EXERCISE # 3

Sol.

Part-A Subjective Type Questions

Q.1 The median AD of a triangle ABC is bisected at E and BE is produced to meet side AC in F; show that $AF = \frac{1}{3} AC \& EF = \frac{1}{4} BF$.

Sol.

Let C is origin and position vector of A and B are \overrightarrow{a} and \overrightarrow{b} respectively.

$$\Rightarrow$$
 position vector of D is $\frac{b}{2}$

and position vector of E is $\frac{\overrightarrow{2a+b}}{4}$

Now F is the point of intersection of BE and AC which equations are

and
$$\overrightarrow{r} = t \overrightarrow{a}$$
(i)
 $\overrightarrow{r} = (1-s) \overrightarrow{b} + s \left(\frac{2 \overrightarrow{a} + \overrightarrow{b}}{4} \right)$(ii)

comparing the coefficient of a and b

we have
$$t = \frac{s}{2}$$
 and $1 - s + \frac{s}{4} = 0$
 $\Rightarrow s = \frac{4}{3}$ and $t = \frac{2}{3}$
 \therefore position vector of $F = \frac{2}{3} \stackrel{\rightarrow}{a}$

Now AF =
$$\frac{2}{3} \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{a} = -\frac{1}{3} \stackrel{\rightarrow}{a} = \frac{1}{3} \stackrel{\rightarrow}{AC}$$

and BF = $\frac{2}{3} \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b} = \frac{2\stackrel{\rightarrow}{a} - 3\stackrel{\rightarrow}{b}}{3}$
and EF = $\frac{2}{3} \stackrel{\rightarrow}{a} - \frac{2\stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}}{3} = \frac{2\stackrel{\rightarrow}{a} - 3\stackrel{\rightarrow}{b}}{3}$

and
$$EF = \frac{2}{3} \stackrel{\rightarrow}{a} - \frac{2 \stackrel{\rightarrow}{a} + \stackrel{\rightarrow}{b}}{4} = \frac{2 \stackrel{\rightarrow}{a} - 3 \stackrel{\rightarrow}{b}}{12}$$

 $EF = \frac{1}{4}BF$

Q.2 ABCD is a plane quadrilateral .The diagonals AC and BD cut at P such that $\frac{AP}{PC} = \frac{4}{3}$ and BP 2

 $\frac{BP}{PD} = \frac{2}{3}$. Find the ratio in which AB and CD cut each other.

Sol. 10 : 7 & 7 : 5 externally

Q.3 The position vectors of two points A and C are $9\hat{i} - \hat{j} + 7\hat{k}$ and $7\hat{i} - 2\hat{j} + 7\hat{k}$ respectively. The point of intersection of vectors $\overrightarrow{AB} = 4\hat{i} - \hat{j} + 3\hat{k}$ and $\overrightarrow{CD} = 2\hat{i} - \hat{j} + 2\hat{k}$ is P.

If vectors \overrightarrow{PQ} is perpendicular to \overrightarrow{AB} & \overrightarrow{CD} and PQ = 15, then find the position vector of Q.

Given
$$\overrightarrow{AB} = 4\hat{i} - \hat{j} + 3\hat{k}$$
, $\overrightarrow{CD} = 2\hat{i} - \hat{j} + 2\hat{k}$

Equation of line passing through \overrightarrow{A} and parallel to \overrightarrow{AB}

$$AB = \overrightarrow{r} = \overrightarrow{A} + t (\overrightarrow{AB})$$
$$= (9\hat{i} - \hat{j} + 7\hat{k}) + t (4\hat{i} - \hat{j} + 3\hat{k})$$

Similarly

$$CD = \overrightarrow{r} = \overrightarrow{C} + S(\overrightarrow{CD})$$
$$= (7\hat{i} - 2\hat{j} + 7\hat{k}) + S(2\hat{i} - \hat{j} + 2\hat{k})$$

For intersection point we compare coefficient of \hat{i} , \hat{j} , \hat{k}

 $\Rightarrow 9 + 4 t = 7 + 2s, -1 - t = -2 - s$ and 7 + 3t = 7 + 2s solving we get t = -2, s = -3 $\Rightarrow P(\hat{i} + \hat{j} + \hat{k})$

Now let $Q(x, y, z) = Q(x\hat{i} + y\hat{j} + z\hat{k})$

$$\vec{PQ} = (x-1)\hat{i} + (y-1)\hat{j} + (z-1)\hat{k}$$

$$\Theta |PQ| = 15$$

$$\Rightarrow (x-1)^2 + (y-1)^2 + (z-1)^2 = 225 \quad \dots (i)$$

Given that $\vec{PQ} \perp \vec{AB}$ and $\vec{PQ} \perp \vec{CD}$

$$\Rightarrow PQ \parallel (\vec{AB} \times \vec{CD})$$

$$\therefore \vec{AB} \times \vec{CD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 3 \\ 2 & -1 & 2 \end{vmatrix}$$

$$\Rightarrow \hat{i} - 2\hat{j} - 2\hat{k}$$

$$\Theta PQ = (x-1)\hat{i} + (y-1)\hat{j} + (z-1)\hat{k}$$

$$PQ \parallel (\vec{AB} \times \vec{CD})$$

$$\Rightarrow \frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-1}{-2} = \lambda \text{ say}$$

$$\Rightarrow x = \lambda + 1, y = -2\lambda + 1, z = -2\lambda + 1 \quad \dots (ii)$$

form (i) we get $\lambda^2 + 4\lambda^2 + 4\lambda^2 = 225$

$$\Rightarrow \lambda^2 = 25 \Rightarrow \lambda = 5, -5$$

from (ii) (x, y, z) = (6, -9, -9) \text{ or } (-4, 11, 11)

- **Q.4** The resultant of two vectors \vec{a} and \vec{b} is perpendicular to \vec{a} . If $|\vec{b}| = \sqrt{2} |\vec{a}|$, show that the resultant of $2\vec{a}$ & \vec{b} is perpendicular to \vec{b} .
- Q.5 In the plane of a triangle ABC, squares ACXY, BCWZ are described, in the order given, externally to the triangle on AC and BC respectively. Given that $\vec{CX} = \vec{b}$, $\vec{CA} = \vec{a}$, $\vec{CW} = \vec{x}$, $\vec{CB} = \vec{y}$. Prove that $\vec{a} \cdot \vec{y} + \vec{x} \cdot \vec{b} = 0$ Deduce that $\vec{AW} \cdot \vec{BX} = 0$.
- Q.6 Using vector, prove that for any four numbers a, b, c, d we have the inequality $(a^2 + b^2) (c^2 + d^2) \ge (ac + bd)^2$
- **Q.7** ABCD is quadrilateral such that $\overrightarrow{AB} = \overrightarrow{b}$; $\overrightarrow{AD} = \overrightarrow{d}$; $\overrightarrow{AC} = \overrightarrow{mb} + \overrightarrow{pd}$, show that the area of the quadrilateral ABCD is $\frac{1}{2} |m + p| |\overrightarrow{b} \times \overrightarrow{d}|$.

Area of ABCD = Area of \triangle ABC + Area of \triangle ACD

$$= \frac{1}{2} (\overrightarrow{AB} \times \overrightarrow{AC}) + \frac{1}{2} (\overrightarrow{AC} \times \overrightarrow{AD})$$
$$= \frac{1}{2} (\overrightarrow{AC} \times \overrightarrow{AD}) - \frac{1}{2} (\overrightarrow{AC} \times \overrightarrow{AD})$$
$$= \frac{1}{2} (\overrightarrow{AC} \times (\overrightarrow{AD}) - \frac{1}{2} (\overrightarrow{AC} \times \overrightarrow{AB}))$$
$$= \frac{1}{2} (\overrightarrow{MC} \times (\overrightarrow{AD} - \overrightarrow{AB}))$$
$$= \frac{1}{2} (\overrightarrow{mb} + \overrightarrow{pd}) \times (\overrightarrow{d} - \overrightarrow{b})$$
$$= \frac{1}{2} [m(\overrightarrow{b} \times \overrightarrow{d}) - p(\overrightarrow{d} \times \overrightarrow{b})]$$
$$= \frac{1}{2} [m(\overrightarrow{b} \times \overrightarrow{d}) + p(\overrightarrow{b} \times \overrightarrow{d})]$$
$$= \frac{1}{2} [m(\overrightarrow{b} \times \overrightarrow{d}) + p(\overrightarrow{b} \times \overrightarrow{d})]$$

Q.8 Given that $\mathbf{\dot{x}} + \frac{1}{p^2} (\mathbf{\dot{p}} \cdot \mathbf{\dot{x}}) \mathbf{\dot{p}} = \mathbf{\dot{q}}$, show that

 $\vec{x} \cdot \vec{p} = \frac{1}{2} \vec{p} \cdot \vec{q}$ & find \vec{x} in terms \vec{p} and \vec{q} .

$$\vec{x} + \frac{1}{p^2} (\vec{p} \cdot \vec{x}) \vec{p} = \vec{q}$$
(i)

Taking dot product with \vec{p} we get

$$\overrightarrow{p} \cdot \overrightarrow{x} + \overrightarrow{p} \cdot \overrightarrow{p} \cdot \overrightarrow{q} = \overrightarrow{p} \cdot \overrightarrow{q}$$

$$\overrightarrow{p} \cdot \overrightarrow{x} + \overrightarrow{p} = \frac{1}{2} \overrightarrow{p} \cdot \overrightarrow{q}$$

$$\overrightarrow{r} \cdot \overrightarrow{p} = \frac{1}{2} \overrightarrow{p} \cdot \overrightarrow{q}$$

$$\overrightarrow{r} \cdot \overrightarrow{p} = \frac{1}{2} \overrightarrow{p} \cdot \overrightarrow{q}$$

$$\overrightarrow{r} \cdot \overrightarrow{p} = \overrightarrow{r} \cdot \overrightarrow{p} \cdot \overrightarrow{q}$$

$$\overrightarrow{r} \cdot \overrightarrow{r} = \overrightarrow{r} \cdot \overrightarrow{r} \cdot$$

$$\Rightarrow \vec{x} = \vec{q} - \frac{1}{2p^2} (\vec{p} \cdot \vec{q}) \vec{p}$$

Sol.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

- The vector $\vec{OP} = \hat{i} + 2\hat{j} + 2\hat{k}$ turns through a **Q.9** right angle, passing through the positive x-axis on the way, find the vector in its new position.
- $(4/\sqrt{2})$ $\hat{i} (1/\sqrt{2})\hat{j} (1/\sqrt{2})\hat{k}$ Sol.
- Find the distance of the point $P(\hat{i} + \hat{j} + \hat{k})$ Q.10 from the plane L which passes through the three points A(2 $\hat{i} + \hat{j} + \hat{k}$), B($\hat{i} + 2\hat{j} + \hat{k}$), C ($\hat{i} + \hat{j} + 2\hat{k}$). Also find the P.V. of the foot of the perpendicular from P on the plane L. l, 2, 1), C (1, 1, 2)

$$\overrightarrow{AB} = (-1, 1, 0), \ \overrightarrow{AC} = (-1, 0, 1)$$

 \hat{n} is the normal to the plane $A\hat{B} \times A\hat{C}$

$$\overrightarrow{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{vmatrix} = \hat{i} + \hat{j} + \hat{k}$$

If Q(x, y, z) is any point on the plane

Then
$$\overrightarrow{QA}$$
. $\overrightarrow{n} = 0$
 $\Rightarrow (x-2) \hat{i} + (y-1) \hat{j} + (z-1) \hat{k}$. $(\hat{i} + \hat{j} + \hat{k}) = 0$
 $\Rightarrow x + y + z - 4 = 0$

If distance on the plane form P(1,1,1) is P then

PM = projection of
$$\overrightarrow{PA}$$
 on \overrightarrow{n}

$$p = \frac{\overrightarrow{PA} \cdot \overrightarrow{n}}{|\overrightarrow{n}|} = \frac{\widehat{i}(i+j+k)}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

 Θ Foot of \perp from P is M(x, y, z) PM is parallel to normal

$$\Rightarrow \frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{1}$$
$$= \frac{[(x-1)^2 + (y-1)^2 + (z-1)^2]^{1/2}}{[1+1+1]^{1/2}} = \frac{p}{\sqrt{3}} = \frac{1}{3}$$
$$x = \frac{1}{3} + 1 = \frac{4}{3} = y = z$$
Foot of $\perp M = \frac{4}{3}(\hat{i} + \hat{j} + \hat{k})$

Given that vectors a^{μ} and b^{μ} are perpendicular **Q.11** to each other, find vector $\stackrel{P}{V}$ in the terms of $\overset{P}{a}$ and $\overset{P}{b}$ satisfying the equations $\overset{P}{v}$. $\overset{P}{a} = 0$, v_{b}^{μ} , $b_{b}^{\mu} = 1$ and $[v_{a}^{\mu}, b_{b}^{\mu}] = 1$

Sol.
$$\Theta \stackrel{\rightarrow}{a} \perp \stackrel{\rightarrow}{b} \Rightarrow \stackrel{\rightarrow}{a} \cdot \stackrel{\rightarrow}{b} = 0$$

 $\Rightarrow \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}$ is perpendicular to both $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$
 $\therefore \stackrel{\rightarrow}{v} = p \stackrel{\rightarrow}{a} + q \stackrel{\rightarrow}{b} + r (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})$
 $\Theta \stackrel{\rightarrow}{v} \cdot \stackrel{\rightarrow}{a} = 0$
 $p (\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{a}) + 0 + 0 = 0$
 $\Rightarrow p = 0$
and $\stackrel{\rightarrow}{v} \cdot \stackrel{\rightarrow}{b} = 1 \Rightarrow q |\stackrel{\rightarrow}{b}|^2 = 1$
 $\Rightarrow q = \frac{1}{|\stackrel{\rightarrow}{b}|^2}$
and $[\stackrel{\rightarrow}{v} \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b}] = 1$
 $\Rightarrow \stackrel{\rightarrow}{v} \cdot (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}) = 1$
 $\Rightarrow r|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|^2 = 1$
 $\Rightarrow r = \frac{1}{|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|^2}$
 $\Rightarrow \stackrel{\rightarrow}{v} = \frac{1}{|\stackrel{\rightarrow}{b}|^2} \stackrel{\rightarrow}{b} + \frac{1}{|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}|^2} (\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})$

If a', b', c' are non-coplanar vectors and d' is 0.13 a unit vector, then find the value of $|(\overset{\mu}{a},\overset{\mu}{d})(\overset{\mu}{b}\times\overset{\mu}{c})+(\overset{\mu}{b},\overset{\mu}{d})(\overset{\mu}{c}\times\overset{\mu}{a})$ + $(\overset{\mu}{c}, \overset{\mu}{d})$ $(\overset{\mu}{a} \times \overset{\mu}{b})$ independent of $\overset{\mu}{d}$. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vector Sol. $\Rightarrow \overrightarrow{b} \overrightarrow{c} = 0$ and $|\mathbf{d}|^2 = 1$ Let $\overrightarrow{A} = (\overrightarrow{a} \cdot \overrightarrow{d}) (\overrightarrow{b} \times \overrightarrow{c}) + (\overrightarrow{b} \cdot \overrightarrow{d}) (\overrightarrow{c} \times \overrightarrow{a})$ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow + (c, d) (a \times b)$ \overrightarrow{A} $\Rightarrow \stackrel{\rightarrow}{A} = x(\stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c}) + y(\stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{a}) + z(\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b})$ Taking dot product by $\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}$ respectively $\overrightarrow{A} \cdot \overrightarrow{a} = x \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = (\overrightarrow{a} \cdot \overrightarrow{d}) \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

similarly \overrightarrow{A} . $\overrightarrow{b} = (\overrightarrow{b}, \overrightarrow{d})$ [\overrightarrow{a}] \overrightarrow{b}] and \overrightarrow{A} . $\overrightarrow{c} = (\overrightarrow{c} \cdot \overrightarrow{d})[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$ Adding these three relation we get \vec{A} . $(\vec{a} + \vec{b} + \vec{c})$ $= \{ (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}), \overrightarrow{d} \} [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$ $\Rightarrow (\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}) \{ \stackrel{\rightarrow}{d} . [\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{c}] - \stackrel{\rightarrow}{A} \} = 0$ $\Theta \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}, \stackrel{\rightarrow}{c}$ non coplanar $\Rightarrow \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{+} \stackrel{\rightarrow}{c} \neq 0$ $\Rightarrow \overrightarrow{d} \cdot [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = \overrightarrow{A}$ Taking mod $|\vec{A}| = |[\vec{a} \ \vec{b} \ \vec{c}]|$ $\Theta \mid \overrightarrow{d} \mid = 1$

It is given that $x = \frac{p \cdot p}{p \cdot p}$; $y = \frac{p \cdot p}{p \cdot p}$; Q.14 $\overset{P}{z} = \frac{\overset{P}{a} \times \overset{P}{b}}{\overset{P}{r} \overset{P}{b} \overset{P}{c}}$ Where $\overset{P}{a}$, $\overset{P}{b}$, $\overset{P}{c}$ are non-coplanar vectors, show that x, y, z also forms a noncoplanar system. Find the value of $\dot{x}.(\ddot{a} + \ddot{b}) + \ddot{y}.(\ddot{b} + \ddot{c}) + \ddot{z}.(\ddot{c} + \ddot{a}).$ 3

Sol.

- Prove or disprove the formula **Q.15** $\overset{P}{A} \times [\overset{P}{A} \times (\overset{P}{A} \times \overset{P}{B})] . \overset{P}{C} = -|\overset{P}{A}|^2 \overset{P}{A} . \overset{P}{B} \times \overset{P}{C} .$
- Find the distance of the point B $(\hat{i} + 2\hat{j} + 3\hat{k})$ Q.16 from the line which is passing through A $(4\hat{i} + 2\hat{j} + 2\hat{k})$ and which is parallel to the vector $\overset{\text{P}}{\text{C}} = 2\hat{i} + 3\hat{j} + 6\hat{k}$.

Sol.

B(1,2,3)

$$A(4,2,2)$$
 M $C(2,3,6)$
 $\therefore BM^2 = AB^2 - AM^2$
 $\overrightarrow{AB} = -3\hat{i} + \hat{k}$
 $AB^2 = 10$
 $AM = \text{projection of } \overrightarrow{AB} \text{ in direction of } \overrightarrow{C}$

$$AM = \frac{\overrightarrow{AB.C}}{|C|}$$
$$= \frac{(-3\hat{i} + \hat{k}).(2\hat{i} + 3\hat{j} + 6\hat{k})}{7} = 0$$
$$\Rightarrow \overrightarrow{AB} \perp \overrightarrow{C}$$
$$BM^{2} = 10 - 0 = 10$$
$$BM = \sqrt{10}$$

A line passes through the point A (6, 2, 2) and Q.17 is parallel to the vector $\vec{p} = \hat{i} - 2\hat{j} + 2\hat{k}$. Another line passes through B (-4, 0, -1) and is parallel to the vector $\mathbf{\dot{q}} = 3\hat{i} - 2\hat{j} - 2\hat{k}$. Find the shortest distance between these two lines.

 $\sqrt{10}$ unit Sol.

- Given four non- zero vectors a, b, c and d. Q.18 The vectors a, b and c are coplanar but not collinear pair by pair and vector d is not coplanar with vectors a, b and c and $\begin{pmatrix} \hat{\rho} \hat{\rho} \\ (a b) \end{pmatrix} = \begin{pmatrix} \hat{\rho} \hat{\rho} \\ b c \end{pmatrix} = \frac{\pi}{3}, \quad (a b) = \alpha \text{ and } (a b) = \beta,$ prove that $\begin{pmatrix} \beta' \rho \\ d' c \end{pmatrix} = \cos^{-1} (\cos \beta - \cos \alpha).$
- Consider the non-zero vectors a, b, c and dQ.19 such that no three of which are coplanar then prove that a[bcd] + c[abd] = b[acd]+ d[abc]. Hence prove that a, b, c and drepresent the position vectors of the vertices of a plane quadrilateral if and only if $\frac{\begin{array}{c} \rho \rho \rho \rho \rho}{\left[bcd\right] + \left[abd\right]} \\ \hline \rho \rho \rho \rho \rho \rho \rho \\ \left[acd\right] + \left[abc\right]} \end{array}$ = 1.
- Let a', b' and c' be three vectors having Q.20 magnitudes 1, 1 and 2 respectively. If $\overset{\nu}{a} \times (\overset{\nu}{a} \times \overset{\nu}{c}) + \overset{\nu}{b} = \overset{\nu}{0}$, then find the acute angle between a^{ν} and c^{ν} .

Sol.

$$\begin{aligned}
\overset{d}{a} \times (\overset{d}{a} \times \overset{d}{c}) + \overset{d}{b} &= 0 \\
\Rightarrow (\overset{d}{a} \cdot \overset{d}{c}) \overset{d}{a} - (\overset{d}{a} \cdot \overset{d}{a}) \overset{d}{c} + \overset{d}{b} &= 0 \\
\Rightarrow 2\cos\theta \overset{d}{a} - \overset{d}{c} + \overset{d}{b} &= 0
\end{aligned}$$

 $\Rightarrow (2\cos\theta \ \overset{\nu}{a} - \overset{\nu}{c})^{2} = (-\overset{\nu}{b})^{2}$ $\Rightarrow 4|\overset{\nu}{a}|^{2}\cos^{2}\theta + |\overset{\nu}{c}|^{2} - 4\cos\theta \ \overset{\nu}{a} \ \overset{\nu}{c} = |\overset{\nu}{b}|^{2}$ $\Rightarrow 4\cos^{2}\theta + 4 - 8\cos\theta \ . \ \cos\theta = 1$ $\Rightarrow 4\cos^{2}\theta = 3$ $\Rightarrow \cos\theta = \pm \frac{\sqrt{3}}{2}$ But θ acute $\Rightarrow \cos\theta = \frac{\sqrt{3}}{2}$ $\Rightarrow \theta = \pi/6$

- **Q.21** Let $\overrightarrow{OA} = \overset{\nu}{a}$, $\overrightarrow{OB} = 10\overset{\nu}{a} + 2\overset{\nu}{b}$ and $\overrightarrow{OC} = \overset{\nu}{b}$ where \overrightarrow{O} , \overrightarrow{A} and \overrightarrow{C} are non-collinear points. Let p denote the area of the quadrilateral OABC, and let q denote the area of the parallelogram with OA and OC as adjacent sides. If p = kq, then find the value of k.
- **Sol.** p = area of the quadrilateral OABC

$$= \frac{1}{2} |\vec{OB} \times \vec{AC}|$$

$$= \frac{1}{2} |\vec{OB} \times (\vec{OC} - \vec{OA})|$$

$$= \frac{1}{2} |(10\ddot{a} + 2\ddot{b}) \times (\ddot{b} - \ddot{a})|$$

$$= \frac{1}{2} |(10(\ddot{a} \times \ddot{b}) - 2(\ddot{b} \times \ddot{a})|$$

$$= \frac{1}{2} |12(\ddot{a} \times \ddot{b})| = \frac{12}{2} |\ddot{a} \times \ddot{b}| = 6 |\ddot{a} \times \ddot{b}|$$

and q = area of parallelogram with OA and OC as adjacent sides

$$= |\vec{OA} \times \vec{OC}|$$
$$q = |\vec{a} \times \vec{b}|$$
$$\Rightarrow p = 6q$$
$$\Rightarrow k = 6$$

O.22

 $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = \vec{0}$

Sol. Given that \vec{a} , \vec{b} , \vec{c} are three coplanor vectors \therefore there exist scalars x, y, z not all zero such that $x\vec{a} + y\vec{b} + z\vec{c} = 0$ (i)

If vectors \vec{a} , \vec{b} , \vec{c} are coplanar, show that

taking dot product (i) with a and b respectively we get

 $\vec{x a \cdot a + y a \cdot b + z \cdot a \cdot c} = 0$ (ii)

and $\vec{x} \cdot \vec{b} \cdot \vec{a} + \vec{y} \cdot \vec{b} \cdot \vec{b} + \vec{z} \cdot \vec{b} \cdot \vec{c} = 0....(iii)$ Now equation (i), (ii) & (iii) form a homogeneous system of equations where x, y, z are not all zero

 \therefore system must have non trivial solution and for this determinant of coefficient matrix should be zero

$$\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \end{vmatrix} = \vec{0}$$

- Q.23 In a triangle ABC, D and E are points on BC and AC respectively, such that BD = 2DC and AE = 3EC. Let P be the point of intersection of AD and BE. Find BP/PE using vector methods.
- Sol. Let \vec{a} , \vec{b} , \vec{c} be the position vector of A, B, C respectively with respect to same origin then

D divides BC in the ratio 2 : 1 and E divides AC in the ratio 3 : 1

 \Rightarrow Position vector of D is $\frac{b'+2c}{3}$ and position $\frac{b'+3c'}{3}$

vector of E is $\frac{a^2 + 3c^2}{4}$

Let point of intersection P of AD and BE divides BE in the ratio k : 1 and AD in the ratio m : 1 Then position vector of P in two cases are

$$\frac{\frac{\rho}{b+k}\left(\frac{\frac{\rho}{a+3c}}{4}\right)}{\frac{k+1}{k+1}} \text{ and } \frac{\frac{\rho}{a+m}\left(\frac{\frac{b}{b+2c}}{3}\right)}{\frac{m+1}{k+1}}$$

Equating coefficient of P in both cases we get

$$\frac{k}{4(k+1)} = \frac{1}{m+1} \text{ and } \frac{1}{k+1} = \frac{m}{3(m+1)}$$

and $\frac{3k}{4(k+1)} = \frac{2m}{3(m+1)}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Edubull

Solving we get $k = \frac{8}{3}$ required ration BP : PE = 8: 3If the vectors \vec{b} , \vec{c} , \vec{d} are not coplanar, then **Q.24** prove that the vector $(a^{\nu} \times b^{\nu}) \times (c^{\nu} \times d^{\nu}) +$ $(\overset{}{a}\times\overset{}{e})\times(\overset{}{d}\times\overset{}{b})+(\overset{}{a}\times\overset{}{d})\times(\overset{}{b}\times\overset{}{e})$ is parallel to a^{ν} . $\vec{b}, \vec{c}, \vec{d}$ are not coplanar $\Rightarrow [\vec{b}, \vec{c}, \vec{d}] \neq 0$ Sol. we have $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b}) +$ $(\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ Here $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = -(\vec{c} \times \vec{d}) \times (\vec{a} \times \vec{b})$ $= -(\vec{c} \times \vec{d}, \vec{b})\vec{a} + (\vec{c} \times \vec{d}, \vec{a})\vec{b}$ $= \begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} \vec{b} - \begin{bmatrix} \vec{b} & \vec{c} & \vec{d} \end{bmatrix} \vec{a} \dots \vec{a}$ and $(\vec{a} \times \vec{c}) \times (\vec{d} \times \vec{b})$ $= \begin{bmatrix} \vec{a} & \vec{d} & \vec{b} \end{bmatrix} \vec{c} - \begin{bmatrix} \vec{c} & \vec{d} & \vec{b} \end{bmatrix} \vec{a} \dots (ii)$ and $(\vec{a} \times \vec{d}) \times (\vec{b} \times \vec{c})$ $= -\begin{bmatrix} \vec{a} & \vec{c} & \vec{d} \end{bmatrix} \vec{b} - \begin{bmatrix} \vec{a} & \vec{d} & \vec{b} \end{bmatrix} \vec{c}$ (iii) adding (i) (ii) & (iii) we get given vector = -2 [\vec{b} \vec{c} \vec{d}] \vec{a} = \vec{k} \vec{a} \Rightarrow given vector is parallel to \vec{a} If \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} are vectors such that $|\overrightarrow{B}| = |\overrightarrow{C}|$, **O.25** prove that $[(\overset{\mu}{A} + \overset{\mu}{B}) \times (\overset{\mu}{A} + \overset{\mu}{C})] \times (\overset{\mu}{B} \times \overset{\mu}{C}) \cdot (\overset{\mu}{B} + \overset{\mu}{C}) = 0$ we have Sol. $(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C}) = \vec{A} \times \vec{C} + \vec{B} \times \vec{A} + \vec{B} \times \vec{C}$ Thus $[(\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})] \times (\vec{B} \times \vec{C})$ $= [(\vec{A} \times \vec{C}) + (\vec{B} \times \vec{A}) + (\vec{B} \times \vec{C})] \times (\vec{B} \times \vec{C})$ $= (\overrightarrow{A} \times \overrightarrow{C}) \times (\overrightarrow{B} \times \overrightarrow{C}) + (\overrightarrow{B} \times \overrightarrow{A}) \times (\overrightarrow{B} \times \overrightarrow{C}) +$ $(\vec{B} \times \vec{C}) \times (\vec{B} \times \vec{C})$ $=\{(\overrightarrow{A}\times\overrightarrow{C}),\overrightarrow{C}\}\overrightarrow{B}-\{(\overrightarrow{A}\times\overrightarrow{C}),\overrightarrow{B}\}\overrightarrow{C}$ $+\{(\overrightarrow{B}\times\overrightarrow{A}),\overrightarrow{C}\}\overrightarrow{B}-\{(\overrightarrow{B}\times\overrightarrow{A}),\overrightarrow{B}\}\overrightarrow{C}$ $= \begin{bmatrix} \overrightarrow{B} & \overrightarrow{A} & \overrightarrow{C} \end{bmatrix} \overrightarrow{B} - \begin{bmatrix} \overrightarrow{A} & \overrightarrow{C} & \overrightarrow{B} \end{bmatrix} \overrightarrow{C}$

 $\Rightarrow [\vec{A} \ \vec{C} \ \vec{B}] \{ \vec{B} - \vec{C} \}$ Thus L.H.S $= [\vec{A} \ \vec{C} \ \vec{B}] (\vec{B} - \vec{C}) . (\vec{B} + \vec{C}) \}$ $= [\vec{A} \ \vec{C} \ \vec{B}] \{ |\vec{B}|^2 - |\vec{C}|^2 \} = 0$ $\therefore |B| = |C|$

Q.26 Let
$$l'$$
 and l' be unit vectors. If l'' is a vector
such that $l'' + (l'' \times l') = l'$, then prove that
 $|(l' \times l') \cdot l''| \le 1/2$ and that the equality holds
if and only if l'' is perpendicular to l''
Sol. If and l'' are unit vector $\Rightarrow |l'|^2 = |l'|^2 = 1$
Let θ be the angle between l'' and l''' then
we want to prove $|(l'' \times l') \cdot l''| \le \frac{1}{2}$
Given $l'' + (l'' \times l'') = l'' \qquad \dots \dots (i)$
 $l''' = l' - (l''' \times l'')$
on squaring we get
 $w^2 = 1 + (l'' \cdot 1. \sin\theta)^2 - 2l' \cdot (l''' \times l')$
 $\Rightarrow w^2 (1 - \sin^2\theta) - 1 = 2 [l'' l''' l''] = 2[l'' l'' l''']$
 $\Rightarrow \frac{1}{2} (w^2 \cos^2\theta - 1) = (l'' \times l') \cdot l'' \qquad \dots \dots (ii)$
again squaring we get
 $w^2 + w^2 \sin^2\theta + 2[l''' l''' l''] = 1$
 $w^2 = \frac{1}{1 + \sin^2\theta}$
from (ii) [l'' l'' l''] = $\frac{1}{2} \left(\frac{\cos^2\theta}{1 + \sin^2\theta} - 1\right)$
 $\Rightarrow [l'' l'' l''] = -\frac{\sin^2\theta}{1 + \sin^2\theta}$
 $|l'' l'' l''] = \frac{\sin^2\theta}{1 + \sin^2\theta} = \frac{1}{\csc^2\theta + 1} \le \frac{1}{2}$
equality hold only when $\sin \theta = 1$
 $\Rightarrow \theta = \pi/2 l' \perp l'' $\Rightarrow l' \cdot l' = 0$
taking dot product with l' from (i) we get
 $l' \cdot l' - l'' t'' = 0$
 $\Rightarrow l' \perp l'$$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Part-B Passage based objective questions							
Passage I (Question 27 to 29)							
	Let $\vec{u}, \vec{v}, \vec{w}$ be three unit vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{u}$, $\vec{u} \times (\vec{v} \times \vec{w}) = \vec{b}$						
	$(\mathbf{t}' \times \mathbf{t}') \times \mathbf{t}' = \mathbf{t}', \qquad \mathbf{t}' \cdot \mathbf{t}' = \frac{3}{2}, \ \mathbf{t}' \cdot \mathbf{t}' = \frac{7}{4}$						
	and $ \mathbf{a}' = 2$, then						
Q.27	The value of \vec{u} . \vec{v} + \vec{u} . \vec{w} + \vec{v} . \vec{w} is -						
	(A) $\frac{1}{2}$ (B) 0 (C) 2 (D) none						
Sol.	[A]						
	$\therefore \vec{u} + \vec{v} + \vec{w} = \vec{a}$						
	squaring we get						
	$1 + 1 + 1 + 2(\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) = 4$						
Q.28	The vector $\stackrel{\ensuremath{V}}{v}$ is given by -						
	(A) $-4c^{\mu}$ (B) $\frac{4}{3}(c^{\mu}-b^{\mu})$						
	(C) $\frac{\mu}{a} + \frac{4}{3}\frac{\nu}{b} + \frac{8}{3}\frac{\nu}{c}$ (D) none of these						
Sol.	[A]						
	Multiplying (i) by \overrightarrow{u} and \overrightarrow{v} respectively						
	$1 + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{a}$						
	$\Rightarrow \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = \frac{1}{2} \qquad \dots \dots (vi)$						
	and $\vec{u} \cdot \vec{v} + 1 + \vec{v} \cdot \vec{w} = \vec{a} \cdot \vec{v}$						
	$\Rightarrow \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} = \frac{3}{4} \qquad \dots \dots (vii)$						
	Solving (ii), (iii), (vi), (vii) we get						
	$\vec{v} \cdot \vec{w} = 0, + \vec{u} \cdot \vec{w} = -\frac{1}{4}, \vec{u} \cdot \vec{v} = \frac{3}{4}$ (viii)						
	form (iii) & (viii) we get $-\frac{1}{4} \stackrel{\rightarrow}{v} = \stackrel{\rightarrow}{c}$						
	$\Rightarrow \overrightarrow{v} = -4 \overrightarrow{c}$						
0.29	The value of \vec{w} is given by -						
	(A) $-4\frac{b}{c}$ (B) $\frac{4}{3}(b^{2}-b^{2})$						
	(C) $a'' + \frac{4}{3}b' + \frac{8}{3}b'$ (D) none of these						

Sol. [B] From equation (ii) & (y

From equation (ii) & (viii) we get

$$-\frac{1}{4} \stackrel{\rightarrow}{v} - \frac{3}{4} \stackrel{\rightarrow}{w} = \overrightarrow{b}$$

 \therefore from Q No. 21 we have

$$\vec{v} = -4\vec{c}$$
$$\Rightarrow \vec{c} - \frac{3}{4}\vec{w} = \vec{b}$$
$$\Rightarrow \vec{w} = \frac{4}{3}(\vec{c} - \vec{b})$$

Passage II (Question 30 to 32)

Points X and Y are taken on the sides QR and RS respectively of a parallelogram PQRS, so that QX = 4XR and RY = 4YS as shown in figure. The line XY cuts the line PR at Z.

	(A) 1 : 4	(B) 21 : 4
	(C) 1 : 3	(D) none of these
Sol.	[A]	
0.31	The ratio of PZ · ZR	is -

Q.31	The ratio of PZ : ZR	18 -
	(A) 1: 4	(B) 21 : 4
	(C) 1 : 3	(D) none of these
a .	(D)	

Sol. [B]

Q.30

Q.32 The p.v. of Z is given by -

(A)
$$\frac{\overrightarrow{s} + \overrightarrow{r} + \overrightarrow{q}}{25}$$
 (B) $\frac{20\overrightarrow{s} + 8\overrightarrow{r} + \overrightarrow{q}}{25}$
(C) $\frac{10\overrightarrow{s} + 4\overrightarrow{r} + 2\overrightarrow{q}}{25}$ (D) none of these

Sol. [D]

Passage III (Question 33 to 35)

Let the unit vectors \overrightarrow{A} and \overrightarrow{B} be perpendicular and the unit vector \overrightarrow{C} be inclined at an angle θ to both $\overrightarrow{A} \otimes \overrightarrow{B}$. If $\overrightarrow{C} = \alpha \overrightarrow{A} + \beta \overrightarrow{B} + \gamma (\overrightarrow{A} \times \overrightarrow{B})$.

Q.33 Which of the following is true -

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

(A) $\alpha = 2\beta$ (B) $\alpha = \beta$ (C) $\alpha = 3\beta$ (D) none Sol. **[B]** $\overrightarrow{A} : \overrightarrow{C} = \alpha + \beta (\overrightarrow{A} : \overrightarrow{B}) + \gamma \overrightarrow{A} : (\overrightarrow{A} \times \overrightarrow{B}) = \alpha$ and \overrightarrow{B} . $\overrightarrow{C} = \beta$ from above $\overrightarrow{A} \cdot \overrightarrow{C} = \overrightarrow{B} \cdot \overrightarrow{C}$ $\Rightarrow \alpha = \beta$ The value of γ is given by -Q.34 (A) $\gamma^2 = 1 - 2\alpha^2$ (B) $\gamma^2 = 1 + 2\alpha^2$ (C) $\gamma^2 = 1 + 2\beta$ (D) $\gamma = 1 - 2\beta^2$ Sol. [A] $\vec{C} \cdot \vec{C} = 1 = 2\alpha^2 + \gamma^2 |\vec{A} \times \vec{B}|^2$ $1 = 2\alpha^{2} + \gamma^{2} \left(\left| \overrightarrow{A} \right|^{2} \left| \overrightarrow{B} \right|^{2} - \left(\overrightarrow{A} \cdot \overrightarrow{B} \right)^{2} \right)$ $\Rightarrow 1 = 2\alpha^2 + \gamma^2$ $\Rightarrow \gamma^2 = 1 - 2\alpha^2$ The value of γ in terms of θ is given by -Q.35 (A) $\gamma^2 = -\cos 2\theta$ (B) $\gamma^2 = \cos 2\theta$ (C) $\gamma^2 = \frac{1 + \cos 2\theta}{2}$ (D) none of these Sol. [A] $\therefore \gamma^2 = 1 - 2\alpha^2$

 $\cos^2 \theta$

= 1 – 2

 $\cos 2\theta$

EXERCISE #4

Old IIT-JEE questions Q.1 If a', b' and c' be unit coplanar vectors then the

scalar triple product $[2\ddot{a} - b, 2\ddot{b} - \ddot{c}, 2\ddot{c} - \ddot{a}] =$ [IIT scr. 2001] (C) $-\sqrt{3}$ (D) $\sqrt{3}$ (A) 0 **(B)** 1 Sol. [A] \vec{a} , \vec{b} , \vec{c} are unit coplanar vectors, $2 \stackrel{\rightarrow}{a} - \stackrel{\rightarrow}{b}, 2 \stackrel{\rightarrow}{b} - \stackrel{\rightarrow}{c}, 2 \stackrel{\rightarrow}{c} - \stackrel{\rightarrow}{a}$ are also coplanar vectors Thus $[2\overrightarrow{a} - \overrightarrow{b}, 2\overrightarrow{b} - \overrightarrow{c}, 2\overrightarrow{c} - \overrightarrow{a}] = 0$ Let $\hat{a}' = \hat{i} - \hat{k}$, $\hat{b}' = x\hat{i} + \hat{j} + (1 - x)\hat{k}$ and Q.2 $\dot{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$. Then $[\dot{a} \dot{b} \dot{c}]$ [IIT scr. 2001] depends on -(A) only x (B) only y (C) neither x nor y (D) both x and y Sol. [C] $\overrightarrow{a} = \hat{i} - \hat{k}$, $b = x\hat{i} + \hat{j} + (1 - x)\hat{k}$ and $\vec{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$ then $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ x & 1 & 1-x \end{vmatrix}$ $\mathbf{y} \mathbf{x} \mathbf{1} + \mathbf{x} - \mathbf{y}$ $= 1(1 + x - y - x(1 - x) - 1(x^{2} - y))$ $= 1 + x - y - x + x^{2} - x^{2} + y$ = 1 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ depends neither x nor y If $\overset{b}{a}$, $\overset{b}{b}$ and $\overset{b}{c}$ are unit vectors, then Q.3 $|a - b|^{2} + |b - c|^{2} + |b - c|^{2} + |b - c|^{2}$ does not exceed-[IIT-2001S] (A) 4 (B) 9 (C) 8 (D) 6 Sol. **[B]** a, b, c are unit vectors \overrightarrow{a} . \overrightarrow{a} = \overrightarrow{b} . \overrightarrow{b} = \overrightarrow{c} . \overrightarrow{c} = 1 Let

```
x = |\overrightarrow{a} - \overrightarrow{b}|^{2} + |\overrightarrow{b} - \overrightarrow{c}|^{2} + |\overrightarrow{c} - \overrightarrow{a}|^{2}
= 2(|\overrightarrow{a}|^{2} + |\overrightarrow{b}|^{2} + |\overrightarrow{c}|^{2} - (\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}))
= 6 - 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a})
Now
|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|^{2} \ge 0
\Rightarrow |\overrightarrow{a}|^{2} + |\overrightarrow{b}|^{2} + |\overrightarrow{c}|^{2} + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) \ge 0
\Rightarrow -2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) \le 3
\Rightarrow 6 - 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a}) \le 9
= x \le 9
\Rightarrow x \text{ does not exceed } 9
```

Q.4 Find 3 dimensional vector \vec{V}_1 , \vec{V}_2 , \vec{V}_3 satisfying \vec{V}_1 . $\vec{V}_1 = 4$, \vec{V}_1 . $\vec{V}_2 = -2$, \vec{V}_1 . $\vec{V}_3 = 6$, \vec{V}_2 . $\vec{V}_2 = 2$, \vec{V}_2 . $\vec{V}_3 = -5$ & \vec{V}_3 . $\vec{V}_3 = 29$. [IIT 2001] Sol. Many answers are possible one of the possible

Many answers are possible one of the possible answers $V_1 = 2\hat{i}$, $V_2 = -\hat{i} + \hat{j}$, $V_3 = 3\hat{i} - 2\hat{j} + 4\hat{k}$

- **Q.5** Let $\stackrel{V}{A}(t) = f_1(t) \hat{i} + f_2(t) \hat{j}$ and $\stackrel{V}{B}(t) = g_1(t) \hat{i} + g_2(t) \hat{j}$, $t \in [0, 1]$, where f_1 , f_2 , g_1 , g_2 are continuous functions. If $\stackrel{V}{A}(t)$ and $\stackrel{V}{B}(t)$ are non zero vectors for all t and $\stackrel{V}{A}(0) = 2\hat{i} + 3\hat{j}$, $\stackrel{V}{A}(1) = 6\hat{i} + 2\hat{j}$, $\stackrel{V}{B}(0) = 3\hat{i} + 2\hat{j}$ & $\stackrel{V}{B}(1) = 2\hat{i} + 2\hat{j}$, then show that $\stackrel{V}{A}(t)$ and $\stackrel{V}{B}(t)$ are parallel for some $t \in [0, 1]$. **[IIT-2001]**
- Q.6 If $\stackrel{P}{a}$ and $\stackrel{P}{b}$ are two unit vectors such that $\stackrel{P}{a} + 2\stackrel{P}{b}$ and $5\stackrel{P}{a} - 4\stackrel{P}{b}$ are perpendicular to each other then the angle between $\stackrel{P}{a}$ and $\stackrel{P}{b}$ is – [IIT scr. 2002] (A) 45° (B) 60° (C) cos⁻¹ (1/3) (D) cos⁻¹ (2/7) Sol. [B]

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

Given that \overrightarrow{a} and \overrightarrow{b} are unit vector $\Rightarrow |\overrightarrow{a}| = |\overrightarrow{b}| = 1$ Given that $\overrightarrow{a} + 2\overrightarrow{b}$ and $5\overrightarrow{a} - 4\overrightarrow{b}$ are \perp^{r} $\Rightarrow (\overrightarrow{a} + 2\overrightarrow{b}).(5\overrightarrow{a} - 4\overrightarrow{b}) = 0$ $\Rightarrow 5|\overrightarrow{a}|^{2} - 8|\overrightarrow{b}|^{2} + 6\overrightarrow{a}.\overrightarrow{b} = 0$ $\Rightarrow 5 - 8 + 6|\overrightarrow{a}.\overrightarrow{b}| = 0$ $\Rightarrow 6|\overrightarrow{a}||\overrightarrow{b}|\cos\theta = 3$ $\Rightarrow \cos\theta = 1/2$ $\Rightarrow \theta = 60^{\circ}$

Q.7 Let $\stackrel{V}{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\stackrel{V}{W} = \hat{i} + 3\hat{k}$. If $\stackrel{V}{U}$ is a unit vector; then the maximum value of the scalar triple product $[\stackrel{V}{U} \stackrel{V}{V} \stackrel{W}{W}]$ is-

[IIT scr. 2002]

 $+\sqrt{6}$

(A) - 1
(B)
$$\sqrt{10}$$

(C) $\sqrt{59}$
(D) $\sqrt{60}$
[C]
 $\vec{V} = 2\hat{i} + \hat{i} + \hat{i} + \vec{W} = \hat{i} + 2\hat{i}$

Sol.

Q.8

$$\vec{V} = 2\hat{i} + \hat{j} - \hat{k}, \ \vec{W} = \hat{i} + 3\hat{k}$$

and \vec{U} is a unit vector
$$\Rightarrow |\vec{U}| = 1$$

 $[\vec{U} \ \vec{V} \ \vec{W}] = \vec{U} . (\vec{V} \times \vec{W})$
$$\Rightarrow \vec{U} . (2\hat{i} + \hat{j} - \hat{k}) \times (\hat{i} + 3\hat{k})$$

$$\Rightarrow \vec{U} . (3\hat{i} - 7\hat{j} - \hat{k})$$

$$= 1. \sqrt{9 + 49 + 1} \cos\theta$$

$$= \sqrt{59} \cos\theta$$

It is maximum when $\cos\theta = 1$
 $[\vec{U} \ \vec{V} \ \vec{W}]_{max} = \sqrt{59}$
Let V be the volume of the parallelopiped

formed by the vectors $\begin{aligned} & \hat{p} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \\ & \hat{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \\ & \hat{c}^{\rho} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \end{aligned}$

if a_r , b_r , c_r where r = 1, 2, 3 are non negative real numbers and $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$, show that $V \leq L^3$. [IIT- 2002] Given that $\hat{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ where a_r , b_r , c_r , r = 1, 2, 3 are all non negative real numbers Also $\sum_{r=1}^{3} (a_r + b_r + c_r) = 3L$: V is volume of parallelopiped $\mathbf{V} = \begin{bmatrix} \mu & \mu & \nu \\ a & b & c \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ $\Rightarrow \mathbf{V} = (\mathbf{a}_1\mathbf{b}_2\mathbf{c}_3 + \mathbf{a}_2\mathbf{b}_3\mathbf{c}_1 + \mathbf{a}_3\mathbf{b}_1\mathbf{c}_2)$ $-(a_1b_3c_2 + a_2b_1c_3 + a_3b_2c_1).....(i)$ Now we know that $AM \ge GM$ $\therefore \frac{(a_1 + b_1 + c_1) + (a_2 + b_2 + c_2) + (a_3 + b_3 + c_3)}{3}$ $\geq \left[(a_1+b_1+c_1) (a_2+b_2+c_2) (a_3+b_3+c_3) \right]^{1/3}$ $\Rightarrow \frac{3L}{3} \ge [(a_1+b_1+c_1)(a_2+b_2+c_2)(a_3+b_3+c_3)]^{1/3}$ \Rightarrow L³ \ge a₁b₂c₃+ a₂b₃c₁ + a₃b₁c₂ +..... $\Rightarrow L^3 \ge (a_1b_2c_3 + a_2b_3c_1 + a_3b_1c_2) (a_1b_3c_2+a_2b_1c_3+a_3b_2c_1)$ $\Rightarrow L^3 \ge V$ If $\vec{u} = \hat{i} + a\hat{j} + \hat{k}$; $\vec{v} = \hat{j} + a\hat{k}$; $\vec{w} = a\hat{i} + \hat{k}$,

Q.9 If $\hat{u} = \hat{i} + a\hat{j} + \hat{k}$; $\hat{v} = \hat{j} + a\hat{k}$; $\hat{w} = a\hat{i} + \hat{k}$, then find the value of 'a' for which volume of parallelopiped formed by these three vectors as coterminous edges, is minimum.[IIT scr. 2003] (A) $\sqrt{3}$ (B) 3 (C) $1/\sqrt{3}$ (D) 1/3

Sol. [C]

Sol.

Q.10 Let \vec{u} , \vec{v} and \vec{w} are three non-coplanar unit vectors and α , β , γ are the angles between $\vec{u} \& \vec{v}$ and $\vec{v} \& \vec{w}$ and $\vec{w} \& \vec{u}$ respectively. If \vec{x} , \vec{y} , \vec{z} are the unit vectors along the

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

bisectors of the angles α , β , γ respectively, then prove that $[\vec{x} \times \vec{y} \ \vec{y} \times \vec{z} \ \vec{z} \times \vec{x}]$ $= \frac{1}{16} \left[\overrightarrow{u} \quad \overrightarrow{v} \quad \overrightarrow{w} \right]^2 \cdot \sec^2 \alpha/2 \cdot \sec^2 \beta/2 \cdot \sec^2 \gamma/2.$ [IIT- 2003] If $\vec{a} = \hat{i} + \hat{j} + \hat{k} & \vec{a} \cdot \vec{b} = 1 & \vec{a} \times \vec{b} = \hat{j} - \hat{k}$ 0.11 then \vec{b} is equal to -[IIT Scr.2004] (B) $\hat{i} - \hat{i} + \hat{k}$ (A) 2 î (D) $2\hat{j} - \hat{k}$ (C) î [C] Sol. $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and Let $\vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$ Given \overrightarrow{a} . \overrightarrow{b} = 1 $\mathbf{x} + \mathbf{y} + \mathbf{z} = 1$(i) and $\overrightarrow{a} \times \overrightarrow{b} = \mathbf{j} - \mathbf{k}$ $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \end{vmatrix} = j - k$ Sol. у $\Rightarrow i(z - y) + j(x - z) + k(y - x) = j - k$ from comparing we get $z - y = 0 \implies z = y$(ii) x - z = 1.....(iii) and x - y = 1.....(iv) solving we get x = 1, y = 0, z = 0 $\Rightarrow \vec{b} = \hat{i}$ A unit vector is orthogonal to $3\hat{i} + 2\hat{j} + 6\hat{k}$ 0.12 and is coplanar to $2\hat{i} + \hat{j} + \hat{k} & \hat{i} - \hat{j} + \hat{k}$ then the vector is -[IIT Scr.2004] (B) $\frac{2\hat{i}+5\hat{j}}{\sqrt{29}}$ (A) $\frac{3\hat{j}-\hat{k}}{\sqrt{10}}$ (C) $\frac{6\hat{i}-5\hat{k}}{\sqrt{61}}$ (D) $\frac{2\hat{i}+2\hat{j}-\hat{k}}{3}$ [A] Sol. Any vector \vec{r} coplanar with \vec{a} and \vec{b} we can written as

 $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

 $\Rightarrow \overrightarrow{r} = (2\widehat{i} + \widehat{j} + \widehat{k}) + \lambda(\widehat{i} - \widehat{j} + \widehat{k})$ $\Rightarrow \overrightarrow{r} = (2 + \lambda)\widehat{i} + (1 - \lambda)\widehat{j} + (1 + \lambda)\widehat{k}$ $\therefore \overrightarrow{r} \text{ is orthogonal with } 3\widehat{i} + 2\widehat{j} + 6\widehat{k}$ $\Rightarrow 3(2 + \lambda) + 2(1 - \lambda) + 6(1 + \lambda) = 0$ $\Rightarrow 7\lambda + 14 = 0$ $\Rightarrow \lambda = -2$ $\Rightarrow \overrightarrow{r} = 3\widehat{j} - \widehat{k}$ since \overrightarrow{r} is a unit vector $\Rightarrow \overrightarrow{r} = \frac{3\widehat{j} - \widehat{k}}{\sqrt{10}}$

Given that $\vec{a} \neq \vec{b} \neq \vec{c} \neq \vec{d}$ Such that $\vec{a} \times \vec{c} = \vec{b} \times \vec{d}$(i) and $\vec{a} \times \vec{b} = \vec{c} \times \vec{d}$(ii) To prove $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) \neq 0$ Subtracting (ii) from (i) we get $\vec{a} \times (\vec{c} - \vec{b}) = (\vec{b} - \vec{c}) \times \vec{d}$ $\Rightarrow \vec{a} \times (\vec{c} - \vec{b}) = \vec{d} \times (\vec{c} - \vec{b})$ $\vec{a} \times (\vec{c} - \vec{b}) - \vec{d} \times (\vec{c} - \vec{b}) = 0$ \Rightarrow $(\vec{a} - \vec{d}) \times (\vec{c} - \vec{b}) = 0$ $\Rightarrow \vec{a} - \vec{d} \parallel \vec{c} - \vec{b}$ \angle between a – d and c – b is either 0° or 180° \Rightarrow $(\overrightarrow{a} - \overrightarrow{d})$. $(\overrightarrow{c} - \overrightarrow{b}) = |\overrightarrow{a} - \overrightarrow{d}| |\overrightarrow{c} - \overrightarrow{b}| \cos^{\circ}$ (or $\cos 180^\circ$) $\neq 0$ as \vec{a} , \vec{b} , \vec{c} , \vec{d} all are distinct.

Q.14 If \vec{a} , \vec{b} , \vec{c} are three non-zero, non-coplanar vectors and

$$\vec{b}_1 = \vec{b} - \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a}, \vec{b}_2 = \vec{b} + \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^2} \vec{a},$$

$$\vec{c}_{1} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} ,$$

$$\vec{c}_{2} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} - \frac{\vec{b}_{1} \cdot \vec{c}}{|\vec{b}_{1}|^{2}} \vec{b}_{1} ,$$

$$\vec{c}_{3} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} + \frac{\vec{b} \cdot \vec{c}}{|\vec{c}|^{2}} \vec{b}_{1} ,$$

$$\vec{c}_{4} = \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{c}|^{2}} \vec{a} - \frac{\vec{b} \cdot \vec{c}}{|\vec{b}|^{2}} \vec{b}_{1} , \text{then the}$$

set of orthogonal vectors is - [IIT Scr.2005]

(A) { \overrightarrow{a} , \overrightarrow{b}_1 , \overrightarrow{c}_3 } (B) { \overrightarrow{a} , \overrightarrow{b}_1 , \overrightarrow{c}_2 } (C) { \overrightarrow{a} , \overrightarrow{b}_1 , \overrightarrow{c}_1 } (D) { \overrightarrow{a} , \overrightarrow{b}_2 , \overrightarrow{c}_2 }

Sol. [B]

we observe that

$$\vec{a} \cdot \vec{b}_{1} = \vec{a} \cdot \vec{b} - \left(\frac{\vec{b} \cdot \vec{a}}{|\vec{a}|^{2}}\right) \vec{a} \cdot \vec{a}$$

$$= \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b} = 0$$

$$\vec{a} \cdot \vec{c}_{2} = \vec{a} \cdot \vec{c} - \frac{\vec{a} \cdot \vec{c}}{|\vec{a}|^{2}} |\vec{a}|^{2} - \frac{\vec{c} \cdot \vec{b}_{1}}{|\vec{b}_{1}|} (\vec{a} \cdot \vec{b}_{1})$$

$$= \vec{a} \cdot \vec{c} - \vec{a} \cdot \vec{c} - 0 = 0$$

$$\Theta [\vec{a} \cdot \vec{b}_{1}] = 0$$
and $\vec{b}_{1} \cdot \vec{c}_{2} = \vec{b}_{1} \left(\vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} \vec{a} - \frac{\vec{c} \cdot \vec{b}_{1}}{|\vec{b}_{1}|^{2}} \vec{b}_{1}\right)$

$$= \vec{b}_{1} \cdot \vec{c} - \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|^{2}} - \frac{\vec{c} \cdot \vec{b}_{1}}{|\vec{b}_{1}|^{2}} \vec{b}_{1}$$

$$= \vec{b}_{1} \cdot \vec{c} - 0 - \vec{b}_{1} \cdot \vec{c} = 0$$

$$\Rightarrow \text{ The set of orthogonal vector is } [\vec{a} \cdot \vec{b}_{1} \cdot \vec{c}_{2}]$$

 $\textbf{Q.15} \quad A \text{ light ray incident along the unit vector } \hat{v} \text{ and} \\ \text{ the unit vector along the normal to reflecting} \\ \text{ surface at the point } P \text{ is } \hat{n} \text{ outwards. If} \\ \end{cases}$

reflecting ray is along the unit vector \hat{w} , find \hat{w} in terms of \hat{v} and \hat{n} . [IIT- 2005]

Sol. $\hat{w} = \hat{v} - 2(\hat{n} \cdot \hat{v})\hat{n}$

Q.16 Let
$$\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ & $\vec{c} = \hat{i} + \hat{j} - \hat{k}$.
A vector in the plane of \vec{a} and \vec{b} whose
projection on \vec{c} is of length $\frac{1}{\sqrt{3}}$ unit is-
[IIT-2006]

(A)
$$4\hat{i} + \hat{j} - 4\hat{k}$$
 (B) $4\hat{i} - \hat{j} + 4\hat{k}$
(C) $2\hat{i} + \hat{j} - \hat{k}$ (D) $3\hat{i} + \hat{j} - 3\hat{k}$
[**B**]

Sol. [

Any vector \vec{r} in the plane of $\vec{a} & \vec{b}$ can be written as

$$\vec{r} = \vec{a} + \lambda \vec{b}$$

$$\Rightarrow \vec{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$

$$= (1 + \lambda)\hat{i} + (2 - \lambda)\hat{j} + (1 + \lambda)\hat{k}$$
Projection of \vec{r} on $\vec{c} = \frac{\vec{r} \cdot \vec{c}}{|c|}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{|(1 + \lambda) + (2 - \lambda) - (1 + \lambda)|}{\sqrt{3}}$$

$$\Rightarrow |2 - \lambda| = 1$$

$$\Rightarrow \lambda = 1 \text{ or } 3$$

$$\Rightarrow \vec{r} = 2\hat{i} + \hat{j} + 2\hat{k} \text{ or } 4\hat{i} - \hat{j} + 4\hat{k}$$

Q.17 Let \vec{A} is a vector parallel to line of intersection of planes P_1 and P_2 through origin. P_1 is parallel to the vectors $2\hat{j} + 3\hat{k}$ and $4\hat{j} - 3\hat{k}$ and P_2 is parallel to $\hat{j} - \hat{k}$ and $3\hat{i} + 3\hat{j}$ then angle between vectors \vec{A} and $2\hat{i} + \hat{j} - 2\hat{k}$ is–

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{3\pi}{4}$

Sol. [B, D]

Normal to plane P is $\dot{h}_1 = (2\hat{j} + 3\hat{k}) \times (4\hat{j} - 3\hat{k}) = -18\hat{i}$ and Normal to plane P₂ is

Power by: VISIONet Info Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

 $\vec{h}_2 = (\hat{i} - \hat{k}) \times (3\hat{i} + 3\hat{k}) = 3\hat{i} - 3\hat{i} - 3\hat{k}$ $\Theta \stackrel{P}{A}$ is parallel to $\pm (\stackrel{P}{h_1} \times \stackrel{P}{h_2})$ $\Rightarrow \pm (\overset{\mu}{n}_1 \times \overset{\mu}{n}_2) = \pm (-54\hat{i} + 54\hat{k})$ Now angle between $\stackrel{P}{A}$ and $2\hat{i} + \hat{j} - 2\hat{k}$ is $\cos\theta = \pm \frac{(-54\hat{j} + 54\hat{k}).(2\hat{i} + \hat{j} - 2\hat{k})}{54\sqrt{2}.3}$ $=\pm\frac{1}{\sqrt{2}}$ $\Rightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$ The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is - **[IIT-2007]** (A) zero (B) one (C) two (D) three [C] Let $\vec{a} = -\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - \lambda^2 \hat{k}$ \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are coplanar $\Rightarrow \begin{bmatrix} a & b & c \end{bmatrix} = 0$ $-\lambda^2$ 1 1 = 0

Q.18

Sol.

$$= \begin{vmatrix} 1 & -\lambda^2 & 1 \\ 1 & 1 & -\lambda^2 \end{vmatrix} =$$
$$= \lambda^6 - 3\lambda^2 - 2 = 0$$
$$\text{Let } \lambda^2 = t$$
$$\Rightarrow t^3 - 3t - 2 = 0$$
$$(t - 2) (t + 1)^2 = 0$$
$$\Rightarrow t = 2, t = -1$$
$$t \neq -1$$
$$\Rightarrow t = 2 \Rightarrow \lambda^2 = 2$$
$$\lambda = \pm \sqrt{2}$$
two values

two values

Let the vectors \overrightarrow{PO} , \overrightarrow{OR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} and 0.19 $\overrightarrow{\text{UP}}$ represent the side of a regular hexagon. **Statement-1** : $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$ Because **Statement -2** : $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PO} \times \overrightarrow{ST} \neq \overrightarrow{0}$ **[IIT-2007]** (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1 (B) Statement-1, is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1is False, Statement-2 is True Sol. [C] Let \vec{a} , \vec{b} , \vec{c} be unit vectors such that Q.20 $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Which one of the following is correct? [IIT-2007] (A) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} = \vec{0}$ (B) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \neq \vec{0}$ (C) $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{a} \times \vec{c} \neq \vec{0}$ (D) $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are mutually \perp . Sol. **[B]** \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0 Taking cross product by \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} $\overrightarrow{a} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times 0 = 0$ $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c} = 0$(i) and $\overrightarrow{b} \times (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{b} \times 0 = 0$ $\Rightarrow \overrightarrow{b} \times \overrightarrow{a} + \overrightarrow{b} \times \overrightarrow{c} = 0$ $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c}$(ii) form (i) & (ii) $\Rightarrow \overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{c} \times \overrightarrow{a}$ $\Theta \stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b} \neq 0, \quad \stackrel{\rightarrow}{b} \times \stackrel{\rightarrow}{c} \neq 0 \quad \stackrel{\rightarrow}{c} \times \stackrel{\rightarrow}{a} \neq 0$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Q.21 The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors \hat{a} , \hat{b} , \hat{c} such that \hat{a} . $\hat{b} = \hat{b}$. $\hat{c} = \hat{c}$. $\hat{a} = 1/2$. Then, the volume of the parallelopiped is [IIT-2008]

(A)
$$\frac{1}{\sqrt{2}}$$
 (B) $\frac{1}{2\sqrt{2}}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

Sol. [A]

$$\therefore \overrightarrow{a}, \overrightarrow{b} = |\mathbf{a}| |\mathbf{b}| \cos\theta = \frac{1}{2} \Longrightarrow \theta = 60^{\circ}$$

volume $\| [\hat{a} \ \hat{b} \ \hat{c}] \|$

$$= |(\hat{a} \times \hat{b}), \hat{c}| = \sqrt{\begin{vmatrix} \hat{a} \cdot \hat{a} & \hat{a} \cdot \hat{b} & \hat{a} \cdot \hat{c} \\ \hat{b} \cdot \hat{a} & \hat{b} \cdot \hat{b} & \hat{b} \cdot \hat{c} \\ \hat{c} \cdot \hat{a} & \hat{c} \cdot \hat{b} & \hat{c} \cdot \hat{c} \end{vmatrix}}$$
$$= \frac{1}{\sqrt{2}}$$

Let two non-collinear unit vectors \hat{a} and \hat{b} **Q.22** form an acute angle . A point P moves so that at any time t the position vector \overrightarrow{OP} (where O is the origin) is given by $\hat{a} \cos t + \hat{b} \sin t$. When P is farthest from origin O, let M be the length of \overrightarrow{OP} and \hat{u} be the unit vector along OP. Then-[IIT-2008]

(A)
$$\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$$
 and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$
(B) $\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$ and $M = (1 + \hat{a} \cdot \hat{b})^{1/2}$
(C) $\hat{u} = \frac{\hat{a} + \hat{b}}{|\hat{a} + \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$
(D) $\hat{u} = \frac{\hat{a} - \hat{b}}{|\hat{a} - \hat{b}|}$ and $M = (1 + 2\hat{a} \cdot \hat{b})^{1/2}$

Sol.[A]

A particle P starts from the point $z_0 = 1 + 2i$, Q.23 where $i = \sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_1 . From z_1 the particles moves $\sqrt{2}$ units in the direction of the vector $\hat{i} + \hat{j}$ and then it moves through

an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_2 . The point z_2 is given by-[IIT-2008]

 $(B) - 7 + 6\hat{i}$

(D) $-6 + 7\hat{i}$

,6)

(A)
$$6 + 7\hat{i}$$

(C) $7 + 6\hat{i}$

 $7 + 6\hat{i}$

$$\begin{array}{c} & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

We see that the point P is (7, 6) \Rightarrow P = 7 + 6 \hat{i}

Now it is rotated by $\frac{\pi}{2}$ angle in anti clock wise since

$$\Rightarrow \hat{i}(7+6\hat{i}) = -6+7\hat{i}$$

If a, b, c and d are unit vectors such that **O**. 24 $(a \times b)$. $(c \times d) = 1$ and $a' \cdot c' = \frac{1}{2}$, then

```
[IIT 2009]
```

(A) $\overset{\mu}{a}$, $\overset{\mu}{b}$, $\overset{\nu}{c}$ are non-coplanar (B) $\stackrel{\mu}{b}$, $\stackrel{\mu}{c}$, $\stackrel{\mu}{d}$ are non-coplanar (C) $\stackrel{\nu}{b}$, $\stackrel{\nu}{d}$ are non-parallel (D) $\overset{\nu}{a}$, $\overset{\nu}{d}$ are parallel and $\overset{\nu}{b}$, $\overset{\nu}{c}$ are parallel [C] Sol. $\begin{pmatrix} \rho & \mu \\ a \times b \end{pmatrix} \cdot \begin{pmatrix} \rho & \mu \\ c \times d \end{pmatrix} = \begin{vmatrix} \rho \rho & \rho \mu \\ a c & a d \\ \rho \rho & \rho \rho \\ b c & b d \end{vmatrix} = 1$ $\Rightarrow \qquad \begin{vmatrix} \frac{1}{2} & \frac{\rho \rho}{a.d} \\ \frac{\rho}{\rho} & \rho \rho \\ \frac{\rho}{b.c} & \frac{b.d}{b.d} \end{vmatrix} = 1$ $\frac{1}{2} \quad (b.d) - (a.d) \quad (b.c) = 1$ $\begin{pmatrix} \rho & \rho \\ a \parallel b \mid \sin \theta_1 \hat{n}_1 \end{pmatrix} \cdot \begin{pmatrix} \rho & \rho \\ c \parallel d \mid \sin \theta_2 \hat{n}_2 \end{pmatrix} = 1$ $\sin\theta_1 \sin\theta_2 \ \hat{n}_1 \cdot \hat{n}_2 = 1$ $\theta_1 = \theta_2 = \frac{\pi}{2}; \ \alpha = 0$ $\stackrel{\rho}{a} \perp \stackrel{\rho}{b} \& \stackrel{\rho}{c} \& \stackrel{\rho}{d} \& \stackrel{\rho}{h_1} \parallel \stackrel{\rho}{h_2}$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Q.25	Match the statements/expressions g Column I with the values given in	given in Column II. [IIT 2009]
	Column I Co	lumn II
	(A) Root(s) of the equation	(P) $\frac{\pi}{6}$
	$2\sin^2\theta + \sin^2 2\theta = 2$	
	(B) Points of discontinuity of the	(Q) $\frac{\pi}{4}$
	function $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right]$,	
	where [y] denotes the largest inter- less than or equal to y	eger
	(C) Volume of the parallelopiped	(R) $\frac{\pi}{3}$
	with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$ and $\hat{i} + \hat{j} + \pi \hat{k}$	
	(D) Angle between vectors $\vec{a} \ll \vec{b}$ $\vec{a} \rightarrow \vec{a} \rightarrow \vec{b}$	(S) $\frac{\pi}{2}$
	where a, b and c are unit vectors satisfying , $$	(T) π
Sol.	$a + b + \sqrt{3} c = 0$ A $\rightarrow Q, S; B \rightarrow P, R, S, T; C$	\rightarrow T; D \rightarrow R
Q.26	Let P, Q, R and S be the point with position vectors $-2\hat{i} - \hat{j}$, 4	is on the plane $4\hat{i}$, $3\hat{i} + 3\hat{j}$ and
	$-3\hat{i}+2\hat{j}$ respectively. The quad	rilateral PQRS
	must be a -	[IIT 2010]
	(A) parallelogram, which is neit nor a rectangle	ther a rhombus
	(B) square	
	(C) rectangle, but not a square(D) rhombus, but not a square	
Sol.[A	A) $\overrightarrow{PQ} = 6i + j$	
	$\overrightarrow{RS} = 6i + j$	
	$\overrightarrow{RQ} = i - 3j$	
	$\overrightarrow{SP} = i - 3j$	
	$\left \overrightarrow{PQ} \right \neq \left \overrightarrow{RQ} \right $ (: not a rhombus or	a rectangle)
	PQ RS RQ SP	

Also $\overrightarrow{PQ} \cdot \overrightarrow{RQ} \neq 0$ \therefore PQRS is not a square \Rightarrow PQRS is a parallelogram **Q.27** Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by [IIT 2010] (A) $\frac{8}{9}$ (B) $\frac{\sqrt{17}}{9}$ (C) $\frac{1}{9}$ (D) $\frac{4\sqrt{5}}{9}$

Sol. [B]

Q.28 If $\stackrel{b}{a}$ and $\stackrel{b}{b}$ are vector in space given by $\hat{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\hat{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $(2\hat{a} + \hat{b}) \cdot [(\hat{a} \times \hat{b}) \times (\hat{a} - 2\hat{b})]$ is [IIT-2010] Sol. [5]

$$|\mathbf{a}| = |\mathbf{b}| = 1 \& \mathbf{a} \cdot \mathbf{b} = 0$$

$$(2\overline{\mathbf{a}} + \overline{\mathbf{b}}) \cdot [(\overline{\mathbf{a}} \times \overline{\mathbf{b}}) \times (\overline{\mathbf{a}} - 2\overline{\mathbf{b}})]$$

$$= (2\overline{\mathbf{a}} + \overline{\mathbf{b}}) \cdot [\overline{\mathbf{b}} + 2\overline{\mathbf{a}}] = |\overline{\mathbf{b}}|^2 + 4 |\overline{\mathbf{a}}|^2 = 5$$

Q.29 Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and
 $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vector \vec{v}

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

in the plane of \vec{a} and \vec{b} , whose projection on \overrightarrow{c} is $\frac{1}{\sqrt{2}}$, is given by [IIT- 2011] (A) $\hat{i} - 3\hat{j} + 3\hat{k}$ (B) $-3\hat{i} - 3\hat{j} - \hat{k}$ (C) $3\hat{i} - \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} - 3\hat{k}$ **Sol.** [C] Let $\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$ Θ [\vec{a} \vec{b} \vec{v}] = 0 $\begin{vmatrix} 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 0$ On solving x = z....(1) Θ projection of \vec{v} on \vec{c} is $\frac{1}{\sqrt{2}}$ So, $\frac{1}{\sqrt{3}} = \frac{\overrightarrow{v} \cdot \overrightarrow{c}}{|\overrightarrow{c}|} \Rightarrow \frac{x - y - z}{\sqrt{3}} = \frac{1}{\sqrt{3}}$ $\Rightarrow x - y - z = 1$(2) So solving (1) & (2)y = -1 & x = zThe vector(s) which is/are coplanar with Q.30 vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is /are [IIT- 2011] (A) $\hat{j} - \hat{k}$ (B) $-\hat{i} + \hat{j}$ (C) $\hat{i} - \hat{j}$ (D) $- \hat{j} + \hat{k}$ Sol. [A, D] $\overline{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is coplanar with the given vector so

$$\begin{array}{c} x & y & z \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{array} = 0 \\ \text{So, } 3x = y + z & \dots \dots (1) \\ \therefore \quad \overrightarrow{r} \perp \hat{i} + \hat{j} + \hat{k} \\ \text{So, } \quad \overrightarrow{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0 \\ \text{So, } x + y + z = 0 & \dots \dots (2) \end{array}$$

On solving (1) & (2)So, x = 0 \therefore y + z = 0 \therefore (A) & (D) Satisfy Let $\hat{a} = -\hat{i} - \hat{k}$, $\hat{b} = -\hat{i} + \hat{j}$ and $\hat{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ Q.31 be three given vectors. If F is a vector such that $\hat{r} \times \hat{b} = \hat{c} \times \hat{b}$ and $\hat{r} \cdot \hat{a} = 0$, then the value of $\hat{r} \cdot \hat{b}$ [IIT- 2011] **Sol.** [9] $\vec{a} = -\hat{i} - \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$, $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ $(\hat{r} - \hat{c}) \times \hat{b} = 0 \Rightarrow \hat{r} - \hat{c} = \lambda \hat{b} \Rightarrow \hat{r} = \hat{c} + \lambda \hat{b}$ Θ $\overrightarrow{r} \cdot \overrightarrow{a} = 0$ $\Rightarrow \qquad \begin{array}{l} \rho \rho \\ a.c + \lambda b.a = 0 \end{array}$ $\Rightarrow \qquad \lambda = -\frac{\rho p}{k p} = 4$ $\rho \stackrel{P}{r.b} = \rho \stackrel{P}{c.b} + \lambda | \stackrel{P}{b} |^2 = 9$ Match the statements given in Column-I with Q.32 the values given in Column-II. [IIT- 2011] Column-I Column-II (A) If $\hat{a} = \hat{j} + \sqrt{3}\hat{k}$, $\hat{b} = -\hat{j} + \sqrt{3}\hat{k}$ (P) $\pi/6$ and $c = 2\sqrt{3}\hat{k}$ form a triangle, then the internal angle of the triangle between a' and b' is (Q) $2\pi/3$ (B) If $\int (f(x) - 3x)dx = a^2 - b^2$, then the value of $f\left(\frac{\pi}{6}\right)$ is (C) The value of (R) $\pi/3$ $\frac{\pi^2}{\ln 3} \int_{7/6}^{5/6} \sec(\pi x) dx \text{ is}$ (D) The maximum value of (S) π $\left| Arg\left(\frac{1}{1-z}\right) \right|$ for $|z| = 1, z \neq 1$ is (T) $\pi/2$ given by $A \rightarrow q$; $B \rightarrow p$, q, r, s, t or p; $C \rightarrow s$; $D \rightarrow t$ Sol. **(A)**

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.

$$\cos \theta = \frac{-\frac{\rho}{a} \cdot \frac{\rho}{b}}{|-a||b|} = -\frac{1}{2} \implies \theta = \frac{2\pi}{3}$$
(B) $\int_{a}^{b} (f(x) - 3(x)) dx = a^{2} - b^{2}$
differentiating w.r.t (b).
 $f(b) - 3b = -2b$
 $\boxed{f(b) = b}$
So $f\left(\frac{\pi}{6}\right) = \frac{\pi}{6}$; if a = b then any value of

f(x) is possible

 $Arg \frac{1}{\pi}$

(C)
$$I = \frac{\pi^2}{\lambda n 3} \int_{7/6}^{5/6} \sec \pi x \, dx$$
$$I = \frac{\pi^2}{\pi \lambda n 3} |\lambda n| \sec \pi x + \tan \pi x \|_{7/6}^{5/6}$$
$$I = \frac{\pi}{\lambda n 3} \cdot \lambda n 3 = \pi$$

(D) $\therefore |z| = 1$ $z = \cos \theta + i \sin \theta. \quad \forall \theta \in (-\pi, \pi] \text{ and } \theta \neq 0.$

$$= \left| Arg\left(\frac{1}{1 - \cos \theta - i \sin \theta}\right) \right| = \left| Arg\left(\frac{1}{2} + \frac{i \cot \frac{\theta}{2}}{2}\right) \right|$$
$$= \left| \frac{\pi - \theta}{2} \right| \text{ so maximum value is } \pi.$$

Q.33 If a', b' and b' are unit vectors satisfying $|a'-b'|^2 + |b'-c'|^2 + |c-a'|^2 = 9$, then |2a+5b+5c'| is [IIT-2012]

[3] $|\stackrel{\rho}{a} - \stackrel{\rho}{b}|^{2} + |\stackrel{\rho}{b} - \stackrel{\rho}{c}|^{2} + |\stackrel{\rho}{c} - \stackrel{\rho}{a}|^{2} = 9$ $a.b + b.c + c.a = -3/2 \qquad \dots (1)$ $\Theta \qquad |\stackrel{\rho}{a} + \stackrel{\rho}{b} + \stackrel{\rho}{c}|^{2} \ge 0 \qquad \dots (2)$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Me

Sol.

$$a.b + b.c + c.a \ge \frac{-3}{2}$$
(3)
from (1) & (3)

so
$$|\stackrel{\rho}{a} + \stackrel{\rho}{b} + \stackrel{\rho}{c}| = 0$$

 $\stackrel{\rho}{a} + \stackrel{\rho}{b} + \stackrel{\rho}{c} = 0$
 $\stackrel{\rho}{a} = -\stackrel{\rho}{b} - \stackrel{\rho}{c}$

on squaring

Θ

$$1 = 2 + 2 \cos B$$

$$\cos B = -\frac{1}{2} \quad \forall B = \overset{P}{b} \wedge \overset{P}{c}$$
Let T = $|2\overset{P}{a} + 5\overset{P}{b} + 5\overset{P}{c}|$

$$= |3\overset{P}{b} + 3\overset{P}{c}|$$

$$= 3\sqrt{2 + 2\cos B}$$

$$= 3$$

Q.34 If $\stackrel{a}{a}$ and $\stackrel{b}{b}$ are vectors such that $|\stackrel{a}{a} + \stackrel{b}{b}| = \sqrt{29}$ and $\stackrel{a}{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \stackrel{b}{b}$, then a possible value of $(\stackrel{a}{a} + \stackrel{b}{b}).(-7\hat{i} + 2\hat{j} + 3\hat{k})$ is [IIT- 2012]

(A) 0 (B) 3 (C) 4 (D) 8 Sol. [C] $|a + b| = \sqrt{29}$

$$\begin{aligned} |\hat{a} + b| &= \sqrt{29} \\ \hat{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) &= (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \overset{\mu}{b} \\ (\hat{a} + \overset{\mu}{b}) \times (2\hat{i} + 3\hat{j} + 4\hat{k}) &= \overline{0} \\ \hat{a} + \overset{\mu}{b} &= \lambda (2\hat{i} + 3\hat{j} + 4\hat{k}) \\ |\hat{a} + \overset{\mu}{b}| &= \sqrt{4\lambda^2 + 9\lambda^2 + 16\lambda^2} = |\lambda| \sqrt{29} \\ \Rightarrow \lambda &= 1, -1 \\ \hat{a} + \overset{\mu}{b} &= \pm (2\hat{i} + 3\hat{j} + 4\hat{k}) \\ (\hat{a} + \overset{\mu}{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k}) \\ &= \pm (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k}) = \pm 4 \end{aligned}$$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

[IIT-1993]

[IIT-1994]

Let a, b, c be distinct non-negative numbers. If

the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$

 Θ Vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$, $c\hat{i} + c\hat{j} + b\hat{k}$

 \Rightarrow a.b.c are in G.P. and c is the G.M of a and b

Let β and q be the position vectors of P and Q

respectively, with respect to O and $|\mathbf{p}| = \mathbf{p}$,

 $\begin{vmatrix} p \\ q \end{vmatrix} = q$. The points R and S divide PQ

internally and externally in the ratio 2 : 3 respectively. If OR and OS are perpendicular

 $\vec{R} = \frac{\vec{3p+2q}}{5}$ [: R divide PQ internally in the

and $\vec{S} = \frac{\vec{3p-2q}}{1} [\Theta S \text{ divide PQ externally}]$

(D) 4p = 9q

(A) $9p^2 = 4q^2$ (B) $4p^2 = 9q^2$

lie in a plane, then c is-

(D) equal to zero

are coplanar so

 $\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \end{vmatrix} = 0$

c c b

 $\Rightarrow a(-c) - a(b - c) + c(c) = 0$ $\Rightarrow c^{2} - ab = 0 \Rightarrow c^{2} = ab$

[B]

then

[A]

(C) 9p = 4q

ratio 2 : 3]

in the ratio 2:3]

Given $\overrightarrow{OR} \perp \overrightarrow{OS}$

 $\Rightarrow \overrightarrow{OR} \cdot \overrightarrow{OS} = 0$

 $\Rightarrow \frac{\vec{3p+2q}}{5} \cdot \frac{\vec{3p-2q}}{5} = 0$

 $\Rightarrow 9|\overrightarrow{p}|^2 - 4|\overrightarrow{q}|^2 = 0$

 $\overrightarrow{OP} = \overrightarrow{p}, \overrightarrow{OQ} = \overrightarrow{q}$

(A) the arithmetic mean of a and b

(B) the geometric mean of a and b

(C) the harmonic mean of a and b

EXERCISE # 5

The number of vectors of unit length Q.1 **Q.3** perpendicular to vectors a = (1, 1, 0) and b = (0, 1, 1) is-[IIT-1987] (A) one (B) two (C) three (D) infinite Sol. [**B**] Let (x, y, z) be the unit vector \perp to $a^{\mu} = (1.1.0)$ and $b^{\mu} = (0, 1, 1)$ Sol. \Rightarrow x + y = 0 and y + z = 0(i) and $x^2 + y^2 + z^2 = 1$(ii) from (i) we have x = -y and z = -yfrom (ii) we get $y^2 + y^2 + y^2 = 1$ \Rightarrow y = $\pm \frac{1}{\sqrt{2}}$ Clearly two vector possible Q.4 Let [a, b], [c] be three non-coplanar vectors and Q.2 $\stackrel{\nu}{\beta}, \stackrel{\nu}{q}, \stackrel{\nu}{r}$ are vectors defined by the relations $\dot{p} = \frac{b \times c}{\rho \rho \rho}, \quad \dot{q} = \frac{c \times a}{\rho \rho \rho}, \quad \dot{r} = \frac{a \times b}{\rho \rho \rho}, \quad then the$ value of the expression $(\overset{\nu}{a} + \overset{\nu}{b})$. $\overset{\nu}{b} + (\overset{\nu}{b} + \overset{\nu}{c})$. $\overset{\nu}{d} + (\overset{\nu}{c} + \overset{\nu}{a})$. $\overset{\nu}{r}$ is equal to [IIT-1988] Sol. (A) 0 **(B)** 1 (C) 2 (D) 3 Sol. [D] Given that a' b' c' are non coplanar $\Rightarrow [abbc] \neq 0$ Now, (a + b), b + (b + c), a + (c + a), f $= \begin{pmatrix} \mu & \mu \\ a & b \end{pmatrix}, \frac{\mu}{b \times c} + \begin{pmatrix} \mu & \mu \\ b & c \end{pmatrix}, \frac{\nu}{c \times a} + \begin{pmatrix} \mu & \mu \\ b & c \end{pmatrix}$ $+(c^{\mu}+a^{\mu}).\frac{a \times b}{p + p}$ $=\frac{\frac{pp}{a.b\times c+b.c\times a+c.a\times b}}{\frac{pp}{[abc]}}$ using $\vec{b} \cdot \vec{b} \times \vec{c} = \vec{c} \cdot \vec{c} \times \vec{a} = \vec{a} \cdot \vec{a} \times \vec{b} = 0$ = $\frac{[\vec{a}\vec{b}\vec{c}] + [\vec{a}\vec{b}\vec{c}] + [\vec{a}\vec{b}\vec{c}]}{[\vec{a}\vec{b}\vec{c}]} = 3$ Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

$$\Rightarrow 9p^2 = 4q^2$$

Let α , β , γ be distinct real numbers. Q.5 The points with position vectors $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$, $\beta \hat{i} + \gamma \hat{j} + \alpha \hat{k}, \gamma \hat{i} + \alpha \hat{j} + \beta \hat{k}$ [IIT-1994] (A) are collinear (B) form an equilateral triangle (C) form a scalene triangle (D) form a right angled triangle Sol. [**B**] Let $\hat{a} = \alpha \hat{i} + \beta \hat{i} + \gamma \hat{k}$ $\vec{b} = \beta \hat{i} + \gamma \hat{i} + \alpha \hat{k}$ $\dot{\mathbf{c}} = \gamma \hat{\mathbf{i}} + \alpha \hat{\mathbf{j}} + \beta \hat{\mathbf{k}}$ Then $| \stackrel{b}{b} - \stackrel{b}{a} | = |(\beta - \alpha)\hat{i} + (\gamma - \beta)\hat{j} + (\alpha - \gamma)\hat{k} |$ $=\sqrt{2(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\gamma\alpha)}$ $|\overset{\nu}{c} - \overset{\nu}{b}| = |(\gamma - \beta)\hat{i} + (\alpha - \gamma)\hat{j} + (\beta - \alpha)\hat{k}|$ $= \sqrt{2(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha)}$ and $| \overset{\nu}{a} - \overset{\nu}{c} | = |(\alpha - \gamma)\hat{i} + (\beta - \alpha)\hat{j} + (\gamma - \beta)\hat{k} |$ $=\sqrt{2(\alpha^2+\beta^2+\gamma^2-\alpha\beta-\beta\gamma-\gamma\alpha)}$ Clearly it is a equilateral triangle Let $\hat{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{b} = \hat{i} + \hat{j}$. If \hat{c} is Q.6 vector such that $\overset{P}{a} \overset{P}{c} = |\overset{P}{c}|, |\overset{P}{c} - \overset{P}{a}| = 2\sqrt{2}$ and the angle between $(a^{\nu} \times b^{\nu})$ and c^{ν} is 30°, then $|(a \times b) \times c| =$ [IIT-1999] (C) 2 (A) 2/3 (B) 3/2 (D) 3 Sol. **[B]** $|(\ddot{a} \times \ddot{b}) \times \ddot{c}| = |\ddot{a} \times \ddot{b}| |\ddot{c}| \sin 30^\circ$ $=\frac{1}{2}|a \times b||c|$ (i) Given $\stackrel{b}{a} = 2\hat{i} - \hat{j} - 2\hat{k}$ and $\stackrel{b}{b} = \hat{i} + \hat{j}$ we have $\stackrel{V}{a} \times \stackrel{V}{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ $\Rightarrow |\stackrel{p}{a} \times \stackrel{p}{b}| = \sqrt{9} = 3$(ii) Given $| \overset{\nu}{c} - \overset{\nu}{a} | = 2\sqrt{2}$

> $\Rightarrow | \stackrel{\circ}{\mathcal{C}} - \stackrel{\circ}{a} |^2 = 8$ ($\stackrel{\circ}{\mathcal{C}} - \stackrel{\circ}{a}$). ($\stackrel{\circ}{\mathcal{C}} - \stackrel{\circ}{a}$) = 8 $\Rightarrow | \stackrel{\circ}{\mathcal{C}} |^2 - \stackrel{\circ}{a} \cdot \stackrel{\circ}{\mathcal{C}} - \stackrel{\circ}{\mathcal{C}} \cdot \stackrel{\circ}{a} + | \stackrel{\circ}{a} |^2 = 8$

 $\Theta | \stackrel{P}{a} | = 3$ and $\stackrel{P}{a} \cdot \stackrel{P}{c} = |c|$ $\Rightarrow |\mathbf{c}|^2 - 2|\mathbf{c}| + 1 = 0$ $\Rightarrow (|c|^{\nu} | -1)^2 = 0$ $\Rightarrow |c^{\nu}| = 1$(iii) so from (i), (ii) and (iii) we get $|(\overset{\mu}{a} \times \overset{\mu}{b}) \times \overset{\mu}{c}| = \frac{1}{2} \times 3 \times 1 = \frac{3}{2}$ Let $\stackrel{\nu}{a}$ and $\stackrel{\nu}{b}$ be two non-collinear unit vectors. If $\mathbf{u} = \mathbf{a} - (\mathbf{a}, \mathbf{b}) \mathbf{b}$ and $\mathbf{v} = \mathbf{a} \times \mathbf{b}$, then |v| is-[IIT-1999] (B) $| \mathbf{u} | + | \mathbf{u} \cdot \mathbf{u} |$ $(A) | \mathfrak{u}^{\mathcal{V}} |$ (C) $|\vec{u}| + |\vec{u}| \cdot \vec{b}|$ (D) $|\vec{u}| + \vec{u} \cdot (\vec{a} + \vec{b})$ [A.C] $\therefore \vec{v} = \vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta. \hat{n}$: a and b are unit vector $\Rightarrow \vec{v} = \sin\theta$. \hat{n} \Rightarrow | \vec{v} | = sin θ now $\mathbf{u} = \mathbf{a} - (\mathbf{a}, \mathbf{b})\mathbf{b}$ $= a - b \cos\theta$ $\Rightarrow |\vec{u}|^2 = |\vec{a} - \vec{b}\cos\theta|^2$ $= 1 + \cos^2 \theta - 2\cos \theta$. $\cos \theta$ $= 1 - \cos^2 \theta = \sin^2 \theta = |\vec{v}|^2$ $\Rightarrow | \stackrel{\rightarrow}{\mathbf{u}} | = | \stackrel{\rightarrow}{\mathbf{v}} |$ also \overrightarrow{u} , $\overrightarrow{b} = \overrightarrow{a}$, $\overrightarrow{b} - (\overrightarrow{a}, \overrightarrow{b})(\overrightarrow{b}, \overrightarrow{b})$ $= \stackrel{\rightarrow}{a} \stackrel{\rightarrow}{,} \stackrel{\rightarrow}{b} \stackrel{\rightarrow}{-a} \stackrel{\rightarrow}{,} \stackrel{\rightarrow}{b}$ = 0 $\Rightarrow | \stackrel{\rightarrow}{\mathbf{u}} . \stackrel{\rightarrow}{\mathbf{b}} | = 0$ $\Rightarrow \overrightarrow{v} = |\overrightarrow{u}| + |\overrightarrow{u} \cdot \overrightarrow{b}|$ option A,C are correct.

Q.7

Sol.

Q.8 If the vector $\stackrel{i}{a}$, $\stackrel{i}{b}$ and $\stackrel{i}{c}$ form the sides BC, CA and AB respectively of a triangle ABC, then - [IIT 2000] (A) $\stackrel{i}{a}$. $\stackrel{i}{b}$ + $\stackrel{i}{b}$. $\stackrel{i}{c}$ + $\stackrel{i}{c}$. $\stackrel{i}{a}$ = 0 (B) $\stackrel{i}{a} \times \stackrel{i}{b}$ = $\stackrel{i}{b} \times \stackrel{i}{c}$ = $\stackrel{i}{c} \times \stackrel{i}{a}$ (C) $\stackrel{i}{a}$. $\stackrel{i}{b}$ = $\stackrel{i}{b}$. $\stackrel{i}{c}$ = $\stackrel{i}{c}$. $\stackrel{i}{a}$ (D) $\stackrel{i}{a} \times \stackrel{i}{b}$ + $\stackrel{i}{c} \times \stackrel{i}{c}$ + $\stackrel{i}{c} \times \stackrel{i}{a}$ = 0

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Sol. [B]

Q.9 Let the vector $\stackrel{\,}{a}$, $\stackrel{\,}{b}$, $\stackrel{\,}{c}$ and $\stackrel{\,}{d}$ be such that $(\stackrel{\,}{a} \times \stackrel{\,}{b}) \times (\stackrel{\,}{c} \times \stackrel{\,}{d}) = \stackrel{\,}{0}$. Let P_1 and P_2 be planes determined by the pairs of vectors $\stackrel{\,}{a}$, $\stackrel{\,}{b}$, $\stackrel{\,}{c}$ and $\stackrel{\,}{d}$ respectively. Then the angle between P_1 and P_2 is-(A) 0 (B) $\pi/4$ (C) $\pi/3$ (D) $\pi/2$ Sol. [A]

Given that
$$(\overrightarrow{a} \times \overrightarrow{b}) \times (\overrightarrow{c} \times \overrightarrow{d}) = 0$$
(i)

 P_1 is the plane determined by $\stackrel{\rightarrow}{a}$ and $\stackrel{\rightarrow}{b}$

 \therefore Normal vector $\overrightarrow{n_1}$ to P_1 is given by

$$\overrightarrow{n_1} = \overrightarrow{a} \times \overrightarrow{b}$$
(ii)

Similarly P_2 is the plane determined by \overrightarrow{c} and \overrightarrow{d}

 \therefore Normal vector $\overrightarrow{n_2}$ to P₂ is given by

$$\vec{n}_2 = \vec{c} \times \vec{d}$$
(iii)

from (i), (ii) & (iii) we get

$$\vec{n}_1 \times \vec{n}_2 = 0$$

 \Rightarrow n₁ || n₂

Hence planes will be parallel to each other

Hence angle between P_1 and P_2 is 0 (zero)

Q.10 If
$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$$
 and the vectors
 $A = (1, a, a^2), B = (1, b, b^2), C = (1, c, c^2)$, are
non-coplanar, then the product $abc = \dots$
Sol. $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$
 $\Rightarrow \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = 0$
 $\Rightarrow \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + abc \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$

$$\Rightarrow (1 + abc) \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$$

But $\vec{A} = \hat{i} + a\hat{j} + a^{2}\hat{k}$
 $\vec{B} = \hat{i} + b\hat{j} + b^{2}\hat{k}$
and $\vec{C} = \hat{i} + c\hat{j} + c^{2}\hat{k}$
are non coplanar
 $\Rightarrow [\vec{A} \vec{B} \vec{C}] \neq 0$
 $\Rightarrow 1 + abc = 0$
 $\Rightarrow abc = -1$
Q.11 If $\vec{A} = (1, 1, 1), \vec{C} = (0, 1, -1)$ are given
vectors, then a vector \vec{B} satisfying the
equations $\vec{A} \times \vec{B} = \vec{C}$ and $\vec{A} \cdot \vec{B} = 3$ is......
Sol. Given $\vec{A} = \hat{i} + \hat{j} + \hat{k}, \vec{C} = \hat{j} - \hat{k}$
Let $\vec{B} = x\hat{i} + y\hat{j} + z\hat{k}$ (i)
Given $\vec{A} \times \vec{B} = \vec{C}$
 $\Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} = \hat{j} - \hat{k}$
 $\Rightarrow (z - y)\hat{i} + (x - z)\hat{j} + (y - x)\hat{k} = \hat{j} - \hat{k}$
 $\Rightarrow z - y = 0$
 $x - z = 1$
 $x - y = 1$
 $\Rightarrow y = z, x = 1 + z$ (ii)
And $\vec{A} \cdot \vec{B} = 3$
 $\Rightarrow x + y + z = 3$ (iii)
from (ii) & (iii)
 $1 + z + z + z = 3 \Rightarrow z = \frac{2}{3}$
 $\Rightarrow y = \frac{2}{3}, x = \frac{5}{3}$
 $\Rightarrow \vec{B} = \frac{5}{3}\hat{i} + \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

- **Q.12** The vector $-\hat{i} + \hat{j} \hat{k}$ bisects the angle between the vectors \vec{k} and $3\hat{i} + 4\hat{j}$. Determine the unit vector along \vec{k} .
- Sol. Let unit vector $\vec{c} = x\hat{i} + y\hat{j} + z\hat{k}$ $\Rightarrow x^2 + y^2 + z^2 = 1$ $\therefore -\hat{i} + \hat{j} - \hat{k} = t \left[x\hat{i} + y\hat{j} + z\hat{k} + \frac{3\hat{i} + 4\hat{j}}{5} \right]$

comparing coefficient

$$-1 = t\left(x + \frac{3}{5}\right), 1 = t\left(y + \frac{4}{5}\right), -1 = tz$$

$$\therefore x^{2} + y^{2} + z^{2} = 1$$

$$\Rightarrow \left(-\frac{1}{t} - \frac{3}{5}\right)^{2} + \left(\frac{1}{t} - \frac{4}{5}\right)^{2} + \left(-\frac{1}{t}\right)^{2} = 1$$

$$\Rightarrow t = \frac{15}{2}$$

we get

$$x = -\frac{11}{15}, y = -\frac{10}{15}, z = -\frac{2}{15}$$

$$t^{2} = -\frac{1}{15} (11\hat{i} + 10\hat{j} + 2\hat{k})$$

Q.13 The position vectors of the point P and Q are $5\hat{i} + 7\hat{j} - 2\hat{k}$ and $-3\hat{i} + 3\hat{j} + 6\hat{k}$ respectively. The vector $A = 3\hat{i} - \hat{j} + \hat{k}$ passes through the point P and the vector $B = -3\hat{i} + 2\hat{j} + 4\hat{k}$ passes through the point Q. A third vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ intersects vectors A and B. Find the position vector of the points of intersection.

Sol.

Let vector $2\hat{i} + 7\hat{j} - 5\hat{k}$ cuts the vector \vec{A} and

 \overrightarrow{B} at L and M respectively Let L = (x₁, y₁, z₁) and M = (x₂, y₂, z₂) Vector \overrightarrow{PL} and \overrightarrow{A} are collinear

 $\therefore \vec{PL} = \lambda \vec{A}$ compare the coefficient $\frac{x_1 - 5}{3} = \frac{y_1 - 7}{-1} = \frac{z_1 + 2}{1} = \lambda \text{ let}$ L is $(3\lambda + 5, -\lambda + 7, \lambda - 2)$ Similarly $\overrightarrow{QM} = \overrightarrow{\mu B}$ we get M is $(-3\mu - 3, 2\mu + 3, 4\mu + 6)$ Again LM and vector (2, 7, -5) are collinear $\Rightarrow \frac{x_2 - x_1}{2} = \frac{y_2 - y_1}{7} = \frac{z_2 - z_1}{5} = v \text{ let}$ $\Rightarrow \frac{-3\mu - 3\lambda - 8}{2} = \frac{2\mu + \lambda - 4}{7} = \frac{4\mu - \lambda + 8}{-5} = \nu$ or $3\mu + 3\lambda + 2\nu = -8$ $2\mu + \lambda - 7\nu = 4$ $4\mu - \lambda + 5\nu = -8$ solving these we get $\lambda = \mu = \nu = -1$ L is (2, 8, -3) or $2\hat{i} + 8\hat{j} - 3\hat{k}$ and M is (0, 1, 2) or $\hat{j} + 2\hat{k}$

- Q.14 Two triangles ABC and PQR are such the perpendiculars from A to QR, B to RP and C to PQ are concurrent. Show that the perpendicular from P to BC, Q to CA and R to AB are also concurrent. [IIT 2000]
- **Q.15** Find out whether the following pairs of lines are parallel, non-parallel and intersecting, or non-parallel and non-intersecting (i) $\stackrel{P}{r_1} = \hat{i} + \hat{j} + 2\hat{k} + \lambda(3\hat{i} - 2\hat{j} + 4\hat{k})$ $\stackrel{P}{r_2} = 2\hat{i} + \hat{j} + 3\hat{k} + \mu(-6\hat{i} + 4\hat{j} - 8\hat{k})$ (ii) $\stackrel{P}{r_1} = \hat{i} - \hat{j} + 3\hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k})$ $\stackrel{P}{r_2} = 2\hat{i} + 4\hat{j} + 6\hat{k} + \mu(2\hat{i} + \hat{j} + 3\hat{k})$ (iii) $\stackrel{P}{r_1} = \hat{i} + \hat{k} + \lambda(\hat{i} + 3\hat{j} + 4\hat{k})$ $\stackrel{P}{r_2} = 2\hat{i} + 3\hat{j} + \mu(4\hat{i} - \hat{j} + \hat{k})$
- **Sol.** (i) parallel (ii) the lines intersect at the point with p.v. $-2\hat{i} + 2\hat{j}$ (iii) lines are skew
- **Q.16** 'O' is the origin of vectors and A is a fixed point on the circle of radius 'a' with centre O. The vector \overrightarrow{OA} is denoted by a'. A variable point 'P' lies on the tangent at A & $\overrightarrow{OP} = f'$. Show that $a' \cdot f' = |a|^2$. Hence if $P \equiv (x, y)$ &

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

 $A \equiv (x_1, y_1)$ deduce the equation of tangent at A to this circle.

Sol. $xx_1 + yy_1 = a^2$

Sol.

Q.21

- **Q.17** Let \mathbf{b}' be a vector on rectangular coordinate system with sloping angle 60° . Suppose that $|\mathbf{b}' \hat{i}|$ is geometric mean of $|\mathbf{b}'|$ and $|\mathbf{b}' 2\hat{i}|$ where \hat{i} is the unit vector along x-axis then $|\mathbf{b}'|$ has the value equal to $\sqrt{a} \sqrt{b}$ where a, $b \in N$, find the value $(a + b)^3 + (a b)^3$. **Sol.** 28
- **Q.19** If \vec{r} and \vec{s} are non zero constant vectors and the scalar b is chosen such that $|\vec{r} + \vec{b}\vec{s}|$ is minimum, then show that the value of $|\vec{b}\vec{s}|^2 + |\vec{r} + \vec{b}\vec{s}|^2$ is equal to $|\vec{r}|^2$.
- **Q.20** Given three points on the xy plane as O(0, 0), A(1, 0) and B (-1, 0). Point P is moving on the plane satisfying the condition

 $(\overrightarrow{PA}, \overrightarrow{PB}) + 3(\overrightarrow{OA}, \overrightarrow{OB}) = 0$. If the maximum and minimum value of $|\overrightarrow{PA}| |\overrightarrow{PB}|$ are M and m respectively then find the value of $M^2 + m^2$. 34

If O is origin of reference, point A(a'); B(b'); C(b'); D(a'+b); E(b+b'); F(b'+b'); G(a'+b'+b') where $a' = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}; b' = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} & b' = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then prove that these points are vertices of a cube having length of its edge equal to unity provided the matrix

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix}$$
 is orthogonal. Also find the

length XY such that X is the point of intersection of CM and GP, Y is the point of intersection of OQ and DN where P, Q, M, N

are respectively the midpoint of sides CF, BD, GF and OB.

Sol.
$$\frac{\sqrt{11}}{3}$$

- **Q.22** Given that $\mathbf{u} = \hat{i} 2\hat{j} + 3\hat{k}$; $\mathbf{v} = 2\hat{i} + \hat{j} + 4\hat{k}$; $\mathbf{w} = \hat{i} + 3\hat{j} + 3\hat{k} \otimes (\mathbf{u} \cdot \mathbf{K} - 10)\hat{i} + (\mathbf{v} \cdot \mathbf{K} - 20)\hat{j} + (\mathbf{w} \cdot \mathbf{K} - 20)\hat{k} = 0$. Find the unknown vector \mathbf{K} . **Sol.** $-\hat{i} + 2\hat{j} + 5\hat{k}$
- Q.23 (a) If a + b + c = 0, show that a × b = b × c = b × c = c × a . Deduce the sine rule for a ΔABC.
 (b) Find the minimum area of the triangle whose vertices are A(-1, 1, 2); B(1, 2, 3) and C(t, 1, 1) where t is a real number.

Sol. (b)
$$\frac{\sqrt{3}}{2}$$

Q.24 The length of the edge of the regular tetrahedron D-ABC is 'a'. Point E and F are taken on the edges AD and BD respectively such that E divides \overrightarrow{DA} and F divides \overrightarrow{BD} in the ratio 2 : 1 each. Then find the area of triangle CEF.

Sol.
$$\frac{5a^2}{12\sqrt{3}}$$
 sq. units

Q.25 Let $\mathbf{a}' = \sqrt{3} \ \hat{\mathbf{i}} - \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{\sqrt{3}}{2} \ \hat{\mathbf{j}}$ and $\mathbf{b}' = \frac{1}{2} \ \hat{\mathbf{i}} + \frac{1}{2} \ \hat{\mathbf{i}} + \frac{1}{2} \ \hat{\mathbf{j}} + \frac{1}{2} \ \hat{\mathbf{i}} + \frac{1}{2} \ \hat{\mathbf{j}} + \frac$

Sol.
$$p = \frac{q(q^2 - 3)}{4}$$
; decreasing in $q \in (-1, 1), q \neq 0$

Q.26 Let
$$\begin{vmatrix} (a_1 - a)^2 & (a_1 - b)^2 & (a_1 - c)^2 \\ (b_1 - a)^2 & (b_1 - b)^2 & (b_1 - c)^2 \\ (c_1 - a)^2 & (c_1 - b)^2 & (c_1 - c)^2 \end{vmatrix} = 0 \& \text{ if }$$

the vectors $\vec{\alpha} = \hat{i} + a\hat{j} + a^2\hat{k}$; $\vec{\beta} = \hat{i} + b\hat{j} + b^2\hat{k}$; $\vec{\gamma} = \hat{i} + c\hat{j} + c^2\hat{k}$ are non coplanar, show that

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

the vectors $\overset{P}{\alpha_1} = \hat{i} + a_1 \hat{j} + a_1^2 \hat{k}$; $\overset{P}{\beta_1} = \hat{i} + b_1 \hat{j} + b_1^2 \hat{k}$ & $\overset{P}{\beta_1} = \hat{i} + c_1 \hat{j} + c_1^2 \hat{k}$ are coplanar.

Sol. NO, NO

Q.28 The p.v.'s of the four angular points of a tetrahedron are $A(\hat{j} + 2\hat{k})$; $B(3\hat{i} + \hat{k})$; $C(4\hat{i}+3\hat{j}+6\hat{k})$ and $D(2\hat{i}+3\hat{j}+2\hat{k})$. Find:

- (i) the perpendicular distance from A to the line BC
- (ii) the volume of the tetrahedron ABCD
- (iii) the perpendicular distance from D to the plane ABC.
- (iv) the shortest distance between the lines AB & CD.

Sol. (i)
$$\frac{6}{7}\sqrt{14}$$
 (ii) 6 (iii) $\frac{3}{5}\sqrt{10}$ (iv) $\sqrt{6}$

Q.29 The length of an edge of a cube ABCDA₁B₁C₁D₁ is equal to unity. A point E taken on the edge $\overrightarrow{AA_1}$ is such that $|\overrightarrow{AE}| = \frac{1}{3}$. A point F is taken on the edge \overrightarrow{BC} such that $|\overrightarrow{BF}| = \frac{1}{4}$. If O₁ is the centre of the cube, find the shortest distance of the vertex B₁ from the plane of the $\Delta O_1 EF$.

Sol.
$$\frac{11}{\sqrt{170}}$$

Q.30 A($\stackrel{b}{a}$); B($\stackrel{b}{b}$); C($\stackrel{c}{c}$) are the vertices of the triangle ABC such that $\stackrel{b}{a} = \frac{1}{2}(2\hat{i} - \stackrel{c}{f} - 7\hat{k});$ $\stackrel{b}{b} = 3\stackrel{c}{f} + \hat{j} - 4\hat{k}; \stackrel{c}{b} = 22\hat{i} - 11\hat{j} - 9\stackrel{c}{f}$. A vector $\dot{p} = 2 \hat{j} - \hat{k}$ is such that $(\ddot{r} + \ddot{p})$ is parallel to \hat{i} & $(\ddot{r} - 2\hat{i})$ is parallel to \ddot{p} . Show that there exists a point D(d) on the line AB with $d = 2t\hat{i} + (1 - 2t)\hat{j} + (t - 4)\hat{k}$. Also find the shortest distance C from AB.

Sol. $2\sqrt{17}$

Q.31 If
$$\stackrel{V}{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$$
; $\stackrel{V}{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ and
 $\stackrel{V}{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$ then show that the value of the
scalar triple product $[n\stackrel{V}{a} + \stackrel{V}{b}n\stackrel{V}{b} + \stackrel{V}{c}n\stackrel{V}{c} + \stackrel{V}{a}]$

is
$$(n^{3}+1)$$
 $\begin{vmatrix} \rho & \hat{i} & \rho & \hat{j} & \rho & \hat{k} \\ \rho & \hat{i} & \rho & \hat{j} & \rho & \hat{k} \\ \rho & \hat{i} & \hat{b} & \hat{j} & \rho & \hat{k} \\ \rho & \hat{i} & \rho & \hat{j} & \rho & \hat{k} \\ c & \hat{i} & c & \hat{j} & c & \hat{k} \end{vmatrix}$.

Q.32 (a) Prove that
$$|\vec{a} \times \vec{b}| = \sqrt{-\vec{b} \cdot [\vec{a} \times (\vec{a} \times \vec{b})]}$$

(b) Given that $\vec{a}, \vec{b}, \vec{b}, \vec{q}$ are four vectors such that $\vec{a} + \vec{b} = \mu \vec{p}, \vec{b} \cdot \vec{q} = 0 \& (\vec{b})^2 = 1$, where μ is a scalar then prove that $|(\vec{a} \cdot \vec{q})\vec{b} - (\vec{b} \cdot \vec{q})\vec{a}| = |\vec{p} \cdot \vec{q}|.$

Q.33 ABCD is a tetrahedron with pv's of its angular points as A(-5, 22, 5); B(1, 2, 3); C(4, 3, 2) and D (-1, 2, -3). If the area of the triangle AEF where the quadrilaterals ABDE and ABCF are parallelograms is \sqrt{S} then find the value of S. **Sol.** 110

Q.34 Given the points P(1, 1, -1), Q (1, 2, 0) and R (-2, 2, 2). Find

- (a) $\overrightarrow{PQ} \times \overrightarrow{PR}$
- (b) Equation of the plane containing the points P, Q and R

(i) in scalar dot product form

(ii) in parametric form

(iii) in Cartesian form

and if the plane through PQR cuts the coordinate axes at A, B, C then the area of the ΔABC .

Sol. (a)
$$2\hat{i} - 3\hat{j} + 3\hat{k}$$

(b) (i) $f' \cdot h' = -4$,
(ii) $f' = \hat{i} + \hat{j} - \hat{k} + \lambda(\hat{j} + \hat{k}) + \mu(-3\hat{i} + \hat{j} + 3\hat{k})$,
(iii) $2x - 3y + 3z + 4 = 0$, area $= \frac{4\sqrt{22}}{9}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mot

Q.35 Find the scalars α and β if $\overset{\beta}{a} \times (\overset{\beta}{b} \times \overset{\beta}{c}) + (\overset{\beta}{a} \cdot \overset{\beta}{b}) \overset{\beta}{b} = (4 - 2\beta - \sin \alpha) \overset{\beta}{b} + (\beta^2 - 1) \overset{\beta}{c} \overset{\alpha}{k} (\overset{\beta}{c} \cdot \overset{\beta}{c}) \overset{\beta}{a} = \overset{\beta}{c}$ while $\overset{\beta}{b}$ and $\overset{\beta}{c}$ are non-zero non collinear vectors.

Sol.
$$\alpha = n\pi + \frac{(-1)^n \pi}{2}, n \in I \& \beta = 1$$

Q.36 Given four points P₁, P₂, P₃ and P₄ on the coordinates plane with origin O which satisfy the condition $\overrightarrow{OP}_{n-1} + \overrightarrow{OP}_{n+1} = \frac{3}{2} \overrightarrow{OP}_n$, n = 2, 3

- (i) If P_1 , P_2 lie on the curve xy = 1, then prove that P_3 does not lie on the curve.
- (ii) If P_1 , P_2 , P_3 lie on the circle $x^2 + y^2 = 1$, then prove that P_4 lies on this circle.
- **Q.37** Prove the result (Lagrange's Identity) $(\stackrel{\nu}{p}\times\stackrel{\nu}{q}).$ $(\stackrel{\nu}{r}\times\stackrel{\nu}{s}) = \begin{vmatrix} p,p,p,p\\p,r,p,s\\p,p,p,p\\q,r,q,s \end{vmatrix}$ & use it to prove

the following. Let (ab) denote the plane formed by the lines a, b. If (ab) is perpendicular to (cd) and (ac) is perpendicular to (bd) prove that (ad) is perpendicular to (bc).

Q.38 Let
$$\overset{\nu}{\mathbf{a}} = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}; \overset{\nu}{\mathbf{b}} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}; \overset{\nu}{\mathbf{b}} = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$$

Find the numbers α , β , γ such that

$$\alpha \ddot{a} + \beta \ddot{b} + \gamma \ddot{c} = \begin{bmatrix} -2\\ -5\\ 6 \end{bmatrix}.$$

Sol.
$$\alpha = -1, \beta = -2, \gamma = 3$$

Q.39 Solve the following equation for the vector $\stackrel{P}{\beta}$; $\stackrel{P}{\beta} \times \stackrel{P}{a} + (\stackrel{P}{\beta}, \stackrel{P}{b}) \stackrel{P}{\xi} = \stackrel{P}{b} \times \stackrel{P}{\xi}$ where $\stackrel{P}{a}, \stackrel{P}{b}, \stackrel{P}{\xi}$ are non zero non coplanar vectors and $\stackrel{P}{a}$ is neither perpendicular to $\stackrel{P}{b}$ nor to $\stackrel{P}{\xi}$, hence show that $\left(\stackrel{P}{\rho} \times \stackrel{P}{a} + \frac{[\stackrel{P}{a} \stackrel{P}{b} \stackrel{P}{c}]}{\stackrel{P}{a}, \stackrel{P}{c}} \right)$ is perpendicular to $\stackrel{P}{b} - \stackrel{L}{\xi}$. Sol. $\left\{ \stackrel{P}{\rho} = \frac{[\stackrel{P}{a} \stackrel{P}{b} \stackrel{P}{c}]}{(\stackrel{P}{a}, \stackrel{P}{c}) (\stackrel{P}{a}, \stackrel{P}{b})} - (\stackrel{P}{a} + \stackrel{P}{c} \times \stackrel{P}{b}) + \frac{(\stackrel{P}{b}, \stackrel{P}{c}) \stackrel{P}{c}}{(\stackrel{P}{a}, \stackrel{P}{b})} - \frac{(\stackrel{P}{b}, \stackrel{P}{b}) \stackrel{P}{c}}{(\stackrel{P}{a}, \stackrel{P}{b})} \right\}$

Q.40 The base vectors $\stackrel{\rho}{a_1}$, $\stackrel{\rho}{a_2}$, $\stackrel{\rho}{a_3}$ are given in terms of base vectors $\stackrel{\rho}{b_1}$, $\stackrel{\rho}{b_2}$, $\stackrel{\rho}{b_3}$ as $\stackrel{\rho}{a_1} = 2 \stackrel{\rho}{b_1} + 3 \stackrel{\rho}{b_2} - \stackrel{\rho}{b_3}$;

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

ANSWER KEY

EXERCISE # 1

Qu	1S.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ar	ıs.	В	А	D	В	С	А	C	В	Α	В	В	А	D	В	В
Qu	ıs.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ar	ıs.	С	A,C	А	D	А	С	C	Α	С	D	D	В	В	C	B,C,D
Qu	ıs.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ar	ıs.	B,D	A	A	A	C	С	A	A	A,C,) C	В	B,C	A,B,C	В	C
46. F	46. False 47. (i) True (ii) True 48 . False 49. False															
50. co	os ⁻¹	$\sqrt{\frac{3}{10}}$	51.	$5\sqrt{2}$		52	2.0		53. (Orthoce	entre		54 . 2î -	– ĵ		
55.	$\frac{\pi}{4}$ or	$\frac{3\pi}{4}$	56.	. а												
							EX	ERC	ISE	# 2						
								PAR	T- A							
			Qu	is. 1		2	3	4	5	6	7	8	9	10		
			An	s. E	3 I) (C	C	С	D	В	В	D	А		
			Qu	is. 1	1 1	2 1	3	14	15	16	17	18	19			
			An	is. C			2	С	С	C A B		D	Α			
			_					PAI	RT- E	3						
			Qus	. 20	21	22	23	24	1 25	5 26	27	7 2	8	29		
			Ans	. A,C	C A	A,B	A,B C,D A,B A A,C,D B,C,D A,C A,C,D									
								PAF	RT- (r -						
						Qu	s. 3	0	31	32	33					
						An	s. I	3	С	D	А					
								PAF	RT- E)						
34. A	4 -	→ R; E	$B \rightarrow S;$	$C \rightarrow P$; D \rightarrow	Q		35. A	\rightarrow P;	$B \rightarrow l$	P,R; C	\rightarrow R; l	$D \rightarrow T$			
EXERCISE # 3																
	0			11					0 1			1)				
2. 1	0:	1&7:	5 exter	nally				3. (6	, -9, -9) or (⊸	4, 11, 1	1)				
8.	р х =	$q^{\mu} - \frac{1}{2r}$	$\frac{1}{p^2}$ ($\frac{p}{p}$, $\frac{p}{q}$)p				9. (4	/ \sqrt{2})	i – (1/-	√2) ĵ-	-(1/√2)			
		-F														

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Edubull

10. $(1/\sqrt{3}), (4/\sqrt{3})$	/3, 4/3, 4/3)		$11. \forall = -$	$\frac{1}{b^2} \stackrel{P}{b} + \frac{1}{\stackrel{\rho}{ a \times b}}$	$\frac{1}{ a ^2} \overset{P}{a \times b}$	
13. [[^µ ^µ ^µ ^µ ^µ ^µ]	14. 3	16. $\sqrt{10}$ unit	17. 9 units	20. $\frac{\pi}{6}$	21. 6	23. 8 : 3
27. A	28. A	29. B	30. A	31. B	32. D	33. B
34. A	35. A					

EXERCISE # 4

1. A **2.** C **3.** B

4. Many answers are possible one of the possible answers $V_1 = 2\hat{i}$, $V_2 = -\hat{i} + \hat{j}$, $V_3 = 3\hat{i} - 2\hat{j} + 4\hat{k}$

6. B	7. C	9. C	11. C	12. A	14. B
15. $\hat{w} = \hat{v} - 2(\hat{z})$	n . v) n	16. B	17. B, D	18. C	19. C
20. В	21. A	22. A	23. D	24. C	
25. A \rightarrow Q, S	$B \rightarrow P, R, S, T$; $C \rightarrow T$; $D \rightarrow R$		26. A	27. B 28. 5
29. C	30. A, D	31.9	32. A \rightarrow Q ; B -	\rightarrow P, Q, R, S, T or	$r P; C \to S; D \to T$
33. 3	34. C				

EXERCISE # 5

1. B	2. D	3. B	4. A	5. B	6. B	7. A, C	8. B
9. A	10. –1	11. $\frac{5}{3}\hat{i} + \frac{2}{3}\hat{i}$	$\frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}$	12. (–11/1	5) $\hat{i} - (2/3) \hat{j}$	-(2/15) k̂	

13. L : (2, 8, – 3), M :(0, 1, 2)

15. (i) parallel (ii) the lines intersect at the point with p.v. $-2\hat{i} + 2\hat{j}$ (iii) lines are skew

16.
$$xx_1 + yy_1 = a^2$$

17. 28
18. $x = 2, y = -2, z = -2$
20. 34
21. $\frac{\sqrt{11}}{3}$
22. $-\hat{i} + 2\hat{j} + 5\hat{k}$
23. (b) $\frac{\sqrt{3}}{2}$
24. $\frac{5a^2}{12\sqrt{3}}$ sq. units
25. $p = \frac{q(q^2 - 3)}{4}$; decreasing in $q \in (-1, 1), q \neq 0$
27. NO, NO
28. (i) $\frac{6}{7}\sqrt{14}$ (ii) 6 (iii) $\frac{3}{5}\sqrt{10}$ (iv) $\sqrt{6}$
29. $\frac{11}{\sqrt{170}}$
30. $2\sqrt{17}$
33. 110
34. (a) $2\hat{i} - 3\hat{j} + 3\hat{k}$ (b) (i) $f' \cdot f' = -4$, (ii) $f' = \hat{i} + \hat{j} - \hat{k} + \lambda(\hat{j} + \hat{k}) + \mu(-3\hat{i} + \hat{j} + 3\hat{k})$,
(iii) $2x - 3y + 3z + 4 = 0$, area $= \frac{4\sqrt{22}}{9}$
35. $\alpha = n\pi + \frac{(-1)^n \pi}{2}$, $n \in I \& \beta = 1$
38. $\alpha = -1, \beta = -2, \gamma = 3$

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

39.
$$\left\{\beta = \frac{1}{(d^2, b)} \frac{(d^2, b^2)}{(d^2, b)} \frac{(d^2 + b^2 + b)}{(d^2, b)} + \frac{(b^2 b)^2}{(d^2, b)} - \frac{(b^2 b)^2}{(d^2, b)} \right\}$$
 40. $F = 2b_1^2 + 3b_2^2 + 3b_3^2$