BINOMIAL THEOREM

9.

Expansion of binomial theorem

- The value of $(\sqrt{5} + 1)^5 (\sqrt{5} 1)^5$ is 1.
 - (A) 252
- (B) 352
- (C)452
- (D) 532
- In the expansion of the following 2. expression

$$1 + (1 + x) + (1 + x)^{2} + \dots + (1 + x)^{n}$$

the coefficient of $x^k (0 \le k \le n)$ is

- (A) $^{n+1}C_{k+1}$
- (B) ⁿC₁
- $(C)^{n}C_{n-k-1}$
- (D) None of these
- The larger of $99^{50} + 100^{50}$ and 101^{50} is **3.**
 - (A) $99^{50} + 100^{50}$
- (B) Both are equal
- $(C) 101^{50}$
- (D) None of these
- $(1+x)^n nx 1$ divisible (where $n \in N$) 4.
 - (A) by 2x
 - (B) by x^2
 - (C) by $2x^3$
 - (D) All of these
- **5.** If T_0, T_1, T_2, T_n represent the terms in the expansion of $(x+a)^n$, then
 - $(T_0 T_2 + T_4 \dots)^2 + (T_1 T_3 + T_5 \dots)^2 =$
 - (A) $(x^2 + a^2)$ (B) $(x^2 + a^2)^n$

 - (C) $(x^2 + a^2)^{1/n}$ (D) $(x^2 + a^2)^{-1/n}$

General term, Coefficient of any power of x, Independent term, Middle term and Greatest term and Greatest coefficient

In $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^{\frac{1}{2}}$ if the ratio of 7th term **6.**

> from the beginning to the 7^{th} term from the end is $\frac{1}{6}$, then n =

- (A)7
- (B) 8
- (C)9

(D) None of these

- If coefficient of $(2r+3)^{th}$ and $(r-1)^{th}$ 7. terms in the expansion of $(1+x)^{15}$ are equal, then value of r is
 - (A) 5
- (B) 6
- (C) 4
- (D)3
- If x⁴ occurs in the rth term in the 8. expansion of $\left(x^4 + \frac{1}{x^3}\right)^{15}$, then r =
 - (A) 7
- (B) 8
- (C)9
- (D) 10 If the $(r+1)^{th}$ term in the expansion of

$$\left(\sqrt[3]{\frac{a}{\sqrt{b}}} + \sqrt{\frac{b}{\sqrt[3]{a}}}\right)^{21} \text{ has the same power of } a$$

and b, then the value of r is

- (A)9
- (B) 10
- (C) 8

- (D) 6
- **10.** If the third term in the binomial expansion of $(1+x)^m$ is $-\frac{1}{8}x^2$, then the rational value of *m* is
 - (A) 2

(B) 1/2

- (C) 3
- (D)4
- The first 3 terms in the expansion of 11. $(1 + ax)^n$ $(n \ne 0)$ are 1, 6x and $16x^2$. Then the value of a and n are respectively
 - (A) 2 and 9
- (B) 3 and 2
- (C) 2/3 and 9
- (D) 3/2 and 6
- **12.** If the coefficients of T_r, T_{r+1}, T_{r+2} terms of $(1+x)^{14}$ are in A.P., then r =
 - (A) 6
- (B) 7
- (C) 8
- (D)9
- Coefficient of x in the expansion of 13. $\left(x^2 + \frac{a}{x}\right)^3$ is
 - (A) $9a^{2}$
- (B) $10a^3$
- (C) $10a^2$
- (D) 10a

14.	If the coefficient	ents	of pth	$(p+1)^{th}$	and
	$(p+2)^{th}$ terms	in	the	expansion	of
	$(1+x)^n$ are in A	.P., t	then		

(A)
$$n^2 - 2np + 4p^2 = 0$$

(B)
$$n^2 - n(4p+1) + 4p^2 - 2 = 0$$

(C)
$$n^2 - n(4p+1) + 4p^2 = 0$$

(D) None of these

15. In the expansion of
$$\left(\frac{a}{x} + bx\right)^{12}$$
, the coefficient of x^{-10} will be

- (A) $12a^{11}$
- (B) $12b^{11}a$
- (C) $12a^{11}b$
- (D) 12a¹¹b¹¹

16. The coefficient of
$$x^{53}$$
 in the following expansion
$$\sum_{n=0}^{100} {C_n(x-3)^{100-m} \cdot 2^m}$$
 is

- (A) 100 C₄₇
- (B) 100 C₅₃
- $(C) ^{100}C_{53}$
- (D) $-^{100}$ C₁₀₀

17. The coefficient of
$$x^{32}$$
 in the expansion of
$$\left(x^4 - \frac{1}{x^3}\right)^{15}$$
 is

- (A) $^{15}C_5$ (B) $^{15}C_6$
- $(C)^{15}C_4$
- (D) $^{15}C_{7}$

18. If the coefficients of
$$x^7$$
 and x^8 in $\left(2 + \frac{x}{3}\right)^n$ are equal, then *n* is

- (A) 56
- (B) 55
- (C) 45
- (D) 15

19. The coefficient of
$$x^3$$
 in the expansion of $\left(x - \frac{1}{x}\right)^7$ is

- (A) 14
- (B) 21
- (C) 28
- (D) 35

20. If in the expansion of
$$(1+x)^m (1-x)^n$$
, the coefficient of x and x^2 are 3 and -6 respectively, then m is

- (A) 6
- (B)9
- (C) 12
- (D) 24

21. If
$$x^m$$
 occurs in the expansion of $\left(x + \frac{1}{x^2}\right)^{2n}$, then the coefficient of x^m is

$$(A) \; \frac{(2n)!}{(m)!(2n-m)!}$$

(B)
$$\frac{(2n)!3!3!}{(2n-m)!}$$

(C)
$$\frac{(2n)!}{\left(\frac{2n-m}{3}\right)!\left(\frac{4n+m}{3}\right)!}$$

- (D) None of these
- If coefficients of 2^{nd} , 3^{rd} and 4^{th} terms in 22. the binomial expansion of $(1+x)^n$ are in A.P., then $n^2 - 9n$ is equal to
 - (A) 7
- (B)7
- (C) 14
- (D) 14
- In the expansion of $(1+x+x^3+x^4)^{10}$, the 23. coefficient of x4 is
 - (A) ${}^{40}C_4$
- (B) ${}^{10}C_4$
- (C) 210
- (D) 310
- If coefficients of $(2r+1)^{th}$ term and 24. $(r+2)^{th}$ term are equal in the expansion of $(1+x)^{43}$, then the value of r will be
 - (A) 14
- (B) 15
- (C) 13
- (D) 16
- If the coefficient of 4^{th} term in the 25. expansion of $(a + b)^n$ is 56, then *n* is
 - (A) 12
- (B) 10
- (C) 8
- (D) 6

26.	If in the expansion of $(1+x)^{21}$, the
	coefficients of x^r and x^{r+1} be equal, then r
	is equal to

(A)9

(B) 10

(C) 11

(D) 12

27. The term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}} + \frac{3}{2x^2}\right)^{10}$ will be

(A) 3/2

(B) 5/4

(C) 5/2

(D) None of these

28. The term independent of x in the expansion of $\left(\frac{1}{2}x^{1/3} + x^{-1/5}\right)^{8}$ will be

(A) 5

(C)7

(D) 8

In the expansion of $\left(\frac{3x^2}{2} - \frac{1}{3x}\right)^9$, the term 29. independent of x is

(A) ${}^{9}C_{3}.\frac{1}{6^{3}}$ (B) ${}^{9}C_{3}\left(\frac{3}{2}\right)^{3}$

 $(C)^{9}C_{3}$

(D) None of these

independent of x **30.** term $\left(2x-\frac{1}{2x^2}\right)^{12}$ is

(A) - 7930

(C)495

(D) 7920

In the expansion of $\left(x + \frac{2}{x^2}\right)^{15}$, the term 31. independent of x is

(A) $^{15}C_62^6$

(B) ${}^{15}C_52^5$

 $(C)^{15}C_42^4$

(D) $^{15}C_{8}2^{8}$

The term independent of x in the expansion 32.

of $\left(x^2 - \frac{1}{x}\right)^9$ is

(A) 1

(B) -1

(C) - 48

(D) None of these

33. The term independent of x in the expansion

of
$$\left(2x + \frac{1}{3x}\right)^6$$
 is

(A) $\frac{160}{9}$ (B) $\frac{80}{9}$

(C) $\frac{160}{27}$

34. The term independent of x in the expansion

$$\left(x^2 - \frac{1}{3x}\right)^9$$
 is

(A) $\frac{28}{81}$ (B) $\frac{28}{243}$

(C) $-\frac{28}{243}$ (D) $-\frac{28}{91}$

35. The term independent of x in the expansion

of
$$\left(2x - \frac{3}{x}\right)^6$$
 is

(A) 4320

(B) 216

(C) - 216

(D) - 4320

The coefficient of middle term in the **36.** expansion of $(1+x)^{10}$ is

(A) $\frac{10!}{5!6!}$ (B) $\frac{10!}{(5!)^2}$

(C) $\frac{10!}{5!7!}$

(D) None of these

37. The middle term in the expansion of $(1+x)^{2n}$ is

(A) $\frac{(2n)!}{n!}x^2$

(B) $\frac{(2n)!}{n!(n-1)!}x^{n+1}$

(C) $\frac{(2n)!}{(n!)^2} x^n$

(D) $\frac{(2n)!}{(n+1)!(n-1)!} x^n$

- 38. The greatest coefficient in the expansion of $(1+x)^{2n+2}$ is

 - (A) $\frac{(2n)!}{(n!)^2}$ (B) $\frac{(2n+2)!}{\{(n+1)!\}^2}$

 - (C) $\frac{(2n+2)!}{n!(n+1)!}$ (D) $\frac{(2n)!}{n!(n+1)!}$
- The greatest term in the expansion of 39.

$$\sqrt{3}\left(1+\frac{1}{\sqrt{3}}\right)^{20}$$
 is

- (A) $\frac{25840}{9}$ (B) $\frac{24840}{9}$
- (C) $\frac{26840}{9}$
- (D) None of these
- **40.** If n is even positive integer, then the condition that the greatest term in the expansion of $(1+x)^n$ may have the greatest coefficient also, is

(A)
$$\frac{n}{n+2} < x < \frac{n+2}{n}$$
 (B)

$$\frac{n+1}{n} < x < \frac{n}{n+1}$$

(C)
$$\frac{n}{n+4} < x < \frac{n+4}{4}$$
 (D) None of these

Properties of binomial coefficients

- $C_1 + 2C_2 + 3C_3 + 4C_4 + + nC_n =$ 41.
 - (A) 2^{n}
- (B) n. 2^{n}
- (C) n. 2^{n-1} (D) n. 2^{n+1}
- $\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots =$ 42.

 - (A) $\frac{2^{n+1}}{n+1}$ (B) $\frac{2^{n+1}-1}{n+1}$
 - (C) $\frac{2^{n}}{n+1}$
- (D) None of these

- 43. $\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{2} + \dots + \frac{C_n}{n+1} =$
 - (A) $\frac{2^n}{n+1}$ (B) $\frac{2^n-1}{n+1}$
 - (C) $\frac{2^{n+1}-1}{n+1}$
- (D) None of these
- $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$
 - (A) $\frac{2^n}{n!}$; for all even values of n
 - (B) $\frac{2^{n-1}}{n!}$; for all values of *n* i.e., all even
 - odd values (C) 0
 - (D) None of these
- The sum to (n+1) terms of the following 45.

series
$$\frac{C_0}{2} - \frac{C_1}{3} + \frac{C_2}{4} - \frac{C_3}{5} + \dots$$
 is

- (A) $\frac{1}{n+1}$ (B) $\frac{1}{n+2}$
- (C) $\frac{1}{n(n+1)}$
- (D) None of these
- If a and d are two complex numbers, then 46. the sum to (n+1) terms of the following series

$$aC_0 - (a+d)C_1 + (a+2d)C_2 - \dots$$
 is

- (A) $\frac{a}{2^n}$
- (C) 0
- (D) None of these

47. If

$$(1+x)^{15} = C_0 + C_1 x + C_2 x^2 + \dots + C_{15} x^{15},$$

then $C_2 + 2C_3 + 3C_4 + \dots + 14C_{15} =$

- (A) 14.2^{14} (B) $13.2^{14} + 1$
- (C) $13.2^{14} 1$
- (D) None of these

The value of $\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots$ is equal 48.

to

$$(A) \frac{2^n - 1}{n + 1}$$

(B) $n.2^n$

(C)
$$\frac{2^n}{n}$$

(D) $\frac{2^{n}+1}{n+1}$

In the expansion of $(1+x)^n$ the sum of 49. coefficients of odd powers of x is

(A) $2^{n} + 1$

(B)
$$2^{n} - 1$$

(C) 2ⁿ

- (D) 2^{n-1}
- $C_0 C_1 + C_2 C_3 + \dots + (-1)^n C_n$ is equal **50.**

(A) 2ⁿ

(B)
$$2^{n} - 1$$

(C) 0

- (D) 2^{n-1}
- Coefficients of $x^{r}[0 \le r \le (n-1)]$ in the 51. expansion of

 $(x+3)^{n-1} + (x+3)^{n-2}(x+2)$ $+(x+3)^{n-3}(x+2)^2 + ... + (x+2)^{n-1}$

- (A) ${}^{n}C_{r}(3^{r}-2^{n})$
- (B) ${}^{n}C_{n}(3^{n-r}-2^{n-r})$
- (C) ${}^{n}C_{r}(3^{r}+2^{n-r})$
- (D) None of these
- **52.** If the sum of the coefficients in the expansion of $(\alpha^2 x^2 - 2\alpha x + 1)^{51}$ vanishes, then the value of α is
 - (A) 2

(C) 1

- (D) 2
- If x + y = 1, then $\sum_{r=0}^{n} r^{2} {^{n}C_{r}x^{r}y^{n-r}}$ equals 53.
 - (A) nxv
- (B) nx(x + yn)
- (C) nx(nx + y)
- (D) None of these

54. The value of

 4n C₀ + 4n C₄ + 4n C₈ + + 4n C_{4n} is

- (A) $2^{4n-2} + (-1)^n 2^{2n-1}$ (B) $2^{4n-2} + 2^{2n-1}$
- (C) $2^{2n-1} + (-1)^n 2^{4n-2}$ (D) None of these
- 55. The sum of the last eight coefficients in the expansion of $(1+x)^{15}$ is
 - (A) 2^{16}
- (B) 2^{15}
- (C) 2^{14}
- (D) None of these
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + + C_nx^n$, **56.** then the value of

 $C_0 + 2C_1 + 3C_2 + + (n+1)C_n$ will be

- (A) $(n+2)2^{n-1}$ (B) $(n+1)2^n$
- (C) $(n+1)2^{n-1}$
- (D) $(n+2)2^n$
- The value of ${}^{15}C_0^2 {}^{15}C_1^2 + {}^{15}C_2^2 \dots {}^{15}C_{15}^2$ 57.
 - (A) 15
- (B) 15

(C) 0

- (D) 51
- $2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{2}C_2 + \dots + \frac{2^{11}}{11}C_{10}$ **58.**

 - (A) $\frac{3^{11}-1}{11}$ (B) $\frac{2^{11}-1}{11}$
 - (C) $\frac{11^3 1}{11}$ (D) $\frac{11^2 1}{11}$
- If $(1+x)^n = C_0 + C_1x + C_2x^2 + + C_nx^n$, **59.** then $C_0C_2 + C_1C_3 + C_2C_4 + C_{n-2}C_n$ equals
 - (A) $\frac{(2n)!}{(n+1)!(n+2)!}$
 - (B) $\frac{(2n)!}{(n-2)!(n+2)!}$
 - (C) $\frac{(2n)!}{(n)!(n+2)!}$
 - (D) $\frac{(2n)!}{(n-1)!(n+2)!}$

- **60.** If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + ... + C_n x^n$, then the value of $C_0 + C_2 + C_4 + C_6 + ...$ is
 - (A) 2^{n-1}
- (B) 2^{n-1}
- $(C) 2^n$
- (D) $2^{n-1}-1$
- 61. The sum of coefficients in $(1 + x 3x^2)^{2134}$ is
 - (A) 1
- (B) 1
- (C) 0

- (D) 2^{2134}
- 62. The sum of coefficients in the expansion of $(1+x+x^2)^n$ is
 - (A) 2
- (B) 3^{n}
- (C) 4ⁿ
- $(D) 2^n$
- 63. The sum of the coefficients in the expansion of $(1+x-3x^2)^{3148}$ is
 - (A)7
- (B) 8
- (C) 1
- (D) 1
- **64.** If $a_k = \frac{1}{k(k+1)}$, for k = 1, 2, 3, 4,, n,

then
$$\left(\sum_{k=1}^{n} a_{k}\right)^{2} =$$

- $(A)\left(\frac{n}{n+1}\right)$
- (B) $\left(\frac{n}{n+1}\right)^2$
- (C) $\left(\frac{n}{n+1}\right)^4$
- (D) $\left(\frac{n}{n+1}\right)^6$
- 65. In the expansion of $(1+x)^5$, the sum of the coefficient of the terms is
 - (A) 80
- (B) 16
- (C) 32
- (D) 64

Binomial theorem for any index

- 66. The coefficient of x^3 in the expansion of $\frac{(1+3x)^2}{1-2x}$ will be
 - (A) 8
- (B) 32
- (C) 50
- (D) None of these
- 67. If |x| < 1 then the coefficient of x^n in the expansion of $(1 + x + x + x^2 + ...)^2$ will be
 - (A) 1

- (B) n
- (C) n + 1
- (D) None of these
- **68.** If |x| > 1, then $(1+x)^{-2} =$
 - (A) $1 2x + 3x^2 \dots$
 - (B) $1 + 2x + 3x^2 \dots$
 - (C) $1 \frac{2}{x} + \frac{3}{x^2} \dots$
 - (D) $\frac{1}{x^2} \frac{2}{x^3} + \frac{3}{x^4} \dots$
- 69. If |x| < 1, then in the expansion of $(1 + 2x + 3x^2 + 4x^3 +)^{1/2}$, the coefficient of x^n is
 - (A) *n*
- (B) n + 1

(C) 1

- (D) 1
- 70. The approximate value of $(7.995)^{1/3}$ correct to four decimal places is
 - (A) 1.9995
- (B) 1.9996
- (C) 1.9990
- (D) 1.9991
- 71. $1 \frac{1}{8} + \frac{1}{8} \cdot \frac{3}{16} \frac{1 \cdot 3 \cdot 5}{8 \cdot 16 \cdot 24} + \dots =$
 - (A) $\frac{2}{5}$
- (B) $\frac{\sqrt{2}}{5}$
- (C) $\frac{2}{\sqrt{5}}$
- (D) None of these

- If $(r+1)^{th}$ term is the first negative term in 72. the expansion of $(1+x)^{7/2}$, then the value of r is
 - (A) 5
- (B) 6

(C)4

- (D) 7
- The coefficient of xⁿ in the expansion of 73. $(1-2x+3x^2-4x^3+....)^{-n}$ is
 - (A) $\frac{(2n)!}{n!}$
- (B) $\frac{(2n)!}{(n!)^2}$
- (C) $\frac{1}{2} \frac{(2n)!}{(n!)^2}$
- (D) None of these
- **74.** The coefficient of xⁿ in the expansion of $(1-9x+20x^2)^{-1}$ is
 - (A) $5^{n} 4^{n}$
- (B) $5^{n+1} 4^{n+1}$
- (C) $5^{n-1} 4^{n-1}$ (D) None of these
- The coefficient of xⁿ in the expansion of *75.* $\frac{1}{(1-x)(3-x)}$ is
 - (A) $\frac{3^{n+1}-1}{2 \cdot 3^{n+1}}$ (B) $\frac{3^{n+1}-1}{3^{n+1}}$

 - (C) $\left(\frac{3^{n+1}-1}{3^{n+1}}\right)$ (D) None of these
- The coefficient of xⁿ in the expansion of **76.** $(1 + x + x^2 +)^{-n}$ is
 - (A) 1

(B) $(-1)^n$

(C) n

- (D) n + 1
- If $v = 3x + 6x^2 + 10x^3 + ...$, then the value 77. of x in terms of y is
 - (A) $1 (1 y)^{-1/3}$
 - (B) $1 (1 + y)^{1/3}$
 - (C) $1+(1+y)^{-1/3}$
 - (D) $1 (1 + v)^{-1/3}$

- The coefficient of x in the expansion of **78.** $[\sqrt{1+x^2}-x]^{-1}$ in ascending powers of x, when |x| < 1, is
 - (A) 0
- (B) $\frac{1}{2}$
- (C) $-\frac{1}{2}$
- $1 + \frac{1}{4} + \frac{1.3}{48} + \frac{1.3.5}{4812} + \dots =$ **79.**
 - (A) $\sqrt{2}$
 - (B) $\frac{1}{\sqrt{2}}$
 - (C) $\sqrt{3}$
 - (D) $\frac{1}{\sqrt{2}}$
- **80.** If x is positive, the first negative term in the expansion of $(1+x)^{27/5}$ is
 - (A) 7^{th} term
 - (B) 5^{th} term
 - (C) 8^{th} term
- (D) 6^{th} term

Multinomial theorem, Terms free from radical sign in the expansion of $(a^{1/p} + b^{1/q})$, Problems regarding to three/four consecutive terms or coefficients

- In the expansion of $(5^{1/2} + 7^{1/8})^{1024}$, the 81. number of integral terms is
 - (A) 128
- (B) 129
- (C) 130
- (D) 131
- The number of terms which are free from **82.** radical signs in the expansion of $(v^{1/5} + x^{1/10})^{55}$ is
 - (A) 5
- (B) 6
- (C) 7
- (D) None of these

- Let $R = (5\sqrt{5} + 11)^{2n+1}$ and f = R [R], 83. where [.] denotes the greatest integer function. The value of *R*.*f* is
 - (A) 4^{2n+1}
- (B) 4^{2n}
- (C) 4^{2n-1}
- (D) 4^{-2n}
- The greatest integer less than or equal to 84. $(\sqrt{2} + 1)^6$ is
 - (A) 196
- (B) 197
- (C) 198
- (D) 199
- If number of terms in the expansion of **85.** $(x - 2y + 3z)^n$ are 45, then n =
 - (A) 7

- (B) 8
- (C) 9
- (D) None of these
- Find the value of 86.

$$(18^3 + 7^3 + 3.18.7.25)$$

- $3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64$
 - (A) 1
- (B) 5
- (C) 25
- (D) 100

If a_1, a_2, a_3, a_4 are the coefficients of any **87.** four consecutive terms in the expansion of

$$(1+x)^n$$
, then $\frac{a_1}{a_1+a_2}+\frac{a_3}{a_3+a_4}=$

- (A) $\frac{a_2}{a_2 + a_3}$ (B) $\frac{1}{2} \frac{a_2}{(a_2 + a_3)}$
- (C) $\frac{2a_2}{a_2 + a_3}$ (D) $\frac{2a_3}{a_2 + a_3}$
- The number of integral terms in the expansion of $(5^{1/2} + 7^{1/6})^{642}$ is
 - (A) 106

88.

89.

90.

- (B) 108
- (C) 103
- (D) 109
- The expression $(2+\sqrt{2})^4$ has value, lying between
 - (A) 134 and 135
- (B) 135 and 136
- (C) 136 and 137
- (D) None of these

The digit in the unit place of the number $(183!) + 3^{183}$ is

- (A) 7
- (B)6
- (C) 3
- (D) 0