mass of NH₃ would be :-(1) 16 g (2) 17 g (3) 20 g (4) 68 g

53. 4 mol of PCl₅ are heated at constant temperature in closed container. If degree of dissociation for PCl₅ is 0.5 then calculate total number of moles at equilibrium (1) 4.5(2) 6(3)3(4)4

 $PCl_{5}(g)$ \ddagger \uparrow $PCl_{3}(g) + Cl_{2}(g)$ 54.

> In above reaction, at equilibrium condition mole fraction of PCl₅ is 0.4 and mole fraction of Cl₂ is 0.3. Then find out mole fraction of PCl₃ (4) 0.6

(1) 0.3(2) 0.7(3) 0.4

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141 **55.** If 8 g mol of PCl₅ heated in a closed vessel of 10 L capacity and 25% of its dissociates into PCl₃ and Cl₂ at the equilibrium then value of Kp will be equal to :-(1) P/30 (2) P/15 (3) 2/3P (4) 3/2P

56. In the reaction $PCl_5 \ddagger \uparrow \uparrow PCl_3 + Cl_2$ the partial pressure of PCl_3 , Cl_2 and PCl_5 are 0.3, 0.2 and partial pressure of PCl_3 and Cl_2 was increased twice, what will be the partial pressure of PCl_5 is in atm at new equilibrium condition :-(1) 0.3 (2) 1.2 (3) 2.4 (4) 0.15

57. 'a' mol of PCl₅, undergoes, thermal dissociation as : PCl₅ \ddagger \uparrow [†] PCl₃ + Cl₂, the fraction of PCl₃ at equilibrium is 0.25 and the total pressure is 2.0 atm. The partial pressure of Cl₂ at equilibrium is :-(1) 2.5 (2) 1.0 (3) 0.5 (4) None

58. In a 0.25 L tube dissociation of 4 mol of No is take place. If its degree of dissociation is 10%. The value of K_P for reaction 2NO $\frac{2}{3}$ $\hat{}^{\dagger}$ N₂ + O₂ is :-

(1) $\frac{1}{(18)^2}$ (2) $\frac{1}{(8)^2}$ (3) $\frac{1}{16}$ (4) $\frac{1}{32}$

59. In a chemical equilibrium $A + B \ddagger \uparrow \uparrow C + D$ when one mole each of the two reactants are mixed 0.4 mol each of the products are formed. The equilibrium constant is :-

(1) 1 (2) 0.36 (3) 0.36 (4) $\frac{4}{9}$

60. K_C for the esterification reaction : $CH_3COOH + C_2H_5OH \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} CH_3COOC_2H_5 + H_2O$ is 4. If 4 mol each of acid and alcohol are taken initially, what is the equilibrium concentration of the acid :-

61. Evaluate K_P for the reaction : $H_2 + I_2 \ddagger \uparrow \uparrow \uparrow$ 2HI. If 2 moles each of H_2 and I_2 are taken initially. At equilibrium moles of HI are 2. (1) 2.5 (2) 4 (3) 0.25 (4) 1.0

62. 4 moles of A are mixed with 4 moles of B, when 2 mol of C are formed at equilibrium, according to the reaction, $A + B \ddagger \uparrow \uparrow C + D$. The equilibrium constant is :-

(1) 4 (2) 1 (3) $\sqrt{2}$ (4) $\sqrt{4}$

63. Two moles of ammonia is introduced in a evacuated 500 mL vessel at high temperature. The decomposition reaction is :

 $2NH_3(g) \text{ for } N_2(g) + 3H_2(g)$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

At the equilibrium NH_3 becomes 1 mole then the K would be :-(1) 0.42 (2) 6.75 (3) 1.7 (4) 1.5

- 64. 4.5 mol each of hydrogen and iodine heated in a sealed 10 litre vessel. At equilibrium, 3 mol of HI were found. The equilibrium constant for $H_2(g) + I_2(g) \ddagger \uparrow \dagger 2HI(g)$ is :-
 - (1) 1 (2) 10 (3) 5 (4) 0.33
- 65. 1.50 mol each of hydrogen and iodine were placed in a sealed 10 L container maintained at 717 K. At equilibrium 1.25 mol each of hydrogen and iodine were left behind. The equilibrium constant , K_C for the reaction

H₂ (g) I₂ (g) $\frac{2}{7}$ $^{++}$ 2HI (g) at 717 K is (1) 0.4 (2) 0.16 (3) 25 (4) 50

66. AB dissociates as 2 AB (g) $\ddagger \uparrow \dagger 2A$ (g) + B₂ (g) When the initial pressure of AB is 500 mm, the total pressure becomes 625 mm when the equilibrium is attained. Calculate K_P for the reaction assuming volume remains constant. (1) 0.4 (2) 0.16 (3) 25 (4) 50

LE-CHATLIER'S PRINCPLE

- 67. Cis-2-pentene $\hat{\ddagger}^{\dagger}$ Trans-2-pentene for the above equilibrium the value of standard free energy change at 400 K is -3.67 kJ/mol. If excess of trans-2-pentene is added to the system then :-
 - (1) Additional trans-2-pentene will form
 - (2) Excess of cis-2-pentene will form
 - (3) Equilibrium will proceed in the forward
 - (4) Equilibrium will remain unaffected
- **68.** When $NaNO_3$ is heated in a closed vessel, O_2 is liberated and $NaNO_3$ is left behind. At equilibrium -
 - (1) Addition of NaNO₃ favours forward reaction
 - (2) Addition of NaNO₂ fovours reverse reaction
 - (3) Increasing pressure fovours reverse reaction
 - (4) Decreasing temperature favours forward reaction

69. The equilibrium $2SO_2(g) + O_2(g) \ddagger \uparrow \uparrow 2SO_3(g)$ shifts forward if :-

- (1) A catalyst is used
- (2) An adsorbent is used to remove SO_3 as soon as it is formed
- (3) Small amounts of reactants are used
- (4) None
- 70. In manufacture of NO, the reaction N_2 and O_2 to form NO is favourable if :-
 - (1) Pressure is increased (2) Pressure is decreased
 - (3) Temperature is increased (4) Temperature is decreased

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

71. In which of the following equilibrium reactions, the equilibrium would shift to right side, if total pressure is decreased :-

(1) $N_2 + 3H_2$ $\ddagger \uparrow \dagger 2NH_3$ (2) $H_2 + I_2$ $\ddagger \uparrow \dagger 2HI$ (3) N_2O_4 $\ddagger \uparrow \dagger 2NO_2$ (4) $H_2 + Cl_2$ $\ddagger \uparrow \dagger 2HCl$

- **72.** The oxidation of SO_2 by O_2 to SO_3 is exothermic reaction, the yield of SO_2 will be minimum if:-
 - (1) Temperature is increased and pressure is kept constant
 - (2) Temperature is reduced and pressure is increased
 - (3) Both temperature and pressure are increased
 - (4) Both temperature and pressure are decreased
- **73.** For the manufacture of ammonia by the reaction $N_2 + 3H_2$ $\ddagger \uparrow \uparrow \uparrow 2NH_3 + 21.9$ K cal, the favourable conditions are :-
 - (1) Low temperature, low pressure & catalyst
 - (2) Low temperature, high pressure & catalyst
 - (3) High temperature, low pressure & catalyst
 - (4) High temperature, high pressure & catalyst
- 74. In the reaction 2A (g) + B (g) ⁺/₁ [^]/₁ C(g) + 362 kcal. Which combination of pressure and temperature gives the highest yield of C at equilibrium :
 (1) 1000 atm and 500°C
 (2) 500 atm and 500°C
 (3) 1000 atm and 50°C
 (4) 500 atm and 100°C
- **75.** Does Le chatelier's principle predict a change of equilibrium concentration for the following reaction if the gas mixture is compressed
 - $N_2O_4(g)$ $\uparrow \uparrow 2NO_2(g)$

(1) Yes, backward reaction is favoured(3) No change

(2) Yes, forward reaction is favoured(4) No information

76. $aA \stackrel{2}{\pm} \stackrel{2}{\uparrow} bB + cC, \Delta H = -x \text{ kcal.}$

If high pressure and low temperature are the favourable condition for the formation of the product in above reaction, hence :-(1) a > b + c (2) a < b + c (3) a = b + c (4) None of them

77. The reaction in which yield of production cannot be increased by the application of high pressure is :-

(1) $\operatorname{PCl}_{3}(g) + \operatorname{Cl}_{2}(g) \stackrel{\circ}{\ddagger} \stackrel{\circ}{\uparrow} \stackrel{\circ}{\uparrow}$	$PCl_{5}(g)$	(2) $N_2(g) + O_2(g) \ddagger \uparrow \uparrow 2N$	NO (g)
(3) $N_2(g) + 3H_2(g) \ddagger \uparrow \uparrow$	2NH ₃ (g)	(4) $2SO_2(g) + O_2(g) \ddagger \uparrow \dagger$	2SO ₃ (g)

78. In a vessel containing SO_3 , SO_2 , and O_2 at equilibrium, some helium gas is introduced so that the total pressure increases while temperature and volume remain constant. According to Le-Chatelier principle, the dissociation of SO_3 .

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob

	Ы	П	h	Ι	
_	<u>.</u>				

(1)	Increases
-----	-----------

(3) Remains unaltered

(2) Decreases(4) None of these

	PHVSICAL FOUL IPHIM										
79.	For the equilibrium reaction, $H_2O(\lambda) \div \hat{\uparrow}$	H_2O (g). What happen, if pressure is applied :-									
	(1) More water evaporates(3) No effect on boiling point	(2) The boiling point of water is increased(4) None of the above									
80.	On cooling of following system at equilibrium CO_2 (s) $\frac{1}{2}$ $\frac{1}{7}$ CO_2 (g)										
	 (1) There is no effect on the equilibrium state (2) More gas is formed (3) More gas is solidifies (4) None of above 										
	CALCULATION OF DEGREE OF DISSOCIATION BY V.D. METHOD										
81.	Vapour density of PCl ₅ is 104.25 at t°C. The $(1) 20 \%$ (2) 0 %	en degree of dissociation of PCl_5 is (Mw = 208.5) (3) 30 % (4) 15 %									
82.	When heating PCl5 then it decompose PCl3 and Cl2 in form of gas, the vapour density of gas mixture is 70.2 and 57.9 at 200°C and 250°C. The degree of dissociation of PCl5 at 200°C and 250°C is(1) 48.50% & 80%(2) 60% & 70 % (4) 80% & 90%										
83.	Vapour density of PCl ₅ is 104.16 but when heated to 230° C its vapour density is reduced to 62. The degree of dissociation of PCl ₅ at this temperature will be : (1) 6.8 % (2) 68 % (3) 46 % (4) 64 %										
84.	The equation $\alpha = \frac{D-d}{(n-1)d}$ is correctly matched for Where D = Theoretical vapour density,										
	(1) A $\ddagger \hat{\uparrow} \hat{\uparrow} \frac{nB}{2} + \frac{nC}{3}$ (3) A $\ddagger \hat{\uparrow} \hat{\uparrow} \frac{n}{2} B + \left(\frac{n}{4}\right)C$	(2) A $\hat{\ddagger} \hat{\uparrow} \frac{nB}{3} + \left(\frac{2n}{3}\right)C$ (4) A $\hat{\ddagger} \hat{\uparrow} \frac{n}{2} + \left(\frac{n}{2}\right)B + C$									
	A NISHWI										
	AINSWI										
	EXERCISE-I (Cor	nceptual Questions)									
1.	(4) 2. (3) 3. (1) 4.	(2) 5. (3) 6. (2) 7. (4)									
8.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
15. 22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
22. 29.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$									

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	

												Edubull	
36.	(4)	37.	(1)	38.	(3)	39.	(3)	40.	(3)	41.	(3)	42.	(3)
43.	(3)	44.	(1)	45.	(4)	46.	(1)	47.	(1)	48.	(1)	49.	(1)
50.	(2)	51.	(2)	52.	(4)	53.	(2)	54.	(1)	55.	(2)	56.	(3)
57.	(3)	58.	(1)	59.	(4)	60.	(2)	61.	(2)	62.	(2)	63.	(2)
64.	(1)	65.	(2)	66.	(2)	67.	(2)	68.	(3)	69.	(2)	70.	(3)
71.	(3)	72.	(2)	73.	(2)	74.	(3)	75.	(1)	76.	(1)	77.	(2)
78.	(3)	79.	(2)	80.	(3)	81.	(2)	82.	(1)	83.	(2)	84.	(2)