VECTOR EXERCISE # 1

Questions based on **Definition & Test of collinearity**

Q.1 If ABCDE is a pentagon then the resultant of forces \overrightarrow{AB} , \overrightarrow{AE} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{ED} and \overrightarrow{AC} in terms of \overrightarrow{AC} is- $(A) 2 \overrightarrow{AC}$ (B) $3\overrightarrow{AC}$ $(C) \overrightarrow{AC}$ (D) None of these d d Sol. [**B**] D Bb έE4 $\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC}$ = (b-a) + (b-a) + (b-b) + (b-b) + (b-a) + (b-b) + (b-a) + (bSol. $(\xi - \xi)$ $= 3(\vec{c} - \vec{a}) = 3\vec{AC}$ Points $\vec{a} + \vec{b} + \vec{c}$, $4\vec{a} + 3\vec{b}$, $10\vec{a} + 7\vec{b} - 2\vec{c}$ **Q.2** are-(A) collinear (B) coplanar (D) None of these (C) non-collinear Sol. [A] $\vec{a} + \vec{b} + \vec{c} = P.V. \text{ of } A$ $\vec{AB} = 3\vec{a} + 2\vec{b} - \vec{c}$ $\overrightarrow{AC} = 9\overrightarrow{a} + 6\overrightarrow{b} - 3\overrightarrow{c} =$ $4a^{\mu} + 3b = P.V.$ of B 3(3a + 2b - c) $10\ddot{a} + 7\ddot{b} - 2\ddot{c} = P.V.$ of C $\overrightarrow{AB} = \lambda \overrightarrow{AC}$ Collinear If Five forces \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} , \overrightarrow{AF} act at Q.3 the vertex A of a regular hexagon ABCDEF. then their resultant is (where O is the centroid

(A) $2\overrightarrow{AO}$ (B) $3\overrightarrow{AO}$ (C) $5\overrightarrow{AO}$ (D) $6\overrightarrow{AO}$

Mob no. : +91-9350679141

Sol.[D] $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF}$

of the hexagon)-

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

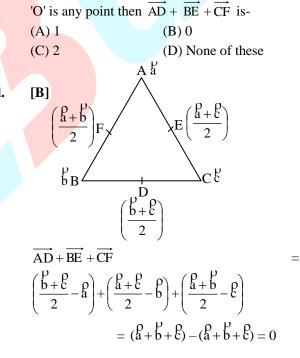
$$= (\overleftarrow{b} - \overrightarrow{a}) + (\overleftarrow{c} - \overleftarrow{a}) + (\overleftarrow{d} - \overrightarrow{a}) + (\overleftarrow{c} - \overleftarrow{a}) + (\overleftarrow{f} - \overrightarrow{a})$$

Let centre is \overleftarrow{b}
$$= \overleftarrow{a} + \overleftarrow{b} + \overleftarrow{c} + \overrightarrow{d} + \overleftarrow{c} + \overrightarrow{f} - 6\overleftarrow{a}$$

$$= \overleftarrow{0} - 6\overleftarrow{a} = 6\overrightarrow{AO}$$

 $\overleftarrow{c} \overleftarrow{E}$
 \overrightarrow{b}
 $\overrightarrow{f} F$
 \overleftarrow{A}
 \overrightarrow{b}
 \overrightarrow{b}

Q.4 If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and



Q.5 If the vector $\stackrel{P}{b}$ is collinear with the vector $\stackrel{P}{a} = (2\sqrt{2}, -1, 4) \text{ and } |\stackrel{P}{b}| = 10$, then (A) $\stackrel{P}{a} \pm \stackrel{P}{b} = 0$ (B) $\stackrel{P}{a} \pm 2\stackrel{P}{b} = 0$ (C) $2\stackrel{P}{a} \pm \stackrel{P}{b} = 0$ (D) None of these Sol. [C] $\stackrel{P}{b} = \lambda (2\sqrt{2}\hat{i} - \hat{j} + 4\hat{k})$ $|\stackrel{P}{b}| = |\lambda| \sqrt{8+1+16}$ $10 = 5 |\lambda| \implies \lambda = \pm 2$

$$b = \pm 2a$$
 $\Rightarrow 2a \pm b = 0$

Questions Section formulae based on

If points A(1, 2, 3), B(3, 4, 7), C(-3, -2, -5) **Q.6** are collinear then the ratio in which B divides AC is-(A) - 1 : 3(B) 1:3 (C) 3 : 1 (D) None of these Sol. [A] A(1, 2, 3) C(-3, -2, -5) let B divides AC in ratio of λ : 1 $\left(\frac{-3\lambda+1}{\lambda+1},\frac{-2\lambda+2}{\lambda+1},\frac{-5\lambda+3}{\lambda+1}\right)$ compare as in 'B' (3, 4, 7) $\frac{-3\lambda+1}{\lambda+1} = 3 \qquad \left| \begin{array}{c} \frac{-2\lambda+2}{\lambda+1} = 4 \end{array} \right| \quad \frac{-5\lambda+3}{\lambda+1} = 7$ $\begin{vmatrix} -3\lambda + 1 = 3\lambda \\ +3 \end{vmatrix} \begin{vmatrix} -2\lambda + 2 = 4\lambda \\ +4 \end{vmatrix} \lambda = \frac{-1}{3}$ $6\lambda = -2$ $6\lambda = -2$ $\lambda = \frac{-1}{3}$ $\lambda = \frac{-1}{3}$

Hence -1:3

Q.7 The position vectors of points A, B, C are respectively $\overset{\flat}{a}$, $\overset{\flat}{b}$, $\overset{\flat}{c}$. If L divides AB in 3 : 4 & M divides BC in 2 : 1 both externally, then \overrightarrow{LM} is-(A) $4\frac{b}{a} - 2\frac{b}{b} + 2\frac{b}{c}$ (B) $4\ddot{a} + 2\dot{b} + 2\ddot{c}$ $(C) - 4\ddot{a} + 2\ddot{b} + 2\ddot{c}$ (D) $4\ddot{a} - 2\ddot{b} - 2\ddot{c}$ [C]

Sol.

$$\vec{L} = \frac{4a^{\rho} - 3b'}{1}, \ \vec{M} = \frac{2b - b'}{1}$$
then
$$\vec{LM} = P.V \text{ of } \vec{M} - P.V \text{ of } C$$

$$\vec{LM} = (2b - b) - (4a - 3b)$$

$$\vec{LM} = 2b' - b' - 4a' + 3b'$$

$$\vec{LM} = -4b' + 2b' + 2b'$$

If A(4, 7, 8), B(2, 3, 4), C(2, 5, 7) are the **Q.8** position vectors of the vertices of $\triangle ABC$. Then length of angle bisector of angle A is -

(A)
$$\frac{3}{2}\sqrt{34}$$
 (B) $\frac{2}{3}\sqrt{34}$

(C)
$$\frac{1}{2}\sqrt{34}$$
 (D) $\frac{1}{3}\sqrt{34}$
Sol. **[B]**
 $A \leftarrow 6$
 $A \leftarrow$

If $\vec{e}_1 \& \vec{e}_2$ are non collinear unit vectors, such Q.9 that $|\vec{e}_1 + \vec{e}_2| = \sqrt{3}$ then $(2\vec{e}_1 - 5\vec{e}_2).(3\vec{e}_1 + \vec{e}_2)$ is equal to

(A)
$$-\frac{11}{2}$$
 (B) $\frac{13}{2}$ (C) $\frac{2}{11}$ (D) $\frac{11}{2}$

Sol. [A]

$$| \begin{array}{c} \theta_{1} + \theta_{2} | = \sqrt{3} \\ | \begin{array}{c} \theta_{1} |^{2} + | \begin{array}{c} \theta_{2} |^{2} + \\ 2 (\begin{array}{c} \theta_{1} \cdot \theta_{2}) = 3 \\ 1 + 1 + 2 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} \rangle = 3 \\ 1 + 1 + 2 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} \rangle = 3 \\ | \begin{array}{c} \theta_{1} | \\ \theta_{1} |^{2} + 2 \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} \cdot \theta_{2} - 15 \end{array} \\ | \begin{array}{c} \theta_{1} - 1$$

Q.10 The vector $\stackrel{b}{\rho}$ perpendicular to the vectors $\stackrel{b}{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\stackrel{b}{b} = \hat{i} - 2\hat{j} + 3\hat{k}$ and satisfying the condition $\stackrel{b}{\rho} .(2\hat{i} - \hat{j} + \hat{k}) = -6$ is (A) $-\hat{i} + \hat{j} + \hat{k}$ (B) $3(-\hat{i} + \hat{j} + \hat{k})$ (C) $2(-\hat{i} + \hat{j} + \hat{k})$ (D) $\hat{i} - \hat{j} + \hat{k}$ Sol. [B] $\stackrel{b}{a} \times \stackrel{b}{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \end{vmatrix}$

$$\begin{vmatrix} 1 & -2 & 3 \\ 1 & -2 & 3 \end{vmatrix}$$

= 7 ($\hat{i} - \hat{j} - \hat{k}$)
 $\not{p} = \lambda (\hat{i} - \hat{j} - \hat{k})$
 $\not{p} = \lambda (\hat{i} - \hat{j} - \hat{k})$
 $\not{p} \cdot (2\hat{i} - \hat{j} + \hat{k}) = \lambda (\hat{i} - \hat{j} - \hat{k}) \cdot (2\hat{i} - \hat{j} + \hat{k}) = -6$
 $\lambda (2 + 1 - 1) = -6$
 $\Rightarrow \lambda = -3$
So $\not{p} = -3(\hat{i} - \hat{j} - \hat{k})$
 $\not{p} = 3(-\hat{i} + \hat{j} + \hat{k})$

Q.11 If $|\ddot{a}| = 5$, $|\ddot{a} - \ddot{b}| = 8$ and $|\ddot{a} + \ddot{b}| = 10$, then $|\ddot{b}|$ is equal to (A) 1 (B) $\sqrt{57}$ (C) 3 (D) None of these

Sol. [B]

Q.12 Angle between diagonals of a parallelogram whose side are represented by $\mathbf{a}' = 2\hat{i} + \hat{j} + \hat{k}$ and $\mathbf{b}' = \hat{i} - \hat{j} - \hat{k}$ (A) $\cos^{-1}\left(\frac{1}{2}\right)$ (B) $\cos^{-1}\left(\frac{1}{2}\right)$

(C)
$$\cos^{-1}\left(\frac{4}{9}\right)$$
 (D) $\cos^{-1}\left(\frac{5}{9}\right)$

Sol. [A]

Q.13 Vectors $\stackrel{\nu}{a}$ and $\stackrel{\nu}{b}$ make an angle $\theta = \frac{2\pi}{3}$. If $|\stackrel{\nu}{a}| = 1$, $|\stackrel{\nu}{b}| = 2$, then $\{(\stackrel{\nu}{a} + 3\stackrel{\nu}{b}) \times (3\stackrel{\nu}{a} - \stackrel{\nu}{b})\}^2$ is equal to

is equal to

(A) 225 (B) 250 (C) 275 (D) 300
Sol. [D]

$$\{(\stackrel{0}{a}+3\stackrel{\nu}{b})\times(3\stackrel{\nu}{a}-\stackrel{\nu}{b})\}^{2} = \{-\stackrel{0}{a}\times\stackrel{\nu}{b}+9\stackrel{\nu}{b}\times\stackrel{0}{a}\}^{2}$$

 $= \{10(\stackrel{\nu}{b}\times\stackrel{0}{a})\}^{2} = (10)^{2}|\stackrel{\nu}{b}|^{2}|\stackrel{0}{a}|^{2}\sin^{2}\theta$
 $= 100 \times 4 \times 1 \times \sin^{2}\left(\frac{2\pi}{3}\right)$
 $= 100 \times 4 \times \frac{3}{4} = 300$

Q.14 Unit vector perpendicular to the plane of the triangle ABC with position vectors a^{ν} , b^{ν} , c^{ν} of the vertices A, B, C is

(A)
$$\frac{(\stackrel{\rho}{a}\times\stackrel{\rho}{b}+\stackrel{\rho}{b}\times\stackrel{\rho}{c}+\stackrel{\rho}{c}\times\stackrel{\rho}{a})}{\Delta}$$

(B)
$$\frac{(\stackrel{\rho}{a}\times\stackrel{\rho}{b}+\stackrel{\rho}{b}\times\stackrel{\rho}{c}+\stackrel{\rho}{c}\times\stackrel{\rho}{a})}{2\Delta}$$

(C)
$$\frac{(\stackrel{\rho}{a}\times\stackrel{\rho}{b}+\stackrel{\rho}{b}\times\stackrel{\rho}{c}+\stackrel{\rho}{c}\times\stackrel{\rho}{a})}{4\Delta}$$

(D) None of these
$$A(\overset{V}{a})$$

$$= \frac{\begin{pmatrix} \rho & \mu \\ b \end{pmatrix} B}{\begin{pmatrix} \rho & \mu \\ c \end{pmatrix} \times \begin{pmatrix} \rho & \rho \\ a - b \end{pmatrix}} C(t)$$

$$= \frac{\begin{pmatrix} \rho & \mu \\ a \times b \end{pmatrix} \times \begin{pmatrix} \rho & \rho \\ a - b \end{pmatrix}}{2\Delta}$$

$$= \frac{\begin{pmatrix} \rho & \mu \\ a \times b \end{pmatrix} \times \begin{pmatrix} \rho & \rho \\ a - b \end{pmatrix}}{2\Delta}$$

$$= \frac{\begin{pmatrix} \rho & \mu \\ a \times b \end{pmatrix} \times \begin{pmatrix} \rho & \rho \\ a - b \end{pmatrix}}{2\Delta}$$

$$= \frac{\begin{pmatrix} \rho & \mu \\ a \times b \end{pmatrix} \times \begin{pmatrix} \rho & \rho \\ a - b \end{pmatrix}}{2\Delta}$$

Q.15 Given the three vectors $\stackrel{i}{b} = -2\hat{i} + \hat{j} + \hat{k}$, $\stackrel{i}{b} = \hat{i} + 5\hat{j}$ and $\stackrel{i}{c} = 4\hat{i} + 4\hat{j} - 2\hat{k}$. The projection of the vector $3\stackrel{i}{b} - 2\stackrel{i}{b}$ on the vector $\stackrel{i}{c}$ is (A) 11 (B) -11 (C) 13 (D) None of these **Sol. [B]** Projection of $(3\stackrel{o}{a} - 2\stackrel{j}{b})$ at $\stackrel{i}{c}$ $= \frac{(3\stackrel{o}{a} - 2\stackrel{j}{b}) \stackrel{o}{c}}{|_{b}|} = -11$

Edubull

Questions **Triple Product**

For three vectors \vec{u} , \vec{v} , \vec{w} which of the Q.16 following expressions is not equal to any of the remaining three ? (A) $\overset{V}{\mathfrak{u}}$. ($\overset{V}{\mathfrak{v}} \times \overset{V}{\mathfrak{w}}$) (B) $(\stackrel{\nu}{v} \times \stackrel{\nu}{w})$. $\stackrel{\nu}{u}$ (C) $\vec{v} \cdot (\vec{u} \times \vec{w})$ (D) $(\vec{u} \times \vec{v}) \cdot \vec{w}$ Sol. [C] (A) \overrightarrow{u} .($\overrightarrow{v} \times \overrightarrow{w}$) = [$\overrightarrow{u} \times \overrightarrow{v}$] **(B)** $(\overrightarrow{v} \times \overrightarrow{w})$. $\overrightarrow{u} = -\overrightarrow{v}$. $(\overrightarrow{u} \times \overrightarrow{w})$ $\rightarrow \rightarrow \rightarrow \rightarrow$ = - (v × u), w $= \stackrel{\rightarrow}{u} \cdot (\stackrel{\rightarrow}{v} \times \stackrel{\rightarrow}{w}) = [\stackrel{\rightarrow}{u} \stackrel{\rightarrow}{v} \stackrel{\rightarrow}{w}]$ (C) \overrightarrow{v} .($\overrightarrow{u} \times \overrightarrow{w}$) = -($\overrightarrow{u} \times \overrightarrow{v}$). \overrightarrow{w} = - \overrightarrow{u} $(v \times \overrightarrow{w}) = \begin{bmatrix} \overrightarrow{u} & \overrightarrow{v} & \overrightarrow{w} \end{bmatrix}$ **(D)** $(\vec{u} \times \vec{v}) \cdot \vec{w} = \vec{u} \cdot (v \times \vec{w}) = [\vec{u} \vec{v} \vec{w}]$ Clearly C is not equal Which of the following expression is meaningful? Q.17 (A) $\stackrel{\nu}{\mathbf{u}} \cdot (\stackrel{\nu}{\mathbf{v}} \times \stackrel{\nu}{\mathbf{w}})$ (B) $(\stackrel{\nu}{\mathbf{u}} \cdot \stackrel{\nu}{\mathbf{v}}) \cdot \stackrel{\nu}{\mathbf{w}}$ (C) (\ddot{u}, \ddot{v}) \ddot{w} (D) $\mathbf{\tilde{u}} \times (\mathbf{\tilde{v}}, \mathbf{\tilde{w}})$ Sol. [A,C] Clearly \vec{u} .($\vec{v} \times \vec{w}$) and $(\mathbf{u}, \mathbf{v}) \mathbf{w}$ is meaningful Option A and C are correct. For any three vectors a, b and c, Q.18 $(\breve{a} - \breve{b})$. $(\breve{b} - \breve{c}) \times (\breve{c} - \breve{a}) =$ (B) $\stackrel{\mu}{a}$, $\stackrel{\mu}{b} \times \stackrel{\nu}{c}$ (A) 0 (C) 2 b^{μ} . $b^{\nu} \times b^{\nu}$ (D) None of these [A] Sol. $(a - b).(b - c) \times (c - a)$ $=(\overset{\mu}{a}-\overset{\mu}{b}).(\overset{\mu}{b}\times\overset{\mu}{c}-\overset{\mu}{b}\times\overset{\mu}{a}+\overset{\mu}{c}\times\overset{\mu}{a})$ $= \overset{\mu}{a} \cdot (\overset{\mu}{b} \times \overset{\mu}{c}) - \overset{\mu}{b} \cdot (\overset{\mu}{c} \times \overset{\mu}{a})$ $= \overset{\mu}{a} \cdot (\overset{\mu}{b} \times \overset{\mu}{c}) + \overset{\mu}{b} \cdot (\overset{\mu}{a} \times \overset{\mu}{c})$ $= \overset{\mu}{a} \cdot (\overset{\mu}{b} \times \overset{\mu}{c}) - (\overset{\mu}{a} \times \overset{\mu}{b}) \cdot \overset{\mu}{c}$ $= \overset{\mu}{a} \cdot (\overset{\mu}{b} \times \overset{\mu}{c}) - \overset{\mu}{a} \cdot (\overset{\mu}{b} \times \overset{\mu}{c})$ = 0 Power by: VISIONet Info Solution Pvt. Ltd

	Edubull
Q.19	\vec{A},\vec{B} and \vec{C} are three non coplanar vectors,
	then $(\vec{A} + \vec{B} + \vec{C}) \cdot ((\vec{A} + \vec{B}) \times (\vec{A} + \vec{C})) =$
	(A) 0 (B) $[\vec{A}, \vec{B}, \vec{C}]$
	(C) 2 $[\vec{A}, \vec{B}, \vec{C}]$ (D) – $[\vec{A}, \vec{B}, \vec{C}]$
Sol.	
	$(\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}). ((\overrightarrow{A} + \overrightarrow{B}) \times (\overrightarrow{A} + \overrightarrow{C}))$
	$= (\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}). (\overrightarrow{A} \times \overrightarrow{C} + \overrightarrow{B} \times \overrightarrow{A} + \overrightarrow{B} \times \overrightarrow{C})$
	$= \overrightarrow{A} . (\overrightarrow{B} \times \overrightarrow{C}) + \overrightarrow{B} . (\overrightarrow{A} \times \overrightarrow{C}) + \overrightarrow{C} . (\overrightarrow{B} \times \overrightarrow{A})$
	$= \overrightarrow{A} \cdot (\overrightarrow{B} \times \overrightarrow{C}) - \overrightarrow{B} \cdot (\overrightarrow{C} \times \overrightarrow{A}) - \overrightarrow{C} \cdot (\overrightarrow{A} \times \overrightarrow{B})$
	$= \begin{bmatrix} \overrightarrow{A} & \overrightarrow{B} & \overrightarrow{C} \end{bmatrix} - \begin{bmatrix} \overrightarrow{A} & \overrightarrow{B} & \overrightarrow{C} \end{bmatrix} - \begin{bmatrix} \overrightarrow{A} & \overrightarrow{B} & \overrightarrow{C} \end{bmatrix}$
	$= - \begin{bmatrix} \overrightarrow{A} & \overrightarrow{B} & \overrightarrow{C} \end{bmatrix}$
Q.20	If $\breve{A}, \breve{B}, \breve{C}$ are three non-coplanar vectors, then
	$\begin{array}{c} A \cdot B \times C \\ A \cdot B \times C \\ \hline C \times A \cdot B \end{array} + \begin{array}{c} B \cdot A \times C \\ B \cdot A \times B \\ \hline C \cdot A \times B \end{array} = \begin{array}{c} B \cdot A \times C \\ \hline C \cdot A \times B \end{array}$
	$\begin{array}{c} \mathbf{C} \times \mathbf{A} \cdot \mathbf{B} \\ \mathbf{(A)} \ 0 \\ \end{array} \qquad \qquad$
	(A) 0 (B) 1 (C) 2 (D) None of these
Sol. [A	$[\Theta \overrightarrow{A}, \overrightarrow{B}, \overrightarrow{C}]$ are non coplanar vector
	$\Rightarrow \begin{bmatrix} A & B & C \end{bmatrix} \neq 0$
	we know that
	$\vec{A} \cdot \vec{B} \times \vec{C} = [\vec{A} \vec{B} \vec{C}]$
	$\vec{B} \cdot \vec{A} \times \vec{C} = - [\vec{A} \vec{B} \vec{C}]$
	\overrightarrow{C} . $\overrightarrow{A} \times \overrightarrow{B} = [\overrightarrow{A} \overrightarrow{B} \overrightarrow{C}]$
	$\overrightarrow{A}.\overrightarrow{B}\times\overrightarrow{C}$ $\overrightarrow{B}.\overrightarrow{A}\times\overrightarrow{C}$
	$\Rightarrow \frac{\overrightarrow{A} \cdot \overrightarrow{B} \times \overrightarrow{C}}{\overrightarrow{C} \cdot \overrightarrow{A} \times \overrightarrow{B}} + \frac{\overrightarrow{B} \cdot \overrightarrow{A} \times \overrightarrow{C}}{\overrightarrow{C} \cdot \overrightarrow{A} \times \overrightarrow{B}}$
	$= \frac{\overrightarrow{[A \ B \ C]}}{\overrightarrow{[A \ B \ C]}} + \frac{\overrightarrow{[A \ B \ C]}}{\overrightarrow{[A \ B \ C]}} = 0$
Q.21	The value of $[(\ddot{a} + 2\ddot{b} - \ddot{c}), (\ddot{a} - \ddot{b}), (\ddot{a} - \ddot{b} - \ddot{c})]$
Q.=1	is equal to the box product:
	(A) $\begin{bmatrix} a & b & c \\ b & c \end{bmatrix}$ (B) $2\begin{bmatrix} a & b & c \\ b & c \end{bmatrix}$
a 1	(C) $3 \begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix}$ (D) $4 \begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix}$
Sol.	$\begin{bmatrix} \mathbf{C} \end{bmatrix}$
	$[(\vec{a} + 2\vec{b} - \vec{c})(\vec{a} - \vec{b})(\vec{a} - \vec{b} - \vec{c})]$
	$= (\overrightarrow{a} + 2\overrightarrow{b} - \overrightarrow{c}) \cdot \{ (\overrightarrow{a} - \overrightarrow{b}) \times (\overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}) \}$

Website : www.edubull.com Mob no. : +91-9350679141

	$= (\overrightarrow{a} + 2\overrightarrow{b} - \overrightarrow{c}) \cdot \{(\overrightarrow{a} \times \overrightarrow{a}) - (\overrightarrow{a} \times \overrightarrow{b}) - (\overrightarrow{a} \times \overrightarrow{c})\}$
	$-(\vec{b}\times\vec{a})+(\vec{b}\times\vec{b})+(\vec{b}\times\vec{c})$
	$= (\overrightarrow{a} + 2\overrightarrow{b} - \overrightarrow{c}) \{ 0 - (\overrightarrow{a} \times \overrightarrow{b}) - (\overrightarrow{a} \times \overrightarrow{c}) \}$
	$+(\overrightarrow{a}\times\overrightarrow{b})+0+(\overrightarrow{b}\times\overrightarrow{c})\}$
	$= (\vec{a} + 2\vec{b} - \vec{c}) \{ (\vec{b} \times \vec{c}) - (\vec{a} \times \vec{c}) \}$
	$= a . (\vec{b} \times \vec{c}) + 2\vec{b} . (\vec{b} \times \vec{c}) - \vec{c} . (\vec{b} \times \vec{c})$
	$-\overrightarrow{a}(\overrightarrow{a}\times\overrightarrow{c})-2\overrightarrow{b}.(\overrightarrow{a}\times\overrightarrow{c})+\overrightarrow{c}.(\overrightarrow{a}\times\overrightarrow{c})$
	$= \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} - 2 \begin{bmatrix} \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \end{bmatrix}$
	$= \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} + 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
	$= 3 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
Q.22	If $\hat{a} = \hat{i} + \hat{j} + \hat{k}$, $\hat{b} = \hat{i} - \hat{j} + \hat{k}$, $\hat{c} = \hat{i} + 2\hat{j} - \hat{k}$,
	$\begin{bmatrix} \rho \rho & \rho \rho & \rho \rho \\ a.a & a.b & a.c \\ a.b & a.c & a.c \\ a.b & a.$
	then the value of $\begin{vmatrix} \rho & \rho & \rho & \rho & \rho \\ a.a & a.b & a.c \\ p.\rho & \rho & \rho & \rho & \rho \\ b.a & b.b & b.c \\ \rho.\rho & \rho.\rho & \rho.\rho \\ c.a & c.b & c.c \end{vmatrix}$ is equal to
	(A) 2 (B) 4 (C) 16 (D) 64
Sol.	[C]
	Given $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$,
	$\vec{c} = \hat{i} + 2\hat{j} - \hat{k}$
	$\begin{vmatrix} \overrightarrow{a}, \overrightarrow{a} & \overrightarrow{a}, \overrightarrow{b} & \overrightarrow{a}, \overrightarrow{c} \end{vmatrix}$ $\begin{vmatrix} 2 & 1 & 2 \end{vmatrix}$
	then $\begin{vmatrix} \vec{a} & \vec{a} & \vec{a} & \vec{b} & \vec{a} & \vec{c} \\ \vec{b} & \vec{a} & \vec{b} & \vec{b} & \vec{b} & \vec{c} \end{vmatrix} = \begin{vmatrix} 3 & 1 & 2 \\ 1 & 3 & -2 \end{vmatrix}$
	$\begin{vmatrix} \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c} \end{vmatrix} \begin{vmatrix} 2 & -2 & 6 \end{vmatrix}$
	= 3(18 - 4) - 1(6 + 4) + 2(-2 - 6) = 16
Q.23	If $\overset{\nu}{b}$ and $\overset{\nu}{c}$ are two non- collinear vectors such
-	that $\overset{a}{\mathbf{b}} \parallel (\overset{b}{\mathbf{b}} \times \overset{b}{\mathbf{c}})$, then $(\overset{a}{\mathbf{b}} \times \overset{b}{\mathbf{b}})$. $(\overset{a}{\mathbf{b}} \times \overset{b}{\mathbf{c}})$ is equal to
	(A) $a^{\rho_2}(b, c)$ (B) $b^{\rho_2}(a, c)$
Sol.	(C) $c^{\rho_2}(a, b)$ (D) None of these
	[A] Let $\vec{a} = x\hat{i} + 12\hat{j} - \hat{k}$, $\vec{b} = 2\hat{i} + 2x\hat{j} + \hat{k}$ and
Q.24	Let $\mathbf{a} = \mathbf{x}\mathbf{i} + 12\mathbf{j} - \mathbf{k}$, $\mathbf{b} = 2\mathbf{i} + 2\mathbf{x}\mathbf{j} + \mathbf{k}$ and $\mathbf{c} = \hat{\mathbf{i}} + \hat{\mathbf{k}}$. If the ordered set $[\mathbf{b} \ \mathbf{c} \ \mathbf{a}]$ is left
	c = 1 + k. If the ordered set [b c a] is left handed, then:
	(A) $x \in (2, \infty)$ (B) $x \in (-\infty, -3)$
	(C) $x \in (-3, 2)$ (D) $x \in \{-3, 2\}$

Mob no. : +91-9350679141

[C]
[
$$\stackrel{b}{b} \stackrel{\rho}{c} \stackrel{\rho}{a}] < 0$$

 $\begin{vmatrix} 2 & 2x & 1 \\ 1 & 0 & 1 \\ x & 12 & -1 \end{vmatrix} < 0$
 $R_1 \rightarrow R_1 + R_3$
 $R_2 \rightarrow R_2 + R_3$
 $\begin{vmatrix} 2+x & 2x+12 & 0 \\ 1+x & 12 & 0 \\ x & 12 & -1 \end{vmatrix} < 0$
 $-1[(24+12x) - (1+x)(2x+12)] < 0$
 $[24+12x - 2x - 12 - 2x^2 - 12x] > 0$
 $-2x^2 - 2x + 12 > 0$
 $x^2 + x - 6 < 0$
 $(x + 3)(x - 2) < 0$
 $x \in (-3, 2)$
If $\stackrel{b}{a}, \stackrel{b}{b}, \stackrel{b}{c}$ be the unit vectors such tha

Q.25 If a', b', c' be the unit vectors such that b' is not parallel to c' and $a' \times (2b \times c') = b'$, then the angle that a makes with b' and c' are respectively

A)
$$\frac{\pi}{3} \& \frac{\pi}{4}$$
 (B) $\frac{\pi}{3} \& \frac{2\pi}{3}$
C) $\frac{\pi}{2} \& \frac{2\pi}{3}$ (D) $\frac{\pi}{2} \& \frac{\pi}{3}$
D]

Sol.

$$\overset{'}{a} \times (2\overset{'}{b} \times \overset{'}{c}) = \overset{'}{b}$$

$$(\overset{'}{a}.\overset{'}{c}) 2\overset{'}{b} - (\overset{'}{a}.2\overset{'}{b}) \overset{'}{c} = \overset{'}{b}$$

$$\overset{'}{b} (2\overset{'}{a}.\overset{'}{c} - 1) - (\overset{'}{a}.2\overset{'}{b}) \overset{'}{c} = 0$$

$$2\overset{'}{a}.\overset{'}{c} - 1 = 0 , \quad \overset{'}{a}.2\overset{'}{b} = 0$$

$$so \overset{'}{a}.\overset{'}{c} = \frac{1}{2} & \overset{'}{a}.2\overset{'}{b} = 0, \quad \overset{'}{a}.\overset{'}{b} = 0$$

$$angle between$$

$$\overset{'}{a} & \overset{'}{c} = \frac{\pi}{3} angle between \overset{'}{a} & \overset{'}{b} = \frac{\pi}{2}$$

Q.26 Vector of length 3 unit which is perpendicular to $\hat{i} + \hat{j} + \hat{k}$ and lies in the plane of $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j}$, is-(A) $\frac{3}{\sqrt{6}}(\hat{i} - 2\hat{j} + \hat{k})$ (B) $\frac{3}{\sqrt{6}}(2\hat{i} - \hat{j} - \hat{k})$ (C) $\frac{3}{\sqrt{114}}(8\hat{i} - 7\hat{j} - \hat{k})$ (D) $\frac{3}{\sqrt{114}}(-7\hat{i} + 8\hat{j} - \hat{k})$

Sol.	[D]
Q.27	Given unit vectors $\vec{h}, \vec{h} \& \vec{\rho}$ such that angle
	between $\vec{h} \ll \vec{h} = angle$ between \vec{p} and
	$(\stackrel{P}{\mathbf{m}}\times\stackrel{P}{\mathbf{n}}) = \frac{\pi}{6}$ then $[\stackrel{P}{\mathbf{n}}\stackrel{P}{\mathbf{p}}\stackrel{P}{\mathbf{m}}] =$
	(A) $\frac{\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{4}$
	(C) $\frac{\sqrt{3}}{5}$ (D) None of these
Sol.	[B]
501.	$[\vec{h} \ \vec{p} \ \vec{m}] = [\vec{p} \ \vec{m} \ \vec{h}] = \vec{p} . (\vec{M} \times \vec{h})$
	$= \breve{p} \breve{m} \times \breve{n} \cos \frac{\pi}{6}$
	$= \vec{p} \vec{m} \vec{n} \sin \frac{\pi}{6} \cos \frac{\pi}{6}$
	$=\frac{1}{2}\times\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{4}$
Q.28	Let \vec{u} , \vec{v} , \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = 0$.
Q.20	If $ \mathbf{u} = 3$, $ \mathbf{v} = 5$, $ \mathbf{w} = 4$. Then the value
	of the $\mathbf{\hat{u}}$, $\mathbf{\hat{v}}$ + $\mathbf{\hat{v}}$, $\mathbf{\hat{w}}$ + $\mathbf{\hat{v}}$. $\mathbf{\hat{u}}$ is-
	(A) 47 (B) -25 (C) 0 (D) 25
Sol.	[B]
	$ \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v} \overrightarrow{v}$
	$ \Rightarrow \mathbf{u} + \mathbf{v} + \mathbf{w} = 0 $ $ \Rightarrow \mathbf{u} ^{2} + \mathbf{v} ^{2} + \mathbf{w} ^{2} + 2(\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{u}) $
	$\Rightarrow \mathbf{u} ^{2} + \mathbf{v} ^{2} + \mathbf{w} ^{2} + 2(\mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{u}) = 0$
	$\Rightarrow 9 + 25 + 16 + 2 (\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u}) = 0$
	$\Rightarrow \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{w} + \overrightarrow{w} \cdot \overrightarrow{u} = -25$

Questions based on Straight line

Let $\stackrel{\nu}{a} = \hat{i} + \hat{j}$ and $\stackrel{\nu}{b} = 2\hat{i} - \hat{k}$. The point of Q.29 intersection of the lines $f \times a = b \times a$ and $f' \times b' = a' \times b''$ is $(A) - \hat{i} + \hat{j} + 2\,\hat{k}$ (B) $3\hat{i} - \hat{j} + \hat{k}$ (D) $\hat{i} - \hat{j} - \hat{k}$ (C) $3\hat{i} + \hat{j} - \hat{k}$

Sol.	[C]	
	$\mathbf{f} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}$	p p p = p p p $r \times b = a \times b$
	$(\mathbf{r} - \mathbf{b}) \times \mathbf{a} = 0$	$(\overset{\nu}{\mathbf{r}}-\overset{\nu}{\mathbf{a}})\times\overset{\nu}{\mathbf{b}}=0$
	$r - b = \lambda a$	$f' - a = \mu b$
	$p = b + \lambda a$	$f' = a' + \mu b'$
	(i)	(ii)
	First line	
	$\hat{\mathbf{r}}_{1} = (2\hat{\mathbf{i}} - \hat{\mathbf{k}}) + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{j}})$	$\hat{\mathbf{r}}_{2} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \mu(2\hat{\mathbf{i}} - \hat{\mathbf{k}})$
	$\hat{\mathbf{r}}_{1} = \hat{\mathbf{i}}(2+\lambda) + \lambda \hat{\mathbf{j}} - \hat{\mathbf{k}}$	$\hat{\mathbf{f}}_{2} = \hat{\mathbf{i}}(2+2\mu) + \hat{\mathbf{j}} - \mu \hat{\mathbf{k}}$
	compare $2 + \lambda =$	$1 + 2\mu$
	$\lambda = 1$	
	$\mu = 1$	
	So point of intersection 3	3i + j - k
Q.30	If a line has a vector equa	ation
	$\vec{\mathbf{f}} = 2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \lambda (\hat{\mathbf{i}} - 3\hat{\mathbf{j}}),$ then which of the	
	following statements hol	d good?
	(A) the line is parallel to	$2\hat{i} + 6\hat{j}$
	(B) the line passes throug	gh the point $3\hat{i} + 3\hat{j}$
	(C) the line passes throug	gh the point $\hat{i} + 9\hat{j}$
	(D) the line is parallel to	XY- plane
Sol.	[B , C , D]	
	$\vec{r} = 2\hat{i} + 6\hat{j} + \lambda(\hat{i} - 3\hat{j})$	
	general point on line {2 -	$+\lambda, 6-3\lambda, 0\}$
	(B) Let point $3\hat{i} + 3\hat{j}$	
	$2 + \lambda = 3 \Longrightarrow \lambda = 1$	
	$6 - 3\lambda = 3 \Longrightarrow 3\lambda = 3 \Longrightarrow \lambda$	$\lambda = 1$
	(C) Let point $\hat{i} + 9\hat{j}$	
	$2 + \lambda = 1 \Longrightarrow \lambda = -1$	
	$6 - 3\lambda = 9 \Longrightarrow - 3\lambda = 3 \Longrightarrow$	
^	(D) Line is parallel to $(\hat{i}$	
of (i –	(\hat{j}) with, \hat{k} is zero. Then l	ine parallel to xy

palne.

Q.31 A line passes through a point A with position vector $3\hat{i} + \hat{j} - \hat{k}$ and is parallel to the vector $2\hat{i} - \hat{j} + 2\hat{k}$. If P is a point on this line such that AP = 15 units, then the position vector of the point P is/are

(A) $13\hat{i} + 4\hat{j} - 9\hat{k}$ (B) $13\hat{i} - 4\hat{j} + 9\hat{k}$

 $(2\hat{i} + \hat{j} + 2\hat{k}) \cdot (3\hat{i} - 2\hat{j} - m\hat{k}) = 0$

 $6-2-2m=0 \Rightarrow 2m=4 \Rightarrow m=2$

Shortest distance between the lines:

 $r^{\mu} = (\hat{i} - \hat{i} + 2\hat{k}) + \mu (2\hat{i} + 4\hat{i} - 5\hat{k})$ is

line are not parallel and doesn't have any

intersection point (lines are skew line)

shortest distance = $\frac{\begin{vmatrix} \rho_1 & \rho_2 \\ (b_1 - b_2)(b_1 \times b_2) \end{vmatrix}}{\begin{vmatrix} \rho_1 & \rho_2 \\ (b_1 - b_2) \end{vmatrix}$

 $\mathbf{f} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}})$ and the plane

The distance between the line

(B) $12/\sqrt{5}$

(D) None of these

 ${\bf i}' = (4\hat{i} - \hat{j}) + \lambda (\hat{i} + 2\hat{j} - 3\hat{k})$ and

(C) $7\hat{i} - 6\hat{j} + 11\hat{k}$ (D) $-7\hat{i}+6\hat{j}-11\hat{k}$ [**B**. **D**] Sol. $\vec{r} = (3\hat{i} + \hat{j} - \hat{k}) + \lambda(2\hat{i} - \hat{j} + 2\hat{k})$ general point P $(3 + 2\lambda, 1 - \lambda, -1 + 2\lambda)$ point A (3, 1, -1) $|AP| = \sqrt{(2\lambda)^2 + (-\lambda)^2 + (2\lambda)^2} = \sqrt{9\lambda^2} = 15$

give

$$\lambda = \pm 5$$

So point $\mathbf{\dot{f}} = (3\hat{i} + \hat{j} - \hat{k}) + 5(2\hat{i} - \hat{j} + 2\hat{k})$
$$\mathbf{\ddot{f}} = 13\hat{i} - 4\hat{j} + 9\hat{k}$$

Q.32 The perpendicular distance of A (1, 4, -2) from the segment BC where $\stackrel{P}{B} = (2, 1, -2)$ and $\stackrel{P}{C} = (0, -5, 1)$ is-(A) $\frac{3}{7}\sqrt{26}$ (B) $\frac{6}{7}\sqrt{26}$ (C) $\frac{4}{7}\sqrt{26}$ (D) $\frac{2}{7}\sqrt{26}$

Sol. [A]

equation of line $f' = b' + \lambda (c - b)$

$$\overrightarrow{B} \xrightarrow{P} \overrightarrow{C}$$

So $|\overrightarrow{AP}| = \left| \frac{\overrightarrow{AB} \times (\overrightarrow{C} - \overrightarrow{B})}{(\overrightarrow{C} - \overrightarrow{B})} \right|$
Solve it $\frac{3}{7}\sqrt{26}$

А

Skew lines and planes based on

If line $f'_{r} = (\hat{i} - 2\hat{j} - \hat{k}) + \lambda(2\hat{i} + \hat{j} + 2\hat{k})$ is Q.33 parallel to the plane f'. $(3\hat{i}-2\hat{j}-m\hat{k}) = 14$, then the value of m is (B) - 2(A) 2 (C) 0(D) can not be predicted with these information Sol. [A] Dr's of line (2, 1, 2)Dr's of normal to plane (3, -2, -m)So. Dot present will be zero

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

b
$$\mathbf{\hat{f}} \cdot (\hat{\mathbf{i}} + 5\,\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$$
 is
(A) 10/3 (B) 3/10 (C) $\frac{10}{3\sqrt{3}}$ (D) 10/9
Sol. [C]
Q.36 Equation of a line which passes through a p
with position vector $\hat{\mathbf{\hat{f}}}$ parallal to the pl

basses through a point with position vector ξ , parallel to the plane $\stackrel{P}{r}$. $\stackrel{P}{n} = 1$ & perpendicular to the line $\stackrel{P}{r} = \stackrel{P}{a} + t \stackrel{P}{b}$ is-(A) $\mathbf{r} = \mathbf{c} + \lambda (\mathbf{c} - \mathbf{a}) \times \mathbf{n}$ (B) $\stackrel{\nu}{r} = \stackrel{\nu}{c} + \lambda (\stackrel{\nu}{a} \times \stackrel{\nu}{n})$ (C) $\overset{\nu}{\mathbf{f}} = \overset{\nu}{\mathbf{c}} + \lambda (\overset{\nu}{\mathbf{b}} \times \overset{\nu}{\mathbf{h}})$ (D) $\overset{\mu}{r} = \overset{\nu}{c} + \lambda (\overset{\mu}{b}, \overset{\mu}{n}) \overset{\mu}{a}$

Sol. [C]

Mob no. : +91-9350679141

Q.34

Sol.

Q.35

(A) $6/\sqrt{5}$

(C) $18/\sqrt{5}$

 $p_{r_1} = p_{a_1} + \lambda b_1$

 $\mathbf{p}_{12} = \mathbf{p}_{12} + \lambda \mathbf{p}_{22}$

Put values

[A]

line \perp to h line \mid to b and line passes through ξ Then equation of line $f' = c' + \lambda (b \times h)$

The vectors $\ddot{a} = -4\hat{i} + 3\hat{k}$, $\ddot{b} = 14\hat{i} + 2\hat{j} - 5\hat{k}$ Q.37 are co-initial. The vector d^{ν} which is bisecting the angle between the vectors a^{μ} and b^{μ} , is having the magnitude $\sqrt{6}$, is (A) $\hat{i} + \hat{j} + 2\hat{k}$ (B) $\hat{i} - \hat{i} + 2\hat{k}$ (C) $\hat{i} + \hat{j} - 2\hat{k}$ (D) None of these

angle Bisector = $\sqrt{6} \frac{(\hat{a} + \hat{b})}{|\hat{a} + \hat{b}|}$ Sol. The set of values of 'm' for which the vectors **Q.38** ${}_{a}^{\mu} = m\hat{i} + (m+1)\hat{i} + (m+8)\hat{k}$. 0.41 $\stackrel{P}{b} = (m+3)\hat{i} + (m+4)\hat{j} + (m+5)\hat{k}$ and $c^{\mu} = (m+6)\hat{i} + (m+7)\hat{j} + (m+8)\hat{k}$ are non-coplanar is (A) R (B) $R - \{1\}$ (C) $R - \{1, 2\}$ (D) **(** Sol. [A] m m+1 m+8Vector are coplanar |m+3 m+4 m+5| is Sol. m+6 m+7 m+8zero for all in $m \in R$ If $\vec{r} = \hat{i} + \hat{j} + \lambda (2\hat{i} + \hat{j} + 4\hat{k}) \& \vec{r} \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 3$ 0.39 are the equations of a line and a plane **Q.42** respectively, then which of the following is false? (A) line is perpendicular to the plane (B) line lies in the plane (C) line is parallel to the plane but does not lie in the plane Sol. (D) line cuts the plane is one point only Sol. [A,C,D] $\vec{r} = (\hat{i} + \hat{j}) + \lambda (2\hat{i} + \hat{j} + 4\hat{k})$ $f'_{i} \cdot (\hat{i} + 2\hat{j} - \hat{k}) = 3$ line parallel to $(2\hat{i} + \hat{j} + 4\hat{k})$ plane \perp to $(\hat{i} + 2\hat{j} - \hat{k})$ (A) line is parallel to plane (B) general point on line $(1 + 2\lambda, 1 + \lambda, 4\lambda)$ put in plane $(1 + 2\lambda)\hat{i} + (1 + \lambda)\hat{j} + 4\lambda\hat{k}$. $(\hat{i} + 2\hat{j} - \hat{k}) = 31 + 2\lambda + 2 + 2\lambda - 4\lambda = 3$ $\Rightarrow 3 = 3$ (C) line parallel to plane and also lies in plane Questions Linearly dependency & Independency **Q.40** Which of the following system is linearly dependent-(A) $\stackrel{\nu}{a} = \hat{i} + \hat{i}, \stackrel{\nu}{b} = \hat{i} + \hat{k}, \stackrel{\nu}{c} = 3\hat{i} + 3\hat{i} + 2\hat{k}$ (B) $\vec{a} = -2\hat{i} - 4\hat{k}$, $\vec{b} = \hat{i} - 2\hat{i} - \hat{k}$, $\vec{c} = \hat{i} - 4\hat{i} + 3\hat{k}$ (C) $\overset{\mu}{a} = \hat{i} - 2\hat{i} + 3\hat{k}$, $\overset{\mu}{b} = 3\hat{i} - 6\hat{i} + 9\hat{k}$

(D)
$$\dot{\mathbf{a}} = -2\hat{\mathbf{i}} - 4\hat{\mathbf{k}}$$
, $\ddot{\mathbf{b}} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$, $\ddot{\mathbf{b}} = \hat{\mathbf{i}} - 4\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$

Sol. [C] $a' = \lambda b'$

> If a', b', c' are linearly independent vectors, then which one of the following set of vectors is linearly dependent? (A) $a^{\mu} + b^{\mu}, b^{\mu} + c^{\mu}, c^{\mu} + a^{\mu}$ (B) $a^{\mu} - b^{\mu}, b^{\mu} - c^{\mu}, c^{\mu} - a^{\mu}$ (C) $\overset{V}{a} \times \overset{V}{b}, \overset{V}{b} \times \overset{V}{c}, \overset{V}{c} \times \overset{V}{a}$ (D) None of these **[B]** $\begin{bmatrix} \rho & \rho & \rho & \rho & \rho \\ a - b & b - c & c & -a \end{bmatrix} = 0$ in all condition. So a-b, b-c, b-d are coplanar. (linearly dependent) Points $4\hat{i} + 8\hat{i} + 12\hat{k}$, $2\hat{i} + 4\hat{i} + 6\hat{k}$, $3\hat{i} + 5\hat{i} + 4\hat{k}$, $5\hat{i} + 8\hat{j} + 5\hat{k}$ are-(A) Linearly independent (B) coplanar (C) Linearly dependent (D) None of these $[\mathbf{B}, \mathbf{C}]$ $(4\hat{i} + 3\hat{i} + 12\hat{k})$ P.V of A $(2\hat{i} + 4\hat{i} + 6\hat{k})$ P.V of B P.V of C $(3\hat{i} + 5\hat{i} + 4\hat{k})$ P.V of D $(5\hat{i} + 8\hat{j} + 5\hat{k})$ $\overrightarrow{AB} = -2\hat{i} - 4\hat{j} - 6\hat{k}$ $\overrightarrow{AC} = -\hat{i} - 3\hat{i} - 5\hat{x}$ $\overrightarrow{AD} = \hat{i} - 7\hat{k}$ |-2 -4 -6| $\begin{vmatrix} -1 & -3 & -8 \end{vmatrix} = 0$ vector \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} are 0 - 7 coplanar. (linearly dependent)

Q.43 If a', b', c' and d' are linearly independent set of vectors and $K_1 a' + K_2 b' + K_3 c' + K_4 d' = 0$, then K_1 , K_2 , K_3 , K_4 satisfies (A) $K_1 + K_2 + K_3 + K_4 = 0$ (B) $K_1 + K_3 = K_2 + K_4 = 0$ (C) $K_1 + K_4 = K_2 + K_3 = 0$ (D) None of these **Sol.** [A,B,C] $K_1 = K_2 = K_3 = K_4 = 0$

Mob no. : +91-9350679141

Questions based on Vector Equation

Vector $\stackrel{\nu}{x}$ satisfying the relation $\stackrel{\nu}{A}$. $\stackrel{\nu}{x}$ = c and **O.44** $\overset{P}{A} \times \overset{P}{x} = \overset{P}{B}$ is

(A)
$$\frac{\stackrel{p}{cA} - \stackrel{p}{(A \times B)}{\stackrel{p}{|A|}}$$
(B)
$$\frac{\stackrel{p}{cA} - \stackrel{p}{(A \times B)}{\stackrel{p}{|A|^2}}$$
(C)
$$\frac{\stackrel{p}{cA} + \stackrel{p}{(A \times B)}{\stackrel{p}{|A|^2}}$$
(D)
$$\frac{\stackrel{p}{cA} - 2\stackrel{p}{(A \times B)}{\stackrel{p}{|A|^2}}$$

Sol. **[B]**

$$\begin{split} & \stackrel{\rho}{A} \times \stackrel{\rho}{(A \times X)} \stackrel{\rho}{=} \stackrel{\rho}{A} \times \stackrel{\rho}{B} \\ & \stackrel{\rho}{(A \times X)} \stackrel{\rho}{A} - \stackrel{\rho}{(A \times X)} \stackrel{\rho}{=} \stackrel{\rho}{A} \times \stackrel{\rho}{B} \\ & \stackrel{\rho}{c} \stackrel{\rho}{A} - |\stackrel{\rho}{A}|^2 \stackrel{\rho}{X} \stackrel{\rho}{=} \stackrel{\rho}{A} \times \stackrel{\rho}{B} \\ & \stackrel{\rho}{X} \stackrel{\rho}{=} \frac{c\stackrel{\rho}{A} - (\stackrel{\rho}{A} \times \stackrel{\rho}{B})}{|\stackrel{\rho}{A}|^2} \end{split}$$

For a non-zero vector A if the equation **Q.45** $\stackrel{P}{A} \stackrel{P}{B} = \stackrel{P}{A} \stackrel{P}{C}$ and $\stackrel{P}{A} \times \stackrel{P}{B} = \stackrel{P}{A} \times \stackrel{P}{C}$ hold simultaneously, then: (A) $\stackrel{P}{A}$ is perpendicular to $\stackrel{P}{B} - \stackrel{P}{C}$

- (B) $\stackrel{P}{A} = \stackrel{P}{B}$
- (C) $\stackrel{P}{B} = \stackrel{P}{C}$
- (D) $\overset{P}{C} = \overset{P}{A}$

Sol.

[C] $\begin{array}{c} P & P & P \\ A \times (B - C) = 0 \\ A = 0 \\ B = C \end{array}$ then $\overset{P}{A} = 0$ $\stackrel{P}{B} = \stackrel{P}{C}$ $\vec{A} \parallel \vec{(B-C)}$ $\stackrel{p}{A} \perp \stackrel{p}{(B-C)} \stackrel{p}{\to}$ common $\mathbf{B} = \mathbf{C}$

True or false type questions

Points $\vec{a} - 2\vec{b} + 2\vec{c}$, $2\vec{a} + 3\vec{b} - 4\vec{c}$, Q.46 $-7\vec{b} + 10\vec{c}$ are collinear.

Sol. [False]

P.V of A
$$a^2 - 2b^2 + 2c^2$$

P.V of B $2a^2 + 3b^2 - 4c^2$
P.V of C $-7b^2 + 10c^2$

P.V of C
$$-7b+10$$

 $\overrightarrow{AB} \neq \lambda \overrightarrow{AC}$ so points are not collinear

Q.47 If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point,

(i)
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF}$$

All position vector with respect to O (i) $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = a + b + c$ $\overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF} = \frac{\overrightarrow{b} + \overrightarrow{c}}{2} + \frac{\overrightarrow{b} + \overrightarrow{c}}{2} + \frac{\overrightarrow{b} + \overrightarrow{c}}{2}$ = a + b + c(ii) $\overrightarrow{AD} + \overrightarrow{2} \overrightarrow{RE} + \overrightarrow{1} \overrightarrow{CE}$

(ii)
$$AD + \frac{1}{3}BE + \frac{1}{3}CF$$

$$= \left(\frac{b+c}{2} - a\right) + \frac{2}{3}\left(\frac{a+c}{2} - b\right) + \frac{1}{3}\left(\frac{a+b}{2} - c\right)$$

$$= \frac{b+c-2a}{2} + \frac{a+c-2b}{3} + \frac{a+b-2c}{6}$$

$$= \frac{3b+3c-6a+2a+2c-4b+a+b-2c}{6}$$

$$= \frac{-3b+3c}{6} = \frac{1}{2}(c-a) = \frac{1}{2}\overrightarrow{AC}$$

Q.48 Let
$$\vec{r} = \vec{a} + \lambda \vec{\lambda}$$
 and $\vec{r} = \vec{b} + \mu \vec{m}$ be two lines
in space where $\vec{a} = 5\hat{i} + \hat{j} + 2\hat{k}$ & $\vec{b} = -\hat{i} + 7\hat{j} + \hat{k}\hat{k}$, $\vec{\lambda} = -4\hat{i} - \hat{j} + \hat{k}$ and $\vec{m} = 2\hat{i} - 5\hat{j} - 7\hat{k}$
then the position vector of a point which lies on
both of these lines is $2\hat{i} + \hat{j} + \hat{k}$.
Sol. [False]
 $f_1^{\mu} = (5\hat{i} + \hat{j} + 2\hat{k}) + \lambda (-4\hat{i} - \hat{j} + \hat{k})$

$$P_{1} = (-\hat{i} + \hat{j} + 2\hat{k}) + \mu(-\hat{i} + \hat{j} + \hat{k})$$

$$P_{2} = (-\hat{i} + \hat{j} + \hat{k}) + \mu(2\hat{i} - \hat{j} - \hat{j} - \hat{k})$$

$$5 - 4\lambda = -1 + 2\mu \qquad \dots \dots (1)$$

$$1 - \lambda = 7 - 5\mu \qquad \dots \dots (2)$$

$$2 - \lambda = 8 - 7\mu \qquad \dots \dots (3)$$
solution of (1) & (2) doesn't satisfy
eq. (3) so these two are skew lines.

Given system of points is coplanar **Q.49** $3\ddot{a} + 2\ddot{b} - 5\ddot{c}, 3\ddot{a} + 8\ddot{b} + 5\ddot{c},$

Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

 $-3 \ddot{a} + 2 \ddot{b} + \ddot{c}, \ddot{a} + 4 \ddot{b} - 3 \ddot{c}$ [False] Sol. P.V of A $(3a^{\rho} + 2b^{\rho} - 5c^{\rho})$ P.V of B (3a+8b+5c)P.V of C (-3a+2b+c)P.V of D (a+4b-3c) $\overrightarrow{AB} = 6b + 10c$ $\overrightarrow{AC} = -6\overrightarrow{a} + 6\overrightarrow{c}$ $\overrightarrow{AD} = -2\overrightarrow{a} + 2\overrightarrow{b} + 2\overrightarrow{c}$ 0 6 10 Now $\begin{vmatrix} -6 & 0 & 6 \end{vmatrix} \neq 0$. So points is not -2 22 coplanar

Fill in the blanks type questions

The vectors $\overrightarrow{AB} = 3\hat{i} - 2\hat{j} + 2\hat{k}$ and Q.50

> $\overrightarrow{BC} = -\hat{i} + 2\hat{k}$ are the adjacent sides of a parallelogram ABCD, then the angle between the diagonals is

> > $+4\hat{k}$

-2i

Sol.
$$\overrightarrow{AB} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$

$$\overrightarrow{BC} = -\hat{i} + 2\hat{k}$$
Then diagonals are
$$\overrightarrow{AB} + \overrightarrow{BC} = 2\hat{i} - 2\hat{j} + 4$$
and
$$\overrightarrow{AB} - \overrightarrow{BC} = 4\hat{i} - 2\hat{j}$$

$$\cos\theta = \frac{(2\hat{i} - 2\hat{j} + 4\hat{k}).(4\hat{i} - 2\hat{j})}{\sqrt{4 + 4 + 16\sqrt{16 + 44}}}$$

$$= \frac{12}{\sqrt{24}\sqrt{20}}$$

$$\cos\theta = \sqrt{\frac{3}{10}}$$

$$\Rightarrow \theta = \cos^{-1}\sqrt{\frac{3}{10}}$$

Let \vec{A} , \vec{B} , \vec{C} be vectors of length 3, 4, 5 Q.51 respectively. Let \vec{A} be perpendicular to $\vec{B} + \vec{C}$, \vec{B} to $\vec{C} + \vec{A}$ and \vec{C} to $\vec{A} + \vec{B}$. Then the length of vector $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$ is.....

Sol.
$$5\sqrt{2}$$

Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

Q.52 Let
$$\vec{r}$$
, \vec{a} , \vec{b} and \vec{c} be four non zero vectors, such that

$$\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}} = 0 = \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}}$$
, $|\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{c}}| = |\overrightarrow{\mathbf{r}}| |\overrightarrow{\mathbf{c}}|$ then
 $[\overrightarrow{\mathbf{a}} \ \overrightarrow{\mathbf{b}} \ \overrightarrow{\mathbf{c}}] = \dots$.

Sol.
$$\overrightarrow{r} \cdot \overrightarrow{a} = 0 = \overrightarrow{r} \cdot \overrightarrow{b}$$
 and $|\overrightarrow{r} \times \overrightarrow{c}| = |\overrightarrow{r}| |\overrightarrow{c}|$
 $\Rightarrow \overrightarrow{r} \perp \overrightarrow{a}, \overrightarrow{r} \perp \overrightarrow{b}$ and $\overrightarrow{r} \perp \overrightarrow{c}$
 $\Rightarrow \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ coplanar
 $\Rightarrow [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] = 0$

A, B, C and D are four points in a plane with 0.53 position vectors \vec{a} , \vec{b} , \vec{c} and \vec{d} respectively such that $(\vec{a} - \vec{d}) \cdot (\vec{b} - \vec{c}) = (\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0.$ The point D, then, is the of the triangle ABC.

$$\vec{a} - \vec{d}, \vec{b} - \vec{c} = 0$$

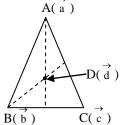
$$\Rightarrow \vec{AD} \cdot \vec{CB} = 0$$

$$\Rightarrow \vec{AD} \perp \vec{CB}$$

and $(\vec{b} - \vec{d}) \cdot (\vec{c} - \vec{a}) = 0$

$$\Rightarrow \vec{DB} \cdot \vec{AC} = 0$$

$$\Rightarrow \vec{DB} \perp \vec{AC}$$



Clearly D is the orthocenter of the $\triangle ABC$

Let $\overset{\mu}{b} = 4\hat{i} + 3\hat{j}$ & $\overset{\mu}{c}$ be two vectors Q.54 perpendicular to each other in the xy-plane. All vectors in the same plane having projections 1 and 2 along $\overset{\nu}{b}$ and $\overset{\nu}{c}$, respectively, are given by

 $\stackrel{P}{b} = 4\hat{i} + 3\hat{j}$ and let $\stackrel{P}{c} = \alpha\hat{i} + \beta\hat{j}$ Sol. \therefore b and c are perpendicular $\Rightarrow \dot{b} \cdot \dot{c} = 0$ $\Rightarrow 4\alpha + 3\beta = 0$

- **Q.55** A non zero vector \hat{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , $\hat{i} + \hat{j}$ and the plane determined by the $\hat{i} \hat{j}$, $\hat{i} + \hat{k}$. The angle between \hat{a} and the vector $\hat{i} 2\hat{j} + 2\hat{k}$ is.....
- Sol. Equation of plane containing vectors \hat{i} and $\hat{i} + \hat{j}$ is $[\vec{r} - \hat{i} \ \hat{i} \ \hat{i} + \hat{j}] = 0$

$$\Rightarrow \begin{vmatrix} x-1 & y & z \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{vmatrix} = 0$$

$$\Rightarrow z = 0 \qquad \dots \dots (i)$$

and Equation of plane containing the vectors
 $\hat{i} - \hat{j}$ and $\hat{i} + \hat{k}$ is
 $[\dot{F} - (\hat{i} - \hat{j}) \hat{i} - \hat{j} \hat{i} - \hat{k}] = 0$

$$\Rightarrow \begin{vmatrix} x-1 & y+1 & z \\ 1 & -1 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 0$$

 $x + y - z = 0 \qquad \dots \dots (ii)$
Let $\dot{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$
Since \dot{a} is parallel to (i) & (ii)

$$\Rightarrow a_3 = 0 a_1 = -a_2$$

$$\Rightarrow \dot{a} = \hat{i} - \hat{j}$$

Angle between \dot{a} and $\hat{i} - 2\hat{j} + 2\hat{k}$ is
 $\cos\theta = \pm \frac{1.1 + 1.2}{\sqrt{2}\sqrt{9}} = \pm \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4} \text{ or } \frac{3\pi}{4}$

Q.56 If
$$\stackrel{b}{b}$$
 and $\stackrel{b}{c}$ are any two non-collinear unit vectors and $\stackrel{b}{a}$ is any vector, then
 $(\stackrel{b}{a}, \stackrel{b}{b})\stackrel{b}{b} + (\stackrel{b}{a}, \stackrel{c}{c})\stackrel{b}{c} + \frac{\stackrel{b}{a}, \stackrel{b}{b} \times \stackrel{b}{c}}{|\stackrel{b}{b} \times \stackrel{c}{c}|^2} (\stackrel{b}{b} \times \stackrel{b}{c}) = \dots$

Sol. a

EXERCISE # 2

Only single correct answer type Part-A questions

- Let \overrightarrow{A} and \overrightarrow{B} be two non-parallel unit vectors Q.1 in a plane. If $(\alpha \vec{A} + \vec{B})$ bisects the internal angle between \overrightarrow{A} and \overrightarrow{B} , then α is equal to-(A) 1/2 (B) 1 (C) 2 (D) 4
- **Sol.** [B] \vec{A} and \vec{B} are unit vector so vector bisects the internal angle is $\alpha (\vec{A} + \vec{B})$ so $\alpha = 1$
- Q.2 Given a parallelogram OACB. The length of the vectors \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{AB} are a, b and c respectively. The scalar product of the vectors \overrightarrow{OC} and \overrightarrow{OB} is -(A) $(a^2 - 3b^2 + c^2)/2$ (B) $(3a^2 + b^2 - c^2)/2$ (C) $(3a^2 - b^2 + c^2)/2$ (D) $(a^2 + 3b^2 - c^2)/2$ Sol. [D] h D

c = squ

$$\rho_{a,b}^{\rho} = \frac{b^{2} + a^{2} - c^{2}}{2} \qquad \dots \dots (2)$$

$$\overrightarrow{OC} \cdot \overrightarrow{OB} = (a^{\rho} + b^{\rho}) \cdot b = a \cdot b + b^{2}$$

$$= \frac{b^{2} + a^{2} - c^{2}}{2} + b^{2}$$

$$= \frac{a^{2} + 3b^{2} - c^{2}}{2}$$

The vertices of triangle have the position **Q.3** vectors \vec{a} , \vec{b} , \vec{c} and $P(\vec{r})$ is a point in the plane of Δ such that : \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{c} . \overrightarrow{r} = \overrightarrow{a} . \overrightarrow{c} + $\vec{b} \cdot \vec{r} = \vec{b} \cdot \vec{c} + \vec{a} \cdot \vec{r}$ then for the Δ , P is the

(A) circumcentre (B) centroid
(C) orthocentre (D) incentre
Sol. [C]
$$\stackrel{A,B}{a,b} - \stackrel{A,E}{a,c} = \stackrel{B,F}{b,r} - \stackrel{E,F}{c,r}$$

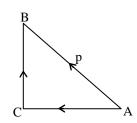
 $\stackrel{A,(b-b)}{a,(b-b)} - \stackrel{B,F}{(b-b)} = 0$
 $\stackrel{(b-b)}{(b-b)} \cdot \stackrel{(b-b)}{(b-b)} = 0$
 $\stackrel{(c-b)}{(c-b)} \cdot \stackrel{(b-b)}{(c-b)} = 0$
 $\stackrel{(c-b)}{(c-b)} \cdot \stackrel{(c-b)}{(c-b)} = 0$
 $\stackrel{(c-b)}{(c-b)} - \stackrel{(c-b)}{(c-b)} = 0$
 $\stackrel{(c-b)}{(c-b)} - \stackrel{(c-b)}{(c-b)} = 0$
 $\stackrel{(c-b)}{(c-b)} - \stackrel{(c-b)}{(c-b)} = 0$

So R is orthocenter

- Q.4 If A, B, C, D are four points in space satisfying \overrightarrow{AB} . \overrightarrow{CD} =K $[|\overrightarrow{AD}|^2 + |\overrightarrow{BC}|^2 - |\overrightarrow{AC}|^2 - |\overrightarrow{BD}|^2]$ then the value of K is – (A) 2 (B) 1/3 (C) 1/2 (D) 1 Sol. [C] Let \overrightarrow{A} be the origin and position vector of $\overrightarrow{B}, \overrightarrow{C}, \overrightarrow{D}$ are $\overrightarrow{b}, \overrightarrow{c}, \overrightarrow{d}$ respectively Then L.H.S \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{b} \cdot (\overrightarrow{d} - \overrightarrow{c})$ Taking R.H.S we have K $\left[\left| \overrightarrow{AD} \right|^2 + \left| \overrightarrow{BC} \right|^2 - \left| \overrightarrow{AC} \right|^2 - \left| \overrightarrow{BD} \right|^2 \right]$ $= K \left[\left| \stackrel{P}{d} \right|^{2} + \left| \stackrel{P}{c} - \stackrel{P}{b} \right|^{2} - \left| \stackrel{P}{c} \right|^{2} - \left| \stackrel{P}{d} - \stackrel{P}{b} \right|^{2} \right]$ = K[d, d+c, c+b, b-2c, b-c, c-d, d]-b.b+2d.b1= K [2(d, b - c, b)] = 2K b(d - c) \Rightarrow K = $\frac{1}{2}$
- Q.5 If in a right angled triangle ABC, the hypotenuse AB = p, then $\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ is -(A) $2p^2$ (B) $\frac{p^2}{2}$ (C) p^2 (D) None

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Sol. [C]



Given $\overrightarrow{AB} = p$ $\therefore \overrightarrow{CA} \perp \overrightarrow{CB} \Rightarrow \overrightarrow{CA} \cdot \overrightarrow{CB} = 0$ (i) $\Rightarrow \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + \overrightarrow{CA} \cdot \overrightarrow{CB}$ $= \overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{BC} \cdot \overrightarrow{BA} + 0$ using (i) $= \overrightarrow{AB} \cdot (\overrightarrow{AC} - \overrightarrow{BC})$ $= \overrightarrow{AB} \cdot (\overrightarrow{AC} + \overrightarrow{CB})$ $= \overrightarrow{AB} \cdot \overrightarrow{AB} = p^2$

Let \vec{a} , \vec{b} and \vec{c} be three non-zero and non Q.6 coplanar vectors and \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be three vectors given by $\vec{p} = \vec{a} + \vec{b} - 2\vec{c}$, $\vec{q} = 3\vec{a} - 2\vec{b} + \vec{c}$, $\vec{r} = \vec{a} - 4\vec{b} + 2\vec{c}$. If the volume of the parallelopiped determined by \vec{a}, \vec{b} and \vec{c} is v_1 and that of the parallelopiped determined by \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} is v_2 , then $v_2 : v_1 =$ (A) 3 : 1 (B) 7:1 (C) 11 : 1 (D) 15 :1 Sol. [**D**] $v_1 = \begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix}$ and $v_2 = \begin{bmatrix} p & q & r \\ p & q & r \end{bmatrix}$ $\Theta \begin{bmatrix} \overrightarrow{p} & \overrightarrow{q} & \overrightarrow{r} \end{bmatrix} = \overrightarrow{p} \cdot (\overrightarrow{q} \times \overrightarrow{r})$ $=(\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}), \{(\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c})\}$ $\times (\overrightarrow{a} - 4\overrightarrow{b} + 2\overrightarrow{c})$ $=(\overrightarrow{a}+\overrightarrow{b}-2\overrightarrow{c})$, $\{-12(\overrightarrow{a}\times\overrightarrow{b})+6(\overrightarrow{a}\times\overrightarrow{c})\}$ $-2(\overrightarrow{b}\times\overrightarrow{a}) - 4(\overrightarrow{b}\times\overrightarrow{c}) + (\overrightarrow{c}\times\overrightarrow{b}) - 4(\overrightarrow{c}\times\overrightarrow{b})$

$$= (\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}) \cdot \{-10(\overrightarrow{a} \times \overrightarrow{b}) + 5(\overrightarrow{a} \times \overrightarrow{c})\}$$
$$= 5\overrightarrow{b} \cdot (\overrightarrow{a} \times \overrightarrow{c}) + 20\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$$
$$= -5\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) + 20\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$$
$$= 15[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]$$
$$\Rightarrow \frac{v_2}{v_1} = \frac{[\overrightarrow{p} \overrightarrow{q} \overrightarrow{r}]}{[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}]} = \frac{15}{1}$$

A vector \overrightarrow{x} is coplanar with vectors 0.7 $\vec{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{k}$ and is orthogonal to the vector \vec{b} . If $\vec{x} \cdot \vec{a} = 7$ then the vector \overrightarrow{x} is equal to-(A) $(-3\hat{i}+5\hat{j}+6\hat{k})$ (B) $\frac{1}{2}(-3\hat{i}+5\hat{j}+6\hat{k})$ (C) $(3\hat{i} - 5\hat{j} - 6\hat{k})$ (D) none of these Sol. **[B]** $\vec{a} = -1, 1, 1, \vec{b} = 2, 0, 1$ Since \vec{x} is coplanar with \vec{a} and \vec{b} $\vec{x} = \lambda \vec{a} + \mu \vec{b}$ $\Rightarrow \vec{x} = \lambda(-\hat{i} + \hat{j} + \hat{k}) + \mu(2\hat{i} + \hat{k})$ $= \stackrel{\rightarrow}{\mathbf{x}} = (-\lambda + 2\mu, \lambda, \lambda + \mu)$ \overrightarrow{x} is orthogonal to \overrightarrow{b} $\Rightarrow \overrightarrow{x} \cdot \overrightarrow{b} = 0$ $\Rightarrow 2(-\lambda + 2\mu) + 0 + (\lambda + \mu) = 0$ $\Rightarrow -\lambda + 5 \mu = 0$(i) Given \overrightarrow{x} . $\overrightarrow{a} = 7$ $-1 (-\lambda + 2\mu) + \lambda + \lambda + \mu = 7$ $3\lambda - \mu = 7$(ii) Solving (i) & (ii) we get $\lambda = \frac{5}{2}, \ \mu = \frac{1}{2}$ $\Rightarrow \overrightarrow{\mathbf{x}} = \left(-\frac{5}{2} + \frac{2}{2}\right)\hat{\mathbf{i}} + \frac{5}{2}\hat{\mathbf{j}} + \left(\frac{5}{2} + \frac{1}{2}\right)\hat{\mathbf{k}}$ $\vec{x} = \frac{1}{2} (-3\hat{i} + 5\hat{j} + 6\hat{k})$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Q.8 If \vec{b} is a vector whose initial point divides the join of 5 \hat{i} and 5 \hat{j} in the ratio k : 1 and terminal point is origin and $|\vec{b}| \le \sqrt{37}$, then k lies in the interval -

(A)
$$\left[-6, -\frac{1}{6}\right]$$
 (B) $\left(-\infty, -6\right] \cup \left[-\frac{1}{6}, \infty\right)$
(C) $\left[0, 6\right]$ (D) None of these

Sol. [B]

 \overrightarrow{b} is a vector whose initial point divides the join to 5 \hat{i} and 5 \hat{j} in the ratio k : 1

$$\Rightarrow \text{Point} = \frac{5\hat{i} + 5k\hat{j}}{k+1}$$

terminal point is origin

$$\Rightarrow \vec{b} = \frac{5\hat{i} + 5\hat{k}\hat{j}}{k+1}$$

Given that $|\vec{b}| \le \sqrt{37}$

$$\Rightarrow \frac{\sqrt{25 + 25k^2}}{k+1} \le \sqrt{37}$$
$$\Rightarrow 25 + 25k^2 \le 37 (k+1)^2$$
$$\Rightarrow 6k^2 + 37k + 6 \ge 0$$
$$\Rightarrow (k+6) (6k+1) \ge 0$$
$$\Rightarrow k \in (-\infty, -6] \cup \left[-\frac{1}{6}, \infty\right]$$

Q.9 If \vec{a} and \vec{b} are mutually perpendicular vectors, then the projection of the vector $\left(\lambda \frac{\rho}{|a|} + m \frac{\rho}{|b|} + n \frac{\rho}{|a \times b|}\right)$ along the angle

bisector of the vectors $\vec{a} & \vec{b}$ may be given as-

(A)
$$\frac{\lambda^2 + m^2}{\sqrt{\lambda^2 + m^2 + n^2}}$$
 (B) $\sqrt{\lambda^2 + m^2 + n^2}$
(C) $\frac{\sqrt{\lambda^2 + m^2}}{\sqrt{\lambda^2 + m^2 + n^2}}$ (D) $\frac{\lambda + m}{\sqrt{2}}$

Sol. [D]

Q.10 Let co-ordinates of a point 'p' with respect to the system non-coplanar vectors \vec{a} , \vec{b} and \vec{c} is (3, 2, 1). Then, co-ordinates of 'p' with

respect to the system of vectors $\vec{a} + \vec{b} + \vec{c}$,

$$\vec{a} - \vec{b} + \vec{c} \text{ and } \vec{a} + \vec{b} - \vec{c} \text{ is -}$$
(A) $\left(\frac{3}{2}, \frac{1}{2}, 1\right)$
(B) $\left(\frac{3}{2}, 1, \frac{1}{2}\right)$
(C) $\left(\frac{1}{2}, \frac{3}{2}, 1\right)$
(D) none of these

Sol. [A] Coordinate of P in first column

$$\vec{P} = 3a + 2b + c$$
(1)

coordinate of P in second column

$$\vec{P} = \lambda \begin{pmatrix} \rho & \mu & \rho \\ a + b + c \end{pmatrix} + \mu \begin{pmatrix} \rho & \mu & \rho \\ a - b + c \end{pmatrix} + \gamma \begin{pmatrix} \rho & \mu & \rho \\ a + b - c \end{pmatrix}$$

$$\vec{P} = \vec{a} (\lambda + \mu + \gamma) + \vec{b} (\lambda - \mu - \gamma) + \vec{c} (\lambda + \mu - \gamma)$$
.....(2)

compare (1) & (2) $\lambda + \mu + \gamma = 3$ so $\lambda = 3/2$ $\lambda - \mu - \gamma = 2$ $\mu = 1/2$

 $\lambda + \mu - \gamma = 1$

Q.11 The position vectors of the points P and Q are

 \vec{p} and \vec{q} respectively. If O is the origin and R is a point in the interior of $\angle POQ$ such that OR bisects the $\angle POQ$ then unit vector along OR is

 $\gamma = 1$

(A)
$$\frac{\overrightarrow{p} + \overrightarrow{q}}{|\overrightarrow{p}|| \overrightarrow{q}|}$$
 (B) $\frac{\overrightarrow{p}}{|\overrightarrow{p}|} - \frac{\overrightarrow{q}}{|\overrightarrow{q}|}$
(C) $\frac{\left(\frac{\overrightarrow{p}}{\overrightarrow{p}} + \frac{\overrightarrow{q}}{|\overrightarrow{p}|| |\overrightarrow{q}|}\right)}{\left|\frac{\overrightarrow{p}}{|\overrightarrow{p}|} + \frac{\overrightarrow{q}}{|\overrightarrow{q}|}\right|}$ (D) none of these

Sol. [C] Unit vector along OR is

then k equal to -

$$\frac{\hat{p}+\hat{q}}{|\hat{p}+\hat{q}|} = \frac{\frac{\overset{P}{p}}{|\overset{P}{p}|} + \frac{\overset{Q}{q}}{|\overset{P}{p}|}}{|\overset{P}{p}|} + \frac{\overset{Q}{q}}{|\overset{P}{q}|}$$

Q.12 If $\overrightarrow{DA} = \overrightarrow{a}$, $\overrightarrow{AB} = \overrightarrow{b}$ and $\overrightarrow{CB} = \overrightarrow{ka}$ where k > 0 and X, Y are the mid-points of DB & AC respectively, such that $|\overrightarrow{a}| = 17$ & $|\overrightarrow{XY}| = 4$,

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Q.13 Let a, b and c be three non-zero vectors, no two of which are collinear. If the vector $3\vec{a} + 7\vec{b}$ is collinear with \vec{c} and $3\vec{b} + 2\vec{c}$ is collinear with \vec{a} , then $9\vec{a} + 21\vec{b} + 14\vec{c}$ is equal to -(A) $\lambda \vec{a}$ (B) $\lambda \vec{c}$ (C) 0 (D) none of these **Sol.** [C] $3\vec{a} + 7\vec{b} = \lambda \vec{c}$ (1) $3\vec{b} + 2\vec{c} = \mu \vec{a}$ (2)

eliminate 'c' from (1) & (2) $6a + 14b = \lambda(\mu a - 3b)$ $a(6 - \lambda \mu) + b(14 + 3\lambda) = 0$ a' and b' are not collinear $6 - \lambda \mu = 0$ $\lambda = -14/3$ put in eq. (1)

$$3a^{\rho} + 7b^{\rho} = \frac{-14}{3}b^{\rho}$$
$$9a^{\rho} + 21b^{\rho} = -14b^{\rho}$$
$$9a^{\rho} + 21b^{\rho} + 14b^{\rho} = 0$$

Q.14 Let $\stackrel{a}{a}$ be a unit vector and $\stackrel{b}{b}$ a non-zero vector not parallel to $\stackrel{a}{a}$. The angles of the triangle, two of whose sides are represented by $\sqrt{3}$ ($\stackrel{a}{a} \times \stackrel{b}{b}$) and $\stackrel{b}{b} - (\stackrel{a}{a} . \stackrel{b}{b})\stackrel{a}{a}$ are -(A) $\pi/4$, $\pi/4$, $\pi/2$ (B) $\pi/4$, $\pi/3$, $5\pi/12$ (C) $\pi/6$, $\pi/3$, $\pi/2$ (D) None of these

Sol. [C]

Given $\overrightarrow{AB} = \sqrt{3} (\overrightarrow{a} \times \overrightarrow{b})$, $\overrightarrow{BC} = \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a}$ \overrightarrow{a} is a unit vector we take $\overrightarrow{AB} \cdot \overrightarrow{BC} = \sqrt{3} (\overrightarrow{a} \times \overrightarrow{b}) [\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{a}]$ $= \sqrt{3} (\overrightarrow{a} \times \overrightarrow{b}) . \overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \{(\overrightarrow{a} \times \overrightarrow{b}) . \overrightarrow{a}\} = 0$ $\Rightarrow AB \perp BC \Rightarrow \angle ABC = \pi/2$ $\therefore AB^2 = 3(\overrightarrow{a} \times \overrightarrow{b})^2 = 3.b^2 \sin^2\theta$ $= 3b^2 \sin^2\theta$ (i) and $BC^2 = (\overrightarrow{b})^2 + (\overrightarrow{a} \cdot \overrightarrow{b})^2 |\overrightarrow{a}|^2 - 2 (\overrightarrow{b} \cdot \overrightarrow{a})$ $(\overrightarrow{a} \cdot \overrightarrow{b})$

$$(\vec{a} \cdot \vec{b})^{2} = (\vec{b})^{2} + (\vec{a} \cdot \vec{b})^{2} - 2 (\vec{a} \cdot \vec{b})^{2}$$
$$= (\vec{b})^{2} - (\vec{a} \cdot \vec{b})^{2}$$
$$= (\vec{b})^{2} (1 - \cos^{2}\theta)$$
BC² = b²sin²\theta(ii)
From (i) & (ii) AB² = 3BC²
$$\Rightarrow AB = \sqrt{3} BC$$
$$\therefore \tan A = \frac{BC}{AB} = \frac{1}{\sqrt{3}} \Rightarrow A = \frac{\pi}{6}$$
and C = $\frac{\pi}{3}$
Angles are $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$

Q.15 Let $\mathbf{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, $\mathbf{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ and $\mathbf{b} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$ be three non-zero vectors such that \mathbf{b} is a unit vector perpendicular to both the vectors \mathbf{a} and \mathbf{b} . If

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com M

Mob no. : +91-9350679141

the angle between a' and b' is $\frac{\pi}{6}$, then $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$ is equal to-(A) 0 **(B)** 1 (C) $\frac{1}{4} (a_1^2 + a_2^2 + a_3^2) (b_1^2 + b_2^2 + b_3^2)$ (D) $\frac{3}{4}$ $(a_1^2 + a_2^2 + a_3^2)$ $(b_1^2 + b_2^2 + b_3^2)$ $\times (c_1^2 + c_2^2 + c_3^2)$ [C] $\therefore (\stackrel{\nu}{a} \times \stackrel{\nu}{b}) = |\stackrel{\nu}{a}| |\stackrel{\nu}{b}| \sin \frac{\pi}{6} \cdot \hat{n}$ $\Rightarrow (\overset{\nu}{a} \times \overset{\nu}{b}), \overset{\nu}{c} = \frac{1}{2} |\overset{\nu}{a}| |\overset{\nu}{b}|. \hat{n} \overset{\nu}{c}$ $\Rightarrow \begin{bmatrix} a & b & c \\ a & b & c \end{bmatrix} = \frac{1}{2} |a| |b| |b| . 1 . 1 \cos^{0}$ Θ \hat{n} is \perp to both $\stackrel{\flat}{a}$ and $\stackrel{\flat}{b}$ and $\stackrel{\flat}{c}$ is also a unit vector \perp to both a and b $\therefore \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2 = \begin{bmatrix} a' b' c' \\ b' c' \end{bmatrix} = \frac{1}{4} |a'|^2 |b'|^2$ $=\frac{1}{4}(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)$ Let $\vec{a} = \hat{i} - \hat{j}$, $\vec{b} = \hat{j} - \hat{k}$, $\vec{c} = \hat{k} - \hat{i}$. If \vec{d} is a unit vector such that $a' \cdot d' = 0 = [b, c', d]$ then d equals (A) $\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$ (B) $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$ (C) $\frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$ (D) $\pm \hat{k}$ [A] Θ $\ddot{a} = \hat{i} - \hat{j}, \ \ddot{b} = \hat{j} - \hat{k}, \ \ddot{c} = \hat{k} - \hat{i}$ Let $\hat{d} = x\hat{i} + y\hat{j} + z\hat{k}$ $\Rightarrow x^2 + y^2 + z^2 = 1 \qquad \dots \dots \dots (i)$ $\therefore a^{\nu} \cdot d^{\nu} = 0 \Rightarrow x - y = 0$ $\Rightarrow x = y$(ii) and $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} = 0$

Sol.

0.16

Sol.

$$\Rightarrow \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z \end{vmatrix} = 0$$

$$\Rightarrow x + y + z = 0$$

$$\Rightarrow 2x + z = 0 \qquad \text{from (ii)}$$

$$\Rightarrow z = -2x$$

from (i), (ii) and (iii) we get
$$x^{2} + x^{2} + 4x^{2} = 1$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{6}}$$

$$\overrightarrow{d} = \pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$$

Q.17 If β' , β' , β' be three mutually perpendicular vectors of the same magnitude. If a vector k' satisfies the equation $\beta' \times ((k' - q) \times p) + q' \times ((k' - f') \times q') + f' \times ((k' - p) \times f') = 0'$ then k' is given by-(A) $\frac{1}{2} (\beta + q' - 2f')$ (B) $\frac{1}{2} (\beta + q' + f')$ (C) $\frac{1}{3} (\beta + q' + f')$ (D) $\frac{1}{3} (2\beta + q' - f')$ Sol. [B]

 \vec{b} , \vec{q} , \vec{r} are three mutually perpendicular vector of same magnitude so let $\vec{b} = a\hat{i}$, $\vec{b} = a\hat{i}$, $\vec{r} = a\hat{k}$

and Let
$$\mathbf{\dot{x}} = \mathbf{x}_1, \mathbf{\dot{q}} = \mathbf{\dot{q}}, \mathbf{\dot{r}} = \mathbf{\dot{u}} \mathbf{\dot{x}}$$

and Let $\mathbf{\ddot{x}} = \mathbf{x}_1 \mathbf{\hat{i}} + \mathbf{y}_1 \mathbf{\hat{j}} + \mathbf{z}_1 \mathbf{\hat{k}}$
 $\therefore \mathbf{\ddot{\beta}} \times (\mathbf{\ddot{x}} - \mathbf{\ddot{q}}) \times \mathbf{\ddot{\beta}}) = \mathbf{\ddot{\beta}} \times (\mathbf{\ddot{x}} \times \mathbf{\ddot{\beta}} - \mathbf{\ddot{q}} \times \mathbf{\ddot{\beta}})$
 $= \mathbf{\ddot{\beta}} \times (\mathbf{\ddot{x}} \times \mathbf{\ddot{\beta}}) - \mathbf{\ddot{\beta}} \times (\mathbf{\ddot{q}} \times \mathbf{\ddot{\beta}})$
 $= (\mathbf{\ddot{\beta}} \cdot \mathbf{\ddot{\beta}}) \mathbf{\ddot{x}} + (\mathbf{\ddot{\beta}} \cdot \mathbf{\ddot{x}}) \mathbf{\ddot{\beta}} - (\mathbf{\ddot{\beta}} \cdot \mathbf{\ddot{\beta}}) \mathbf{\ddot{q}} + (\mathbf{\ddot{\beta}} \cdot \mathbf{\ddot{q}}) \mathbf{\ddot{\beta}}$
 $= \mathbf{a}^2 \mathbf{\ddot{x}} - \mathbf{a}^2 \mathbf{x}_1 \mathbf{\hat{i}} - \mathbf{a}^3 \mathbf{\hat{j}} + 0$
Similarly
 $\mathbf{\ddot{q}} \times ((\mathbf{\ddot{x}} - \mathbf{\ddot{r}}) \times \mathbf{\ddot{q}}) = \mathbf{a}^2 \mathbf{\ddot{x}} - \mathbf{a}^2 \mathbf{y}_1 \mathbf{\hat{j}} - \mathbf{a}^3 \cdot \mathbf{\hat{k}}$
and $\mathbf{\ddot{r}} \times ((\mathbf{\ddot{x}} - \mathbf{\ddot{\beta}}) \times \mathbf{\ddot{r}}) = \mathbf{a}^2 \mathbf{\ddot{x}} - \mathbf{a}^2 \mathbf{z}_1 \mathbf{\hat{k}} - \mathbf{a}^3 \cdot \mathbf{\hat{i}}$
Put these values in equation we get
 $3\mathbf{a}^2 \mathbf{\ddot{x}} - \mathbf{a}^2 (\mathbf{x}_1 \mathbf{\hat{i}} + \mathbf{y}_1 \mathbf{\hat{j}} + \mathbf{z}_1 \mathbf{\hat{k}}) - \mathbf{a}^2$
 $(\mathbf{a}\mathbf{\hat{i}} + \mathbf{a}\mathbf{\hat{j}} + \mathbf{a}\mathbf{\hat{k}}) = 0$
 $\Rightarrow 3 \mathbf{\ddot{x}} - \mathbf{\ddot{x}} - (\mathbf{\ddot{\beta}} + \mathbf{\ddot{q}} + \mathbf{\ddot{r}}) = 0$
 $\Rightarrow \mathbf{\ddot{x}} = \frac{1}{2} (\mathbf{\ddot{\beta}} + \mathbf{\ddot{q}} + \mathbf{\ddot{r}})$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

If $\overset{\nu}{a}=\,\hat{i}\,+\,\hat{j}\,+\,\hat{k}\,$, $\overset{\nu}{b}=4\,\hat{i}\,+3\,\hat{j}\,+4\,\hat{k}\,$ and **O.18** $\stackrel{V}{c} = \hat{i} + \alpha \hat{j} + \beta \hat{k}$ are linearly dependent vectors and $\begin{vmatrix} p \\ c \end{vmatrix} = \sqrt{3}$, then-(A) $\alpha = 1, \beta = -1$ (B) $\alpha = 1$, $\beta = \pm 1$ (C) $\alpha = -1, \beta = \pm 1$ (D) $\alpha = \pm 1, \beta = 1$ Sol. [**D**] Given $\mathbf{a}' = \hat{i} + \hat{j} + \hat{k}$, $\mathbf{b}' = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\mathbf{k}' = \hat{\mathbf{i}} + \alpha \hat{\mathbf{j}} + \beta \hat{\mathbf{k}}$ are linearly dependent so $\xi = \lambda a + \mu b$ For some λ . μ $\Rightarrow \hat{i} + \alpha \hat{j} + \beta \hat{k} = \lambda(\hat{i} + \hat{j} + \hat{k}) + \mu(4\hat{i} + 3\hat{j} + 4\hat{k})$ $= (\lambda + 4\mu)\hat{i} + (\lambda + 3\mu)\hat{j} + (\lambda + 4\mu)\hat{k}$ Comparing coefficient we get $\lambda + 4 \mu = 1$(i) $\lambda + 3 \mu = \alpha$(ii)(iii) $\lambda + 4\mu = \beta$ from (i) & (iii) we get $\beta = 1$ Given $|c| = \sqrt{3}$ $1 + \alpha^2 + \beta^2 = 3$ $\Rightarrow \alpha^2 = 1 \quad \Theta \beta = 1$ $\Rightarrow \alpha = \pm 1$

Q.19 Let $\mathbf{k} = 2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\mathbf{b} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$ and a unit vector \mathbf{k} be coplanar. If \mathbf{k} is perpendicular to \mathbf{k} , then $\mathbf{k} = 1$

(A)
$$\frac{1}{\sqrt{2}} (-j + k)$$
 (B) $\frac{1}{\sqrt{3}} (-i - j - k)$
(C) $\frac{1}{\sqrt{5}} (\hat{i} - 2\hat{j})$ (D) $\frac{1}{\sqrt{3}} (\hat{i} - \hat{j} - \hat{k})$

Sol. [A]

$$\begin{aligned} \xi & \text{ is coplanar with } \overset{a}{a} & \text{ and } \overset{b}{b} \\ \Rightarrow & \xi &= x \overset{b}{a} + y \overset{b}{b} & \dots \dots (i) \\ \Theta & \xi & \text{ is perpendicular to } \overset{b}{a} \\ \Rightarrow & \xi & \overset{b}{a} = 0 \\ \Rightarrow & x \overset{b}{a} & \overset{b}{a} + y \overset{b}{b} & \overset{b}{a} = 0 \\ \Rightarrow & 6x + 3y = 0 \\ \Rightarrow & y = -2x & \dots \dots (ii) \\ \Rightarrow & \overset{b}{c} &= x (\overset{b}{a} - 2\overset{b}{b}) = 3x (-\overset{c}{j} + \overset{c}{k}) \\ \Rightarrow & |\overset{b}{c}|^{2} = 9x^{2}(1 + 1) = 18x^{2} \end{aligned}$$

$$\Theta \stackrel{V}{c} \text{ is a unit vector} \Rightarrow | \stackrel{V}{c} | = 1$$
$$\Rightarrow x = \pm \frac{1}{3\sqrt{2}}$$
$$\Rightarrow \stackrel{V}{c} = \pm \frac{1}{\sqrt{2}} (-\hat{j} + \hat{k})$$

Part-B One or more than one correct answer type questions

Q.20 Let ABC be a triangle, the position vector of whose vertices are respectively $7\hat{j} + 10\hat{k}$, $-\hat{i} + 6\hat{j} + 6\hat{k} & -4\hat{i} + 9\hat{j} + 6\hat{k}$. Then ΔABC is -(A) Isosceles (B) Equilateral (D) none of these (C) Right angled Sol. [A,C]Let O be the origin then $\overrightarrow{OA} = 7\hat{j} + 10\hat{k}, \overrightarrow{OB} = -\hat{i} + 6\hat{j} + 6\hat{k}$ $\vec{OC} = -4\hat{i} + 9\hat{i} + 6\hat{k}$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{OB} - \overrightarrow{OA} = -\hat{i} - \hat{i} - 4\hat{k}$ $\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC} = \overrightarrow{OC} - \overrightarrow{OA} = -4\hat{i} + 2\hat{j} - 4\hat{k}$ $\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = \overrightarrow{OC} - \overrightarrow{OB} = -3\hat{i} + 3\hat{i}$ $\Rightarrow AB = |\overrightarrow{AB}| = \sqrt{1+1+16} = \sqrt{18}$ $AC = |\overrightarrow{AC}| = \sqrt{16 + 4 + 16} = \sqrt{36}$ $BC = |\overrightarrow{BC}| = \sqrt{9+9} = \sqrt{18}$ Clearly triangle is isosceles and $AB^2 + BC^2 = AC^2$ \Rightarrow triangle is right angled at B Option A,C are correct. Let $\vec{a} = 2\hat{i} - \hat{i} + \hat{k}$: $\vec{b} = \hat{i} + 2\hat{i} + \hat{k}$. **Q.21** $\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k}$ be three vectors. A vector in

the plane of \vec{b} and \vec{c} whose projection on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is -(A) $3\hat{i} + 6\hat{j} - 2\hat{k}$ (B) $2\hat{i} + 3\hat{j} + 3\hat{k}$ (C) $-2\hat{i} - \hat{j} + 2\hat{k}$ (D) $2\hat{i} + \hat{j} + 5\hat{k}$ [A]

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

Sol.

Unit vectors \hat{a} and \hat{b} are inclined at an angle Q.22 2θ and $|\hat{a} - \hat{b}| \le 1$, if $0 \le \theta < \pi$. Then θ may belong to -(A) $[0, \pi/6]$ (B) $(5\pi/6, \pi)$ (D) $[\pi/6, 5\pi/6]$ (C) $[\pi/6, \pi/2]$ Sol. [A,B] $\therefore |\hat{\mathbf{a}} - \hat{\mathbf{b}}|^2 = 1 + 1 - 2\cos 2\theta$ $= 2.2 \sin^2 \theta$ But $|\hat{a} - \hat{b}| \le 1$ $\Rightarrow 2|\sin \theta| \le 1$ $\Rightarrow |\sin \theta| \le \frac{1}{2}$ But $0 \le \theta < \pi$ $\Rightarrow \sin\theta \leq \frac{1}{2}$ Q $\theta \in \left[0, \frac{\pi}{6}\right] \text{ or } \left[\frac{5\pi}{6}, \pi\right)$ option A,B are correct. If $|\overset{\nu}{a},\overset{\nu}{b}| = |\overset{\nu}{a}\times\overset{\nu}{b}|$, then the angle between Q.23 a and b is -S (B) 180° (C) 135° $(A) 0^{\circ}$ (D) 45° Sol. [C,D] $|\stackrel{\rightarrow}{a} \times \stackrel{\rightarrow}{b}| = |\stackrel{\rightarrow}{a} \stackrel{\rightarrow}{b}|$ \Rightarrow |a b sin θ . \hat{n} | = |a b cos θ | \Rightarrow ab sin $\theta = \pm$ a b cos θ $\Rightarrow \tan \theta = \pm 1$ $\Rightarrow \theta = 45^{\circ}, 135^{\circ}$ Option C, D are correct. Q If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ then -0.24 (A) $(\vec{a} - \vec{d}) = \lambda (\vec{b} - \vec{c})$ (B) $(\overrightarrow{a} + \overrightarrow{d}) = \lambda (\overrightarrow{b} + \overrightarrow{c})$ (C) $(\overrightarrow{a} - \overrightarrow{b}) = \lambda (\overrightarrow{c} + \overrightarrow{d})$ (D) none of these Sol. [A.B] \therefore $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ Se from options (A) $(\overrightarrow{a} - \overrightarrow{d}) \times (\overrightarrow{b} - \overrightarrow{c})$ $= (\overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{a} \times \overrightarrow{c}) - (\overrightarrow{d} \times \overrightarrow{b} - \overrightarrow{d} \times \overrightarrow{c})$ $= (\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{d} \times \overrightarrow{c}) - (\overrightarrow{a} \times \overrightarrow{c} + \overrightarrow{d} \times \overrightarrow{b})$ $= (\overrightarrow{a} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{d}) - (\overrightarrow{a} \times \overrightarrow{c} - \overrightarrow{b} \times \overrightarrow{d})$ = 0Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141 Website : www.edubull.com

$$\Rightarrow \vec{a} - \vec{d} \text{ is } \| \text{ to } \vec{b} - \vec{c}$$

$$\Rightarrow \vec{a} - \vec{d} = \lambda (\vec{b} - \vec{c})$$
(B) $(\vec{a} + \vec{d}) \times (\vec{b} + \vec{c})$

$$= (\vec{a} \times \vec{b} + \vec{a} \times \vec{c}) + (\vec{d} \times \vec{b} + \vec{d} \times \vec{c})$$

$$= (\vec{a} \times \vec{b} + \vec{d} \times \vec{c}) + (\vec{a} \times \vec{c} + \vec{d} \times \vec{b})$$

$$= (\vec{a} \times \vec{b} - \vec{c} \times \vec{d}) + (\vec{a} \times \vec{c} - \vec{b} \times \vec{d})$$

$$= 0$$

$$\Rightarrow \vec{a} + \vec{d} = \lambda (\vec{b} + \vec{c})$$

$$\Rightarrow \text{Option A, B \text{ are correct.}}$$

2.25 The scalar $\vec{A} . (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$ equals
(A) 0 (B) $[\vec{A} \vec{B} \vec{C}] + [\vec{B} \vec{C} \vec{A}]$
(C) $[\vec{A} \vec{B} \vec{C}]$ (D) None of these
ol. $[A]$
 $\vec{A} . (\vec{B} + \vec{C}) \times (\vec{A} + \vec{B} + \vec{C})$

$$= \vec{A} . (\vec{B} \times \vec{A}) + \vec{A} . (\vec{B} \times \vec{B}) + \vec{A} . (\vec{B} \times \vec{C}) + \vec{A} . (\vec{C} \times \vec{A}) + \vec{A} . (\vec{C} \times \vec{A}) + \vec{A} . (\vec{C} \times \vec{C})$$

$$= 0 + 0 + [A B C] + 0 - [A B C] + 0 = 0$$

2.26 The adjacent sides of a parallelogram are represented by the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$ respectively. The unit vectors parallel to the diagonals of the parallelogram are (A) $\frac{(-\hat{i} - 2\hat{j} + 8\hat{k})}{\sqrt{69}}$ (B) $\frac{(-3\hat{i} + 6\hat{j} - 2\hat{k})}{7}$
(C) $\frac{(3\hat{i} + 6\hat{j} - 2\hat{k})}{7}$ (D) $\frac{(\hat{i} + 2\hat{j} - 8\hat{k})}{\sqrt{69}}$
ol. $[A, C, D]$
Let the adjacent sides at parallelogram is AB = $2\hat{i} + 4\hat{j} - 5\hat{k}$ and BC = $\hat{i} + 2\hat{j} + 3\hat{k}$
Then the diagonal are given by
AB - BC = $\hat{i} + 2\hat{j} - 8\hat{k}$ (i)
and AB + BC = $3\hat{i} + 6\hat{j} - 2\hat{k}$ (ii)

ĥ

$$\pm \frac{\hat{i} + 2\hat{j} - 8\hat{k}}{\sqrt{69}}$$
 and $\pm \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{7}$

Option A, C and D are correct.

Q.27 If \vec{a} , \vec{b} and \vec{c} are non-coplanar vectors, then the following vectors are coplanar -

> (A) $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $-2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$, $\overrightarrow{a} - 3\overrightarrow{b} + 5\overrightarrow{c}$ (B) $3\overrightarrow{a} - 7\overrightarrow{b} - 4\overrightarrow{c}$, $3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c}$ (C) $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}$, $-2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}$, $-\overrightarrow{b} + 2\overrightarrow{c}$ (D) $7\overrightarrow{a} - 8\overrightarrow{b} + 9\overrightarrow{c}$, $3\overrightarrow{a} + 20\overrightarrow{b} + 5\overrightarrow{c}$, $5\overrightarrow{a} + 6\overrightarrow{b} + 7\overrightarrow{c}$ **IB C D**

Q.28 If a vector \vec{r} of magnitude $3\sqrt{6}$ is directed along the bisector of the angle between the vectors $\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ then $\vec{r} =$ (A) $\hat{i} - 7\hat{j} + 2\hat{k}$ (B) $\hat{i} + 7\hat{j} - 2\hat{k}$ (C) $-\hat{i} + 7\hat{j} - 2\hat{k}$ (D) $\hat{i} - 7\hat{j} - 2\hat{k}$

Sol. [A,C]

$$\hat{a} = \frac{1}{9} (7\hat{i} - 4\hat{j} - 4\hat{k})$$

$$\hat{b} = \frac{1}{3} (-2\hat{i} - \hat{j} + 2\hat{k})$$

$$\vec{r} = t[\hat{a} + \hat{b}]$$

$$= t\left(\frac{7\hat{i} - 4\hat{j} - 4\hat{k}}{9} + \frac{-2\hat{i} - \hat{j} + 2\hat{k}}{3}\right)$$

$$= t\left(\frac{\hat{i} - 7\hat{j} + 2\hat{k}}{9}\right) \qquad \dots \dots (\hat{i}$$

$$\therefore |\vec{r}| = 3\sqrt{6}$$

$$\Rightarrow |\vec{r}| = \frac{t}{9} |\hat{i} - 7\hat{j} + 2\hat{k}|$$

$$\Rightarrow \frac{t^2}{81} (1 + 49 + 4) = 54$$

$$\Rightarrow t = \pm 9$$
From (i) $\vec{r} = \pm (\hat{i} - 7\hat{j} + 2\hat{k})$

Q.29 The vector
$$\frac{1}{3} (2\hat{i}-2\hat{j}+\hat{k})$$

(A) is a unit vector
(B) makes an angle $\frac{\pi}{3}$ with vector
 $(2\hat{i}-4\hat{j}+3\hat{k})$
(C) is parallel to the vector $\left(-\hat{i}+\hat{j}-\frac{1}{2}\hat{k}\right)$
(D) is perpendicular to the vector $3\hat{i}+2\hat{j}-2$
Sol. [A,C,D]
(A)Let $\hat{k} = \frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k})$
 $|\hat{k}|^2 = \frac{9}{9} = 1$
 $\Rightarrow \hat{k}$ is a unit vector
(B) $\cos\theta = \frac{\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k}).(2\hat{i}-4\hat{j}+3\hat{k})}{\frac{1}{3}\sqrt{4+4+1}\sqrt{4+16+9}}$
 $\cos\theta = \frac{15}{3\sqrt{29}} \Rightarrow \theta = \cos^{-1}\left(\frac{5}{\sqrt{29}}\right)$
(C) $\Theta - \hat{i} + \hat{j} - \frac{1}{2}\hat{k} = -\frac{2}{3}(2\hat{i}-2\hat{j}+\hat{k})$
Clearly it is || to \hat{k}
(D) $\frac{1}{3}(2\hat{i}-2\hat{j}+\hat{k}).(3\hat{i}+2\hat{j}-2\hat{k})$
 $= \frac{1}{3}(6-4-2) = 0$
 \hat{k} is \perp to $(3\hat{i}+2\hat{j}-2\hat{k})$

Option A, C are correct.

 \Rightarrow option A,C,D are correct.

Part-C Assertion-Reason type questions

The following questions 30 to 33 consists of two statements each, printed as (Assertion) Statement-1 and Reason (Statement-2). While answering these questions you are to choose any one of the following four responses.

- (A) If both Statement-1 and Statement-2 are true and the Statement-2 is correct explanation of the Statement-1.
- (B) If both Statement-1 and Statement-2 are true but Statement-2 is not correct explanation of the Statement-1.

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

- (C) If Statement-1 is true but the Statement-2 is false.
- (D) If Statement-1 is false but Statement-2 is true
- **Statement-1** : A vector \vec{c} , directed along the Q.30 internal bisector of the angle between the vector $\vec{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ & $\vec{b} = -2\hat{i} - \hat{j} + 2\hat{k}$, with $|\ddot{c}| = 5\sqrt{6}$ is $\frac{5}{3}(\hat{i}-7\hat{j}+2\hat{k})$. Statement-2 : The vector bisecting the angle of

$$\overset{\rho}{a}$$
 & $\overset{\rho}{b}$ is given by $\overset{\rho}{c} = \lambda \left(\frac{\overset{\rho}{a}}{|\overset{\rho}{a}|} + \frac{\overset{\rho}{b}}{|\overset{\rho}{b}|} \right) \forall \lambda < 0.$

Statement-1: The components of a vector b Q.31

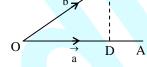
along and perpendicular to a non-zero vector \vec{a}

are
$$\left(\frac{\begin{pmatrix} \rho & \rho & \rho \\ b & a \end{pmatrix} a}{|a|^2}\right) \& \left(\frac{\begin{pmatrix} \rho & \rho & \rho \\ a \times (b \times a) \\ |a|^2\end{array}\right)$$
 respectively.

Statement-2 : If \vec{A} . \vec{B} and \vec{C} are three noncoplanar vectors then

$$\frac{\vec{A}.(\vec{B}\times\vec{C})}{\vec{C}\times\vec{A}.\vec{B}} + \frac{\vec{B}\cdot\vec{A}\times\vec{C}}{\vec{C}\cdot\vec{A}\times\vec{B}} = 2$$

Sol. [C]



component of \overrightarrow{b} along \overrightarrow{a}

$$\overrightarrow{OD} = (OB.cos\theta). \hat{a}$$

$$= \left(\overrightarrow{|b|} \xrightarrow{a.b}_{\overrightarrow{a},\overrightarrow{b}} \right). \xrightarrow{a}_{\overrightarrow{a},\overrightarrow{a}}$$

$$= \left(\overrightarrow{|b|} \xrightarrow{a.b}_{\overrightarrow{a},\overrightarrow{b}} \right). \overrightarrow{|a|}$$

$$= \left(\overrightarrow{a.b}_{\overrightarrow{a},\overrightarrow{a}} \right) \overrightarrow{a}$$

and component b perpendicular to a is

Website : www.edubull.com

$$= \overrightarrow{DB} = \overrightarrow{b} - OD$$

$$= \overrightarrow{b} - \frac{\overrightarrow{(a.b)a}}{\overrightarrow{|a|^2}}$$

$$\Rightarrow \frac{\overrightarrow{(a.a)b} - (\overrightarrow{a.b)a}}{\overrightarrow{|a|^2}}$$

$$\Rightarrow \frac{\overrightarrow{(a.a)b} - (\overrightarrow{a.b)a}}{\overrightarrow{|a|^2}}$$

$$\Rightarrow \frac{\overrightarrow{a \times (b \times a)}}{\overrightarrow{|a|^2}}$$

Clearly assertion is true but reason is false \Rightarrow C is correct.

Statement-1: Let \breve{a} , \breve{b} , \breve{c} be unit vectors such 0.32 that $\ddot{a} + 5\ddot{b} + 3\ddot{c} = 0$. then $\overset{\nu}{a}$. $(\overset{\nu}{b}\times\overset{\nu}{c}) = \overset{\nu}{b}$. $(\overset{\nu}{a}+\overset{\nu}{c})$. **Statement-2** : Box product of three coplanar vectors is 0.

Sol. [D]

Statement-1: For non-coplanar vectors \overrightarrow{A} , \overrightarrow{B} Q.33 and \vec{C} , $|[\vec{A} \ \vec{B} \ \vec{C}]| = |\vec{A}| |\vec{B}| |\vec{C}|$ holds iff \overrightarrow{A} . \overrightarrow{B} = \overrightarrow{B} . \overrightarrow{C} = \overrightarrow{C} . \overrightarrow{A} = 0. Statement-2: $|\vec{A} \times \vec{B} \cdot \vec{C}| = |A| |B| |C| \sin\theta$ $\cos \phi$ where θ be angle between \overrightarrow{A} and \overrightarrow{B} and

 ϕ the angle between \overrightarrow{C} and $\overrightarrow{A} \times \overrightarrow{B}$.

Sol. Statement (2) is correct explanation of statement (1)

Column Matching type questions Part-D

Q.34 Match the following : Column-I Column-II (A) If $\hat{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, (P) -1 $\stackrel{\rho}{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\stackrel{\rho}{c} = 3\hat{i} + \hat{j}$, then t, such that $a^{\mu} + t^{\mu} b$ is perpendicular to \mathcal{E} , will be (B) If |a| = 2, |b| = 5 and (Q) 4 $|\mathbf{a} \times \mathbf{b}| = 8$, then $\mathbf{a} \cdot \mathbf{b} =$ (C) If four point A (1, 0, 3), (R) 5 B(-1, 3, 4), C(1, 2, 1) and

Power by: VISIONet Info Solution Pvt. Ltd Mob no. : +91-9350679141

D(k, 2, 5) are coplanar, then k =(D) If A, B, C, and D are four (S) 6 points and $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$ = λ (area of the Δ BAC), then λ = **Sol.** (A) **[R]** $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ $\vec{c} = 3\hat{i} + \hat{j}$ $\vec{a} + t \vec{b} = (1-t)\hat{i} + (2+2t)\hat{j} + (3+t)\hat{k}$ $\Theta \stackrel{\rightarrow}{a} + t \stackrel{\rightarrow}{b} + \stackrel{\rightarrow}{c}$ \Rightarrow (\overrightarrow{a} + t \overrightarrow{b}). \overrightarrow{c} = 0 \Rightarrow 3 (1 - t) + (2 + 2t) = 0 \Rightarrow t = 5 (B) **[S]** $\therefore |\vec{a} \times \vec{b}| = 8 \Rightarrow |\vec{a}| \vec{b} | \sin\theta. \hat{n} | = 8$ $\Rightarrow 10|\sin \theta| = 8 \Rightarrow \sin \theta = \frac{4}{5}$ (i) and \overrightarrow{a} . $\overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos\theta$ $= 10. \frac{3}{5}$ from (i) $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 6$ (C)**[P]** $\vec{A} = \hat{i} + 3\hat{k}$ $\vec{B} = -\hat{i} + 3\hat{j} + 4\hat{k}$ $\vec{C} = \hat{i} + 2\hat{j} + \hat{k}$

$$\vec{D} = k\hat{i} + 2\hat{j} + 5\hat{k}$$
$$\vec{AB} = \vec{OB} - \vec{OA} = -2\hat{i} + 3\hat{j} + \hat{k}$$
$$\vec{BC} = \vec{OC} - \vec{OB} = 2\hat{i} - \hat{j} - 3\hat{k}$$

$$\overrightarrow{\text{CD}} = \overrightarrow{\text{OD}} - \overrightarrow{\text{OC}} = (k-1)\hat{i} + 4\hat{k}$$

If \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} , \overrightarrow{D} are coplanar then \overrightarrow{AB} , \overrightarrow{BC} and CD also coplanar $\Rightarrow [\overrightarrow{AB} \overrightarrow{BC} \overrightarrow{CD}] = 0$ $\Rightarrow \begin{vmatrix} -2 & 3 & 1 \\ 2 & -1 & -3 \\ k -1 & 0 & 4 \end{vmatrix} = 0$ $\Rightarrow -2(-4) - 3(8 + 3(k - 1)) + (k - 1) = 0$ $\Rightarrow 8-24-9k+9+k-1=0$ $\Rightarrow k = -1$ (D)[**Q**] Let D is origin and position vector of

 \vec{A} , \vec{B} , \vec{C} are \vec{a} , \vec{b} , \vec{c} Respectively we have $|\overrightarrow{AB} \times \overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}|$ $= |(\overrightarrow{b} - \overrightarrow{a}) \times (-\overrightarrow{c}) + (\overrightarrow{c} - \overrightarrow{b}) \times (-\overrightarrow{a}) +$ $(\overrightarrow{a} - \overrightarrow{c}) \times (-\overrightarrow{b})$ $= 2|\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}|$ = 2 [2 (area of $\triangle ABC$)] = 4 (area of $\triangle ABC$) $\Rightarrow \lambda = 4$

For any three given vectors a', b' and b', match Q.35 the following column :

Column-I
(A) If
$$\stackrel{V}{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$
, (P) 0
 $\stackrel{V}{b} = -2\hat{i} + \hat{j} + \hat{k}$,
 $\stackrel{V}{c} = 10\hat{j} - \hat{k}$ and
 $\stackrel{V}{a} \times (\stackrel{V}{b} \times \stackrel{V}{c}) = u\stackrel{V}{a} + v\stackrel{V}{b} + w\stackrel{V}{c}$,
then $u =$
(B) Volume of the tetrahedron (Q) 1
whose vertices are the
points with position vectors
 $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$,

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

 $3\hat{i} + \hat{k}$

 $5\hat{i} - \hat{j} + \lambda \hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 (units)³ then $\lambda =$ (C) Given two vectors (R) 7 ${}_{a}^{b} = 2\hat{i} - 3\hat{j} + 6\hat{k}$, $\hat{b} = -2\hat{i} + 2\hat{j} - \hat{k}$ and $\lambda = \frac{\text{the projection of } \stackrel{\rho}{a} \stackrel{\rho}{o} \stackrel{\rho}{b} \stackrel{\rho}{o},$ the projection of b on a then the value of 3λ is (D) Let a', b', c' be three non- $(S) | \vec{a} | | \vec{b} | | \vec{c} |$ zero vectors such that $\ddot{a} + \ddot{b} + \ddot{c} = \ddot{0}$, then (T) 2 $\lambda \overset{\rho}{b} \times \overset{\rho}{a} + \overset{\rho}{b} \times \overset{\rho}{c} + \overset{\rho}{c} \times \overset{\rho}{a} = 0,$ where λ is equal to $A \rightarrow P; B \rightarrow P, R; C \rightarrow R; D \rightarrow T$ Sol. **(A)** $\hat{\rho}$ $\hat{\rho}$ (a.c)b - (a.b)c = ua + vb + wcPut value compare on R.H.S and L.H.S. **(B)** P.V of A = $\hat{i} - 6\hat{j} + 10\hat{k}$ $\overrightarrow{AB} =$ $-2\hat{i}+3\hat{j}-3\hat{k}$ P.V of B = $-\hat{i} - 3\hat{j} + 7\hat{k}$ $\overrightarrow{AC} =$ $(4\hat{i}+5\hat{j}+(\lambda-10)\hat{k})$ P.V of C = $5\hat{i} - \hat{j} + \lambda\hat{k}$ $\overrightarrow{AD} =$ $6\hat{i}+2\hat{j}-3\hat{k}$ P.V of D = $7\hat{i} - 4\hat{j} + 7\hat{k}$ $\overrightarrow{[AB AC AD]} = 11$ -2 3 -3 $\frac{1}{6}$ 5 $\lambda - 10 = \pm 11$ 2 6 -3 Then $\lambda = 0$ $\lambda = 7$ (**C**) $\lambda = \frac{\begin{vmatrix} \mathbf{b} \\ \mathbf{p} \mathbf{p} \\ \mathbf{a} \mathbf{b} \end{vmatrix}}{\mathbf{a} \mathbf{b}} \Rightarrow \lambda = \frac{\begin{vmatrix} \mathbf{b} \\ \mathbf{p} \end{vmatrix}}{\begin{vmatrix} \mathbf{b} \\ \mathbf{b} \end{vmatrix}} = \frac{7}{3}$ So $3\lambda = 7$ **(D)**

 $\begin{aligned} \overset{b}{a} + \overset{b}{b} + \overset{c}{c} &= 0 \\ \overset{\rho}{a} + \overset{\rho}{c} &= -\overset{\rho}{b} \\ \overset{b}{b} \times \overset{\rho}{a} + \overset{\rho}{b} \times \overset{\rho}{c} &= 0 \dots (1) \\ \overset{b}{a} \times \overset{\rho}{a} + \overset{\rho}{b} \times \overset{\rho}{c} &= 0 \dots (2) \\ \end{aligned}$ $\begin{aligned} &\text{add (1) \& (2)} \\ &2(\overset{\rho}{b} \times \overset{\rho}{a}) + (\overset{\rho}{b} \times \overset{\rho}{c}) + (\overset{\rho}{c} \times \overset{\rho}{a}) &= 0 \\ \implies \lambda &= 2 \end{aligned}$

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no. : +91-9350679141