COMPLEX NUMBERS

Integral power of iota, Algebraic operations and Equality of complex numbers

- 1. If $i = \sqrt{-1}$, then $1 + i^2 + i^3 i^6 + i^8$ is equal to (A) 2 - i (B) 1 (C) 3 (D) -12. If $i^2 = -1$, then the value of $\sum_{n=1}^{200} i^n$ (A) 50 (B) -50(C) 0 (D) 100
- 3. The value of the sum $\sum_{n=1}^{13} (i^n + i^{n+1})$, where

 $i = \sqrt{-1}$, equals (A) i (B) i - 1(C) -i (D) 0

- 4. The least positive integer n which will reduce $\left(\frac{i-1}{i+1}\right)^n$ to a real number, is
 - (A) 2 (B) 3 (C) 4 (D) 5
- 5. The value of $i^{1+3+5+...+(2n+1)}$ is (A) *i* if *n* is even, -i if *n* is odd
 - (B) 1 if n is even, -1 if n is odd
 - (C) 1 if n is odd, -1 if n is even
 - (D) i if n is even, -1 if n is odd

6. $\left(\frac{1}{1-2i} + \frac{3}{1+i}\right) \left(\frac{3+4i}{2-4i}\right) =$ (A) $\frac{1}{2} + \frac{9}{2}i$ (B) $\frac{1}{2} - \frac{9}{2}i$ (C) $\frac{1}{4} - \frac{9}{4}i$ (D) $\frac{1}{4} + \frac{9}{4}i$

7.	Additive inverse of $1 - 1$ is		
	(A) $0 + 0i$	(B) $-1 - i$	
	(C) $-1+i$	(D) None of these	

8.	$\operatorname{Re}\frac{(1+i)^2}{3-i} =$	
	(A) $-1/5$	(B) 1/5
	(C) 1/10	(D) -1/10
9.	If $(1 - i)x + (1 + i)y$	x = 1 - 3i, then $(x, y) =$
	(A) (2, -1)	(B) (-2,1)
	(C) (-2, -1)	(D) (2, 1)
10.	$\frac{3+2i\sin\theta}{1-2i\sin\theta}$ will be	real, if $\theta =$
	(A) 2nπ	(B) $n\pi + \frac{\pi}{2}$
	(C) nπ	(D) None of these
	[Where n is an interview of the second secon	eger]
11.	If $z \neq 0$ is a comp	lex number, then
	(A) $\operatorname{Re}(z) = 0 \Longrightarrow \operatorname{In}$	$\mathbf{n}(\mathbf{z}^2) = 0$
	(B) $\operatorname{Re}(z^2) = 0 \Longrightarrow I$	$m(z^2) = 0$
	(C) $\operatorname{Re}(z) = 0 \Longrightarrow \operatorname{Re}(z)$	$\mathbf{e}(\mathbf{z}^2) = 0$
	(D) None of these	
12.	If $\frac{5(-8+6i)}{(1+i)^2} = a +$	ib, then (a, b) equals
	(A) (15, 20)	(B) (20, 15)
	(C) (-15,20)	(D) None of these
13.	The true statement	is
	(A) $1 - i < 1 + i$	(B) $2i + 1 > -2i + 1$
	(C) $2i > 1$	(D) None of these
14.	$\frac{1-2i}{2+i} + \frac{4-i}{3+2i} =$	
	(A) $\frac{24}{13} + \frac{10}{13}i$	(B) $\frac{24}{13} - \frac{10}{13}i$
	(C) $\frac{10}{13} + \frac{24}{13}i$	(D) $\frac{10}{13} - \frac{24}{13}i$
1.2		1 • 1 1 1

a + ib > c + id can be explained only when
(A) b = 0, c = 0
(B) b = 0, d = 0
(C) a = 0, c = 0
(D) a = 0, d = 0

16.	If $x, y \in R$ and $(x + $	-iy)(3+2i) = 1+i, then
	(x, y) is	
	$(\mathbf{A})\left(1,\frac{1}{5}\right)$	$(\mathbf{B})\left(\frac{1}{13},\frac{1}{13}\right)$
	$(C)\left(\frac{5}{13},\frac{1}{13}\right)$	$(D)\left(\frac{1}{5},\frac{1}{5}\right)$
17.	If $\left(\frac{1-i}{1+i}\right)^{100} = a+i$	b, then
	(A) $a = 2, b = -1$	(B) $a = 1, b = 0$
	(C) $a = 0, b = 1$	(D) $a = -1, b = 2$
18.	If $z_1 = (4, 5)$ and	$z_2 = (-3, 2)$ then $\frac{z_1}{z_2}$
	equals	
	$(A)\left(\frac{-23}{12},\frac{-2}{13}\right)$	$(\mathbf{B})\left(\frac{2}{13},\frac{-23}{13}\right)$
	$(C)\left(\frac{-2}{13},\frac{-23}{13}\right)$	$(D)\left(\frac{-2}{13},\frac{23}{13}\right)$
19.	If $z = 1 + i$, then the	e multiplicative inverse
	of z^2 is (where $i = \sqrt{1}$	$\sqrt{-1}$)
	(A) 2 <i>i</i>	(B) $1 - i$
	(C) - i/2	(D) <i>i</i> /2
20.	If $\begin{vmatrix} 6i & -3i & 1 \\ 4 & 3i & -1 \\ 20 & 3 & i \end{vmatrix} = x$	x + iy, then (x, y) is
	(A) (3, 1)	(B) (1, 3)
	(C)(0,3)	(D)(0,0)

Conjugate, Modulus and Argument of complex numbers

- 21. If $\frac{z-i}{z+i}(z \neq -i)$ is a purely imaginary number, then $z.\overline{z}$ is equal to (A) 0 (B) 1 (C) 2 (D) None of these 22. If $\frac{c+i}{c-i} = a + ib$, where a, b, c are real, then
- $\begin{array}{c} -1 \\ c -i \\ a^2 + b^2 = \\ (A) 1 \\ (B) -1 \end{array}$

(C)
$$c^2$$
 (D) $-c^2$

23. If the conjugate of (x + iy)(1 - 2i) be 1 + i, then

(A)
$$x = \frac{1}{5}$$
 (B) $y = \frac{3}{5}$
(C) $x + iy = \frac{1 - i}{1 - 2i}$ (D) $x - iy = \frac{1 - i}{1 + 2i}$

24. The conjugate of $\frac{(2+i)^2}{3+i}$, in the form of a + ih is

(A)
$$\frac{13}{2} + i\left(\frac{15}{2}\right)$$
 (B) $\frac{13}{10} + i\left(\frac{-15}{2}\right)$
(C) $\frac{13}{10} + i\left(\frac{-9}{10}\right)$ (D) $\frac{13}{10} + i\left(\frac{9}{10}\right)$

25. If
$$z = 3 + 5i$$
, then $z^3 + \overline{z} + 198 =$
(A) $-3 - 5i$ (B) $-3 + 5i$
(C) $3 + 5i$ (D) $3 - 5i$

26. If z_1 and z_2 be complex numbers such that $z_1 \neq z_2$ and $|z_1| = |z_2|$. If z_1 has positive real part and z_2 has negative imaginary

part, then
$$\frac{(z_1 + z_2)}{(z_1 - z_2)}$$
 may be

- (A) Purely imaginary
- (B) Real and positive
- (C) Real and negative
- (D) None of these
- 27. The moduli of two complex numbers are less than unity, then the modulus of the sum of these complex numbers
 - (A) Less than unity
 - (B) Greater than unity
 - (C) Equal to unity
 - (D) Any
- **28.** The product of two complex numbers each of unit modulus is also a complex number, of
 - (A) Unit modulus
 - (B) Less than unit modulus
 - (C) Greater than unit modulus
 - (D) None of these

29.	Let z be a compl	lex number, then the	35.
	equation $z^4 + z + 2 =$	= 0 cannot have a root,	
	such that		
	(A) $ z < 1$	(B) $ z = 1$	
	(C) $ z > 1$	(D) None of these	
30.	If $ z_1 = z_2 = \dots$	$= z_n =1$, then the	
	value of $ z_1 + z_2 + z_3 $	$_{3} + \dots + z_{n} \mid =$	26
	(A) 1		36.
	(B) $ z_1 + z_2 + \dots$.+ z _n	
	(C) $\left \frac{1}{z_1} + \frac{1}{z_2} + \dots \right $	$+\frac{1}{z_n}$	
	(D) None of these		25
31.	If $ z =1, (z \neq -$	1) and $z = x + iy$, then	57.
	$\left(\frac{z-1}{z+1}\right)$ is		
	(A) Purely real	(B) Purely imaginary	
	(C) Zero	(D) Undefined	
32.	The minimum value	of $ 2z-1 + 3z-2 $	
	is		38.
	(A) 0	(B) 1/2	
	(C) 1/3	(D) 2/3	
33.	If $ z =1$ and $\omega = -$	$\frac{z-1}{z+1} \text{(where } z \neq -1\text{)},$	
	then $\operatorname{Re}(\omega)$ is		
	(A) 0	(B) $-\frac{1}{ z+1 ^2}$	39.
	(C) $\left \frac{z}{z+1}\right \cdot \frac{1}{ z+1 ^2}$	$(D) \frac{\sqrt{2}}{ z+1 ^2}$	
34.	A real value of x w	ill satisfy the equation	
	$\left(\frac{3-4ix}{3+4ix}\right) = \alpha - i\beta($	α,β real), if	40.
	(A) $\alpha^2 - \beta^2 = -1$	(B) $\alpha^2 - \beta^2 = 1$	
	(C) $\alpha^2 + \beta^2 = 1$	(D) $\alpha^2 - \beta^2 = 2$	
	(c) w + p - 1	$(2) \sim h = 2$	

5.	Let z_1 be a complex	number with $ z_1 = 1$
	and z_2 be any cor	nplex number, then
	$\left \frac{\mathbf{z}_1 - \mathbf{z}_2}{1 - \mathbf{z}_1 \overline{\mathbf{z}}_2}\right =$	
	(A) 0	(B) 1
	(C) – 1	(D) 2
6.	$\operatorname{arg}\left(\frac{3+i}{2-i} + \frac{3-i}{2+i}\right)$ is	equal to
	(A) $\frac{\pi}{2}$	(B) $-\frac{\pi}{2}$
	(C) 0	(D) $\frac{\pi}{4}$
7.	If $z_1.z_2z_n = z$, the	nen
	$\arg z_1 + \arg z_2 + \dots +$	$\arg z_n$ and
	arg z differ by a	
	(A) Multiple of π	(B) Multiple of $\frac{\pi}{2}$
	(C) Greater than π	(D) Less than π
8.	Let z be a purely im	aginary number such
	that $Im(z) > 0$. Then	arg(z) is equal to
	(A) π	(B) $\frac{\pi}{2}$
	(C) 0	(D) $-\frac{\pi}{2}$

39. Let z be a purely imaginary number such that Im(z) < 0. Then arg(z) is equal to

(A)
$$\pi$$
 (B) $\frac{\pi}{2}$
(C) 0 (D) $-\frac{\pi}{2}$

0. If z is a purely real number such that Re(z) < 0, then arg(z) is equal to

(A)
$$\pi$$
 (B) $\frac{\pi}{2}$

(C) 0 (D)
$$-\frac{\pi}{2}$$

41.	If $\arg z < 0$ then $\arg(-z) - \arg(z)$ is equal		
	to		
	(A) π	(B) - π	
	(C) $-\frac{\pi}{2}$	(D) $\frac{\pi}{2}$	
42.	The amplitude of $\frac{1+\sqrt{3}}{\sqrt{3}}$	$\frac{\sqrt{3}i}{-i}$ is	
	(A) 0	(B) $\pi / 6$	
	(C) $\pi/3$	(D) π / 2	
43.	If $z = \frac{-2}{1 + \sqrt{3}i}$ then the	e value of arg(z) is [
	(A) π	(B) $\pi / 3$	
	(C) $2\pi/3$	(D) π / 4	
44.	If $z = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$	then	
	(A) $ z = 1$, arg $z = \frac{\pi}{4}$	-	
	(B) $ z = 1$, arg $z = \frac{\pi}{6}$		
	(C) $ z = \frac{\sqrt{3}}{2}$, arg $z = -$	$\frac{5\pi}{24}$	
	(D) $ z = \frac{\sqrt{3}}{2}$, $\arg z = \tan z$	$n^{-1}\frac{1}{\sqrt{2}}$	
45.	The amplitude of sin-	$\frac{\pi}{5} + i \left(1 - \cos \frac{\pi}{5} \right)$	
	(A) $\pi / 5$	(B) $2\pi/5$	
	(C) π / 10	(D) π / 15	

Square root, Representation and Logarithm of complex numbers

46.	If $\sqrt{a+ib} = x+ib$	y, then possible value of
	$\sqrt{a-ib}$ is	
	(A) $x^2 + y^2$	(B) $\sqrt{x^2 + y^2}$
	(C) $x + iy$	(D) x – iy

47.	The number of non-z	zero integral solutions	
	of the equation $ 1-i ^{x} = 2^{x}$ is		
	(A) Infinite	(B) 1	
	(C) 2	(D) None of these	
18	1 + 7i _		
40.	$\frac{1}{(2-i)^2}$		
	(A) $\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin^2\theta\right)$	$n\frac{3\pi}{4}$	
	(B) $\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$	$\left(\frac{\pi}{4}\right)$	
	(C) $\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$		
	(D) None of these		
49.	If $z = re^{i\theta}$, then $ e^{iz} $	=	
	(A) $e^{r\sin\theta}$	(B) $e^{-r\sin\theta}$	
	(C) $e^{-r\cos\theta}$	(D) $e^{r\cos\theta}$	
50.	$\frac{1-i}{1+i}$ is equal to		
	(A) $\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$	(B) $\cos\frac{\pi}{2} - i\sin\frac{\pi}{2}$	
	(C) $\sin\frac{\pi}{2} + i\cos\frac{\pi}{2}$	(D) None of these	
51.	The amplitude of $e^{e^{-i\theta}}$	is equal to	
	(A) sinθ	(B) $-\sin\theta$	
	(C) $e^{\cos\theta}$	(D) $e^{\sin\theta}$	
52.	If $z = \frac{1 + i\sqrt{3}}{\sqrt{3} + i}$, then (2)	\overline{z}) ¹⁰⁰ lies in	
	(A) I quadrant	(B) II quadrant	
	(C) III quadrant	(D) IV quadrant	
53.	If $x + \frac{1}{x} = \sqrt{3}$, then x	;=	
	(A) $\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$	(B) $\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}$	
	(C) $\sin\frac{\pi}{6} + i\cos\frac{\pi}{6}$	(D) $\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$	

$(-1+i\sqrt{3})^{20}$ is equal to		
(A) $2^{20}(-1+i\sqrt{3})^{20}$	(B) $2^{20}(1-i\sqrt{3})^{20}$	
(C) $2^{20}(-1-i\sqrt{3})^{20}$	(D) None of these	
The imaginary part of	$\tan^{-1}\left(\frac{5i}{3}\right)$ is	
(A) 0	(B) ∞	
(C) log 2	(D) log 4	
	$(-1 + i\sqrt{3})^{20}$ is equal 7 (A) $2^{20}(-1 + i\sqrt{3})^{20}$ (C) $2^{20}(-1 - i\sqrt{3})^{20}$ The imaginary part of (A) 0 (C) log 2	

Geometry of complex numbers

56. The vertices B and D of a parallelogram are 1-2i and 4+2i, If the diagonals are at right angles and AC = 2BD, the complex number representing A is

(A)
$$\frac{5}{2}$$
 (B) $3i - \frac{3}{2}$
(C) $3i - 4$ (D) $3i + 4$

- 57. If z_1, z_2, z_3, z_4 are the affixes of four points in the Argand plane and z is the affix of a point such that $|z-z_1|=|z-z_2|=|z-z_3|=|z-z_4|$, then
 - z_1, z_2, z_3, z_4 are
 - (A) Concyclic
 - (B) Vertices of a parallelogram
 - (C) Vertices of a rhombus
 - (D) In a straight line
- 58. ABCD is a rhombus. Its diagonals AC and BD intersect at the point M and satisfy BD = 2AC. If the points D and M represents the complex numbers 1+iand 2-i respectively, then A represents the complex number

(A)
$$3 - \frac{1}{2}i \text{ or } 1 - \frac{3}{2}i$$
 (B) $\frac{3}{2} - i \text{ or } \frac{1}{2} - 3i$
(C) $\frac{1}{2} - i \text{ or } 1 - \frac{1}{2}i$ (D) None of these

The complex numbers z_1, z_2, z_3 are the 59. vertices of a triangle. Then the complex numbers z which make the triangle into a parallelogram is (A) $z_1 + z_2 - z_3$ (B) $z_1 - z_2 + z_3$ (D) All the above (C) $z_2 + z_3 - z_1$ 60. The equation zz + (2-3i)z + (2+3i)z + 4 = 0 represents a circle of radius (A) 2 (B) 3 (C) 4 (D) 6

61. If
$$z_1, z_2, z_3$$
 are three collinear points in

argand plane, then $\begin{vmatrix} z_1 & \overline{z_1} & 1 \\ z_2 & \overline{z_2} & 1 \\ z_3 & \overline{z_3} & 1 \end{vmatrix} =$ (A) 0 (B) - 1 (C) 1 (D) 2

62. If z is a complex number in the Argand plane, then the equation |z-2|+|z+2|=8 represents (A) Parabola (B) Ellipse

- 63. The points 1+3i,5+i and 3+2i in the complex plane are
 - (A) Vertices of a right angled triangle
 - (B) Collinear
 - (C) Vertices of an obtuse angled triangle
 - (D) Vertices of an equilateral triangle
- 64. If z_1 and z_2 are two complex numbers, then $|z_1 + z_2|$ is

$$(A) \le |z_1| + |z_2| (B) \le |z_1| - |z_2| (C) < |z_1| + |z_2| (D) > |z_1| + |z_2|$$

- 65. If z = x + iy, then area of the triangle whose vertices are points z, iz and z + iz is
 - (A) $2 |z|^2$ (B) $\frac{1}{2} |z|^2$ (C) $|z|^2$ (D) $\frac{3}{2} |z|^2$

- When $\frac{z+i}{z+2}$ is purely imaginary, the locus 66. described by the point z in the Argand diagram is a (A) Circle of radius $\frac{\sqrt{5}}{2}$ (B) Circle of radius $\frac{5}{4}$ (C) Straight line (D) Parabola If $|z+1| = \sqrt{2} |z-1|$, then the 67. locus described by the point z in the Argand diagram is a (A) Straight line (B) Circle (C) Parabola (D) None of these The region of the complex plane for which **68**. $\left|\frac{z-a}{z+a}\right| = 1$ [R(a) $\neq 0$] is (A) x - axis(B) y - axis(C) The straight line x = a(D) None of these 69. The region of Argand plane defined by $|z-1| + |z+1| \le 4$ is (A) Interior of an ellipse (B) Exterior of a circle (C) Interior and boundary of an ellipse (D) None of these The locus of the points z which satisfy the 70. condition $arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$ is (A) A straight line (B) A circle (D) None of these (C) A parabola 71. Locus of the point z satisfying the equation |iz-1|+|z-i|=2 is (A) A straight line (B) A circle (C) An ellipse
 - (D) A pair of straight lines

72. If z = x + iy is a complex number satisfying $\left|z + \frac{i}{2}\right|^2 = \left|z - \frac{i}{2}\right|^2$, then the locus of z is (A) 2y = x(B) y = x(C) *v*-axis (D) x-axis The locus of the point z satisfying 73. $\arg\left(\frac{z-1}{z+1}\right) = k$, (where k is non zero) is (A) Circle with centre on y-axis (B) Circle with centre on *x*-axis (C) A straight line parallel to x-axis (D) A straight line making an angle 60° with the *x*-axis 74. If the amplitude of z - 2 - 3i is $\pi / 4$, then the locus of z = x + iy is (A) x + y - 1 = 0 (B) x - y - 1 = 0(C) x + y + 1 = 0 (D) x - y + 1 = 0If $|z^2 - 1| = |z|^2 + 1$, then z lies on 75. (A) An ellipse (B) The imaginary axis (C) A circle (D) The real axis

De Moivre's theorem and Roots of unity

76.	If $\left(\frac{1+\cos\theta+i\sin\theta}{i+\sin\theta+i\cos\theta}\right)$	$\left(\frac{\theta}{\theta}\right)^4 = \cos n\theta + i\sin n\theta,$
	then n is equal to	
	(A) 1	(B) 2
	(C) 3	(D) 4
77.	The value of expre	ssion $\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$
	$\left(\cos\frac{\pi}{2^2}+i\sin\frac{\pi}{2^2}\right).$	to ∞ is
	(A) –1	(B) 1
	(C) 0	(D) 2

 $\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4$ equals 78. (A) $\sin 8\theta - i \cos 8\theta$ (B) $\cos 8\theta - i \sin 8\theta$ (C) $\sin 8\theta + i \cos 8\theta$ (D) $\cos 8\theta + i \sin 8\theta$ 79. If $\sin \alpha + \sin \beta + \sin \gamma = 0 =$ $\cos \alpha + \cos \beta + \cos \gamma$, then the value of $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$ is (A) 2/3 (B) 3/2 (C) 1/2 (D) 1 80. If $\cos \alpha + \cos \beta + \cos \gamma = 0 =$ $\sin \alpha + \sin \beta + \sin \gamma$ then $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$ equals (A) $2\cos(\alpha + \beta + \gamma)$ (B) $\cos 2(\alpha + \beta + \gamma)$ (C) 0(D) 1 81. $\left(\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}\right)^n =$ (A) $\cos\left(\frac{n\pi}{2} - n\theta\right) + i\sin\left(\frac{n\pi}{2} - n\theta\right)$ (B) $\cos\left(\frac{n\pi}{2} + n\theta\right) + i\sin\left(\frac{n\pi}{2} + n\theta\right)$ (C) $\sin\left(\frac{n\pi}{2} - n\theta\right) + i\cos\left(\frac{n\pi}{2} - n\theta\right)$ (D) $\cos n\left(\frac{\pi}{2} + 2\theta\right) + i \sin n\left(\frac{\pi}{2} + 2\theta\right)$ 82. positive integer, If п is a then $(1+i)^{n} + (1-i)^{n}$ is equal to (A) $(\sqrt{2})^{n-2} \cos\left(\frac{n\pi}{4}\right)$ (B) $(\sqrt{2})^{n-2} \sin\left(\frac{n\pi}{4}\right)$ (C) $(\sqrt{2})^{n+2} \cos\left(\frac{n\pi}{4}\right)$ (D) $(\sqrt{2})^{n+2} \sin\left(\frac{n\pi}{4}\right)$

83.	If $\frac{1}{x} + x = 2\cos\theta$, the	en $x^n + \frac{1}{x^n}$ is equal to
	(A) $2\cos n\theta$	(B) $2\sin n\theta$
	(C) $\cos n\theta$	(D) $\sin n\theta$
84.	If $iz^4 + 1 = 0$, then z	can take the value
	(A) $\frac{1+i}{\sqrt{2}}$	(B) $\cos\frac{\pi}{8} + i\sin\frac{\pi}{8}$
	(C) $\frac{1}{4i}$	(D) <i>i</i>
85.	The two numbers s	uch that each one is
	square of the other, a	re
	(A) ω, ω^3	(B) -i, i
	(C) –1,1	(D) ω , ω^2
86.	If ω is a complex c	ube root of unity, then
	$(1+\omega)(1+\omega^2)$ (1+	$+\omega^4$)(1+ ω^8)to 2n
	factors =	
	(A) 0	(B) 1
	(C) –1	(D) None of these
87.	The product of	all the roots of
	$\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)^{3/4}$	S
	(A) –1	(B) 1
	(C) $\frac{3}{2}$	(D) $-\frac{1}{2}$
88.	If ω is a cube root	of unity, then a root of
	x +1	$\omega \qquad \omega^2$
	the equation ω	$x + \omega^2$ 1 = 0 is
	ω^2	1 $x + \omega$
	(A) $x = 1$	(B) $x = \omega$
	(C) $\mathbf{x} = \boldsymbol{\omega}^2$	(D) $x = 0$
89.	If $x = a + b$, $y = a\alpha + b$	$+b\beta$ and $z = a\beta + b\alpha$,
	where α and β are α	complex cube roots of

unity, then xyz =(A) $a^2 + b^2$ (B) $a^3 + b^3$ (C) $a^{31}a^{32}$ (D) $a^{32} + b^{33}$

(C) a^3b^3 (D) $a^3 - b^3$

90.	If $x = a + b$, $y = a\omega + b\omega^2$, $z = a\omega^2 + b\omega$,		98	$(-1+i\sqrt{3})^{15}$ (-1-	$(i\sqrt{3})^{15}$ is equal to
	then the value of $x^3 + y^3 + z^3$ is equal to		90.	$\frac{(1-i)^{20}}{(1-i)^{20}} + \frac{(1+i)^{20}}{(1+i)^{20}}$ is equal to	
	(A) $a^3 + b^3$	(B) $3(a^3 + b^3)$		(A) – 64	(B) – 32
	(C) $3(a^2 + b^2)$	(D) None of these		(C) – 16	(D) $\frac{1}{16}$
91.	The n th roots of unity	are in	99.	If $\pi/3$ is a comple	x root of the equation
	(A) A.P.	(B) G.P.		$\left(\frac{1}{2}\right)$	$+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+$
	(C) H.P.	(D) None of these		$z^{\circ} = 1$, then $\omega + \omega^{\circ}$	$(\mathbf{P}) 0$ (D) 0
92.	If $1, \omega, \omega^2$ are the th	ree cube roots of unity,		(A) - 1 (B) 0	
	then $(3 + \omega^2 + \omega^4)^6 =$	=	100	(C) 9 If cube root of 1 is	(D) l
	(A) 64	(B) 729	100.	$(2 + \omega + 2\omega^2)^4$ is	w, men me value of
	(C) 2	(D) 0		(3+0+500) is	(D) 1(
93.	$(1-\omega+\omega^2)(1-\omega^2+\omega^2)(1-\omega^2)$	ω^4)(1 – ω^4 + ω^8)		$(\mathbf{A}) 0$	(B) 16 (B) 16^{-2}
	to 2n factors is			(C) 16ω	(D) $16\omega^2$
	(A) 2^{n}	(B) 2^{2n}	101.	The value of $(8)^{1/3}$ is	_
	(C) 0	(D) 1		(A) $-1 + i\sqrt{3}$	(B) $-1 - i\sqrt{3}$
	1 ω 2	$2\omega^2$		(C) 2	(D) All of these
94.	Let $\Delta = \begin{bmatrix} 2 & 2\omega^2 \end{bmatrix} 4$	$4\omega^3$ where ω is the	102.	If ω is a complex cu	be root of unity, then
	$3 3\omega^3 6\omega^4$			$225 + (3\omega + 8\omega^2)^2 +$	$(3\omega^2 + 8\omega)^2 =$
	cube root of unity. th	en		(A) 72	(B) 192
	(A) $\Delta = 0$	(B) $\Delta = 1$		(C) 200	(D) 248
	(C) $\Delta = 2$	(D) $\Delta = 3$	103.	If $1, \omega, \omega^2$ are the cu	be roots of unity, then
95.	If n is a positive inte	eger greater than unity		$1 \omega^n$	ω^{2n}
	and z is a complex	number satisfying the		$\Delta = \omega^n \omega^{2n}$	1 =
	equation $z^n = (z+1)^n$	¹ , then		ω^{2n} 1	ω^{n}
	(A) $\text{Re}(z) < 0$	(B) $\text{Re}(z) > 0$		(A) 0	(B) 1
	(C) $\text{Re}(z) = 0$	(D) None of these		(C) ω	(D) ω^2
96.	$\left(\frac{\sqrt{3}+i}{2}\right)^6 + \left(\frac{i-\sqrt{3}}{2}\right)^6$	\int^{6} is equal to	104.	If $\omega = \frac{-1 + \sqrt{3}i}{2}$ then	$(3+\omega+3\omega^2)^4=$
	(A) –2	(B) 0		(A) 16	(B) –16
	(C) 2	(D) 1		(C) 16 ω	(D) $16 \omega^2$
97.	• If ω is an imaginary cube root of unity,		105.	If $1, \omega, \omega^2$ are the	roots of unity, then
	$(1+\omega-\omega^2)^7$ equals			$(1-2\omega+\omega^2)^6$ is equ	ual to
	(A) 128w	(B) -128w		(A) 729	(B) 246
	(C) $128\omega^2$	(D) $-128\omega^2$		(C) 243	(D) 81

QUADRATIC EQUATION

Solution of quadratic equations and Nature of roots

If $x^2 + y^2 = 25$, xy = 12, then x =1. (B) $\{3, -3\}$ (A) $\{3, 4\}$ (C) $\{3, 4, -3, -4\}$ (D) $\{-3, -3\}$ 2. The solution set of the equation $x^{\log_x(1-x)^2} = 9$ is (B) {4}(D) None of these (A) $\{-2, 4\}$ (C) $\{0, -2, 4\}$ Let one root of $ax^2 + bx + c = 0$ where 3. a, b, c are integers be $3 + \sqrt{5}$, then the other root is (A) $3 - \sqrt{5}$ (B) 3 (C) $\sqrt{5}$ (D) None of these The number of real solutions of the 4. equation $|x|^2 - 3|x| + 2 = 0$ are (A) 1 (B) 2 (C) 3 (D) 4 The number of real roots of the equation 5. $e^{\sin x} - e^{-\sin x} - 4 = 0 \text{ are}$ (A) 1 (B) 2 (C) Infinite (D) None 6. The number of real solutions of the equation $|x^{2} + 4x + 3| + 2x + 5 = 0$ are (A) 1 (B) 2 (C) 3 (D) 4 7. The roots of the given equation $(p-q)x^{2} + (q-r)x + (r-p) = 0$ are (A) $\frac{p-q}{r-p}$,1 (B) $\frac{q-r}{p-q}$,1 (C) $\frac{r-p}{p-q}$,1 (D) 1, $\frac{q-r}{p-q}$

8.	If a root of the equation	on $x^2 + px + 12 = 0$ is	
	4, while the root	ts of the equation	
	$x^2 + px + q = 0 \text{ are s}$	ame, then the value of	
	q will be		
	(A) 4	(B) 4/49	
	(C) 49/4	(D) None of these	
9.	How many roo	ots the equation	
	$x - \frac{2}{x-1} = 1 - \frac{2}{x-1}h$	ave	
	(A) One	(B) Two	
	(C) Infinite	(D) None	
10.	The solution of the ec	ution $x + \frac{1}{x} = 2$ will	
	be		
	(A) 2, -1	(B) 0, -1 , $-\frac{1}{5}$	
	(C) $-1, -\frac{1}{5}$	(D) None of these	
11.	If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_2 y + \log_y 2$ and		
	$x \neq y$, then $x + y =$		
	(A) 2	(B) 65/8	
	(C) 37/6	(D) None of these	
12.	The value of $x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}$ is		
	(A) –1	(B) 1	
	(C) 2	(D) 3	
13.	The value of x in the given equation		
	$4^{x} - 3^{x} - \frac{1}{2} = 3^{x+\frac{1}{2}} - 2^{2x-1}$ is		
	(A) $\frac{4}{-}$	(B) $\frac{3}{-}$	

(C)
$$\frac{2}{1}$$
 (D) $\frac{5}{3}$

14.	The equation $e^x - x - 1 = 0$ has	22.	If the roots of the equations
	(A) Only one real root $x = 0$		$px^{2} + 2qx + r = 0$ and $qx^{2} - 2\sqrt{pr}x + q = 0$
	(B) At least two real roots		be real, then
	(C) Exactly two real roots		(A) $p = q$ (B) $q^2 = pr$
	(D) Infinitely many real roots		(f) $p = q$ (b) $q = pr$
5.	The equation $\sqrt{(x+1)} - \sqrt{(x-1)} = \sqrt{(4x-1)}$		(C) $p = qr$ (D) $r = pq$
	has	23.	If the roots of the equation $ax^2 + x + b = 0$
	(A) No solution		be real, then the roots of the equation
	(B) One solution		$x^2 - 4\sqrt{abx} + 1 = 0$ will be
	(C) Two solutions		(A) Rational (B) Irrational
	(D) More than two solutions		(C) Real (D) Imaginary
6.	The equation $\log_e x + \log_e(1+x) = 0$ can	24.	If one of the roots of the equation
	be written as		$x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is
	(A) $x^2 + x - e = 0$ (B) $x^2 + x - 1 = 0$		coincident, then the numerical value of
	(C) $x^2 + x + 1 = 0$ (D) $x^2 + xe - e = 0$		(a + b) is
			(A) 0 (B) $- 1$
7.	If $x = \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots + \cos \infty$, then		(C) 2 (D) 5
	(A) x is an irrational number	25.	The equation $x^{(3/4)(\log_2 x)^2 + (\log_2 x) - 5/4} = \sqrt{2}$ has
	(B) $2 < x < 3$		(A) At least one real solution
	(C) $x = 3$		(B) Exactly three real solutions
	(D) None of these		(C) Exactly one irrational solution
3.	The real roots of the equation		(D) All the above
	$x^{2} + 5 x + 4 = 0$ are	26.	If $a > 0, b > 0, c > 0$ then both the roots of
	(A) - 1, 4 (B) 1, 4		the equation $ax^2 + bx + c = 0$
	(C) - 4, 4 (D) None of these		(A) Are real and negative
9.	A real root of the equation		(B) Have negative real parts
	$\log_{4} \{ \log_{2} (\sqrt{x+8} - \sqrt{x}) \} = 0$ is		(C) Are rational numbers
	(A) 1 (B) 2		(D) None of these
	(C) 3 (D) 4	27.	The value of k for which
0.	$\{\mathbf{x} \in \mathbf{R} : \mathbf{x} - 2 = \mathbf{x}^2\} =$		$2x^2 - kx + x + 8 = 0$ has equal and real
0.	$(A \in \mathbf{R}, A = 2 -A) = (B) \{1, 2\}$		roots are
	$(A) \{-1, 2\} (B) \{1, 2\} (C) \{-1, 2\} (D) \{1, 2\} (D) \{1,$		(A) -9 and -7 (B) 9 and 7
1	$(C) \{-1, -2\} \qquad (D) \{1, -2\}$ The roots of the given equation		(C) -9 and 7 (D) 9 and -7
1.	$2(a^2 + b^2)x^2 + 2(a + b)x + 1 = 0$ are	28.	The roots of the quadratic equation
	2(a + 0)X + 2(a + 0)X + 1 - 0 arc (A) Detional (D) Impetianel		$2x^{2} + 3x + 1 = 0$, are
	(A) Kational (B) Irrational		(A) Irrational (B) Rational
	(C) Keal (D) Imaginary		(C) Imaginary (D) None of these

29. If l, m, n are real and $l \neq m$, then the roots 35. of the equation $(1-m)x^{2} - 5(1+m)x - 2(1-m) = 0$ are (A) Complex (B) Real and distinct (C) Real and equal (D) None of these 30. If the roots of the equation $x^{2} - 8x + (a^{2} - 6a) = 0$ are real, then 36 (B) 2 < a < 8(A) -2 < a < 8(C) $-2 \le a \le 8$ (D) $2 \le a \le 8$ 31. The condition for the roots of the equation, $(c^{2}-ab)x^{2}-2(a^{2}-bc)x+(b^{2}-ac)=0$ to be equal is (A) a = 0(B) b = 037 (C) c = 0(D) None of these If $b_1b_2 = 2(c_1 + c_2)$, then at least one of 32. the equations $x^2 + b_1 x + c_1 = 0$ and $x^{2} + b_{2}x + c_{2} = 0$ has (A) Real roots (B) Purely imaginary roots (C) Imaginary roots (D) None of these 33. The value of k for which the quadratic equation, $kx^2 + 1 = kx + 3x - 11x^2$ has real and equal roots are (A) - 11, -3(B) 5,7 (C) 5, -7(D) None of these The expression $y = ax^2 + bx + c$ 34. has always the same sign as *c* if 4 (A) $4ac < b^2$ (B) $4ac > b^2$ (C) $ac < b^2$ (D) $ac > b^2$

The value of *m* for which the equation

$$\frac{a}{x+a+m} + \frac{b}{x+b+m} = 1$$

has roots equal in magnitude but opposite in sign is

(A)
$$\frac{a+b}{a-b}$$
 (B) 0
(C) $\frac{a-b}{a+b}$ (D) $\frac{2(a-b)}{a+b}$

5. The roots of the equation

$$(a^{2} + b^{2})t^{2} - 2(ac + bd)t + (c^{2} + d^{2}) = 0$$
are equal, then
(A) $ab = dc$ (B) $ac = bd$
(C) $ad + bc = 0$ (D) $\frac{a}{b} = \frac{c}{d}$
7. For what values of k will the equation
 $x^{2} - 2(1 + 3k)x + 7(3 + 2k) = 0$ have equal

$$x^{2} - 2(1+3k)x + 7(3+2k) = 0$$
 have equa
roots
10 10

(A)
$$1, -\frac{10}{9}$$
 (B) $2, -\frac{10}{9}$
(C) $3, -\frac{10}{9}$ (D) $4, -\frac{10}{9}$

38. If the roots of equation $x^2 + a^2 = 8x + 6a$ are real, then

(A)
$$a \in [2,8]$$
(B) $a \in [-2,8]$ (C) $a \in (2,8)$ (D) $a \in (-2,8)$

39. Let $p,q \in \{1,2,3,4\}$. The number of equations of the form $px^2 + qx + 1 = 0$ having real roots is (A) 15 (B) 9 (C) 7 (D) 8

40. For what value of k will the equation

$$x^{2} - (3k - 1)x + 2k^{2} + 2k$$
 have equal roots
(A) 5 (B) 9
(C) Both (A) and (B) (D) 0

- 41. If α and β are the roots of the equation $2x^2 - 3x + 4 = 0$, then the equation whose roots are α^2 and β^2 is
 - (A) $4x^2 + 7x + 16 = 0$
 - (B) $4x^2 + 7x + 6 = 0$
 - (C) $4x^2 + 7x + 1 = 0$
 - (D) $4x^2 7x + 16 = 0$
- 42. If α and β are the roots of the equation $x^2 - a(x+1) - b = 0$ then $(\alpha + 1)(\beta + 1) =$ (A) b (B) - b (C) 1 - b (D) b - 1
- 43. If α,β be the roots of the equation $2x^2 - 2(m^2 + 1)x + m^4 + m^2 + 1 = 0$, then $\alpha^2 + \beta^2 =$ (A) 0 (B) 1
 - (C) m (D) m^2
- 44. If the ratio of the roots of the equation $ax^{2} + bx + c = 0$ be p:q, then
 - (A) $pqb^2 + (p+q)^2 ac = 0$
 - (B) $pqb^2 (p+q)^2 ac = 0$
 - (C) $pqa^2 (p+q)^2 bc = 0$
 - (D) None of these
- 45. If α , β are the roots of the equation $ax^{2} + bx + c = 0$, then $\frac{\alpha}{a\beta + b} + \frac{\beta}{a\alpha + b} =$ (A) $\frac{2}{a}$ (B) $\frac{2}{b}$ (C) $\frac{2}{a}$ (D) $-\frac{2}{a}$
- 46. If the sum of the roots of the equation $ax^{2} + bx + c = 0$ be equal to the sum of their squares, then
 - (A) a(a + b) = 2bc (B) c(a + c) = 2ab(C) b(a + b) = 2ac (D) b(a + b) = ac

- 47. If the of the equation roots $\frac{\alpha}{x-\alpha} + \frac{\beta}{x-\beta} = 1$ be equal in magnitude but opposite in sign, then $\alpha + \beta =$ (A) 0**(B)** 1 (C) 2(D) None of these If α, β be the roots of the equation 48. $x^{2} - 2x + 3 = 0$, then the equation whose roots are $\frac{1}{\alpha^2}$ and $\frac{1}{\beta^2}$ is (A) $x^2 + 2x + 1 = 0$ (B) $9x^2 + 2x + 1 = 0$ (C) $9x^2 - 2x + 1 = 0$ (D) $9x^2 + 2x - 1 = 0$ If α , β are the roots of $x^2 + px + 1 = 0$ and **49**. γ , δ are the roots of $x^2 + qx + 1 = 0$, then $q^2 - p^2 =$ (A) $(\alpha - \gamma)(\beta - \gamma)(\alpha + \delta)(\beta + \delta)$ (B) $(\alpha + \gamma)(\beta + \gamma)(\alpha - \delta)(\beta + \delta)$ (C) $(\alpha + \gamma)(\beta + \gamma)(\alpha + \delta)(\beta + \delta)$ (D) None of these If α, β be the roots of $x^2 - px + q = 0$ and **50**. α',β' be the roots of $x^2 - p'x + q' = 0$, then the value of $(\alpha - \alpha')^2 + (\beta - \alpha')^2 + (\alpha - \beta')^2 + (\beta - \beta')^2$ is (A) $2\{p^2 - 2q + p'^2 - 2q' - pp'\}$ (B) $2\{p^2 - 2q + p'^2 - 2q' - qq'\}$ (C) $2\{p^2 - 2q - p'^2 - 2q' - pp'\}$ (D) $2\{p^2 - 2q - p'^2 - 2q' - qq'\}$
- 51. If the roots of the equation $Ax^2 + Bx + C = 0$ are α, β and the roots of the equation $x^2 + px + q = 0$ are α^2, β^2 , then value of p will be

(A)
$$\frac{B^2 - 2AC}{A^2}$$
 (B)
$$\frac{2AC - B^2}{A^2}$$

(C)
$$\frac{B^2 - 4AC}{A^2}$$
 (D) None of these

- 52. The quadratic equation whose one root is $\frac{1}{2+\sqrt{5}}$ will be (A) $x^2 + 4x - 1 = 0$ (B) $x^2 + 4x + 1 = 0$ (C) $x^2 - 4x - 1 = 0$ (D) $\sqrt{2}x^2 - 4x + 1 = 0$
- 53. If the roots of the equation $x^2 + x + 1 = 0$ are α, β and the roots of the equation

$$x^{2} + px + q = 0$$
 are $\frac{\alpha}{\beta}, \frac{\beta}{\alpha}$ then p is equal

to

- (A) -2 (B) -1 (C) 1 (D) 2
- 54. If α, β are the roots of the equation $x^2 + ax + b = 0$ then the value of $\alpha^3 + \beta^3$ is equal to

(A) $-(a^3 + 3ab)$	(B) $a^3 + 3ab$
$(C) -a^3 + 3ab$	(D) $a^3 - 3ab$

- 55. If the sum of the roots of the equation $x^{2} + px + q = 0$ is three times their difference, then which one of the following is true
 - (A) $9p^2 = 2q$ (B) $2q^2 = 9p$ (C) $2p^2 = 9q$ (D) $9q^2 = 2p$
- 56. If the roots of the equation $x^{2} + 2mx + m^{2} - 2m + 6 = 0$ are same, then the value of *m* will be (A) 3 (B) 0
 - (C) 2 (D) -1
- **57.** If the roots of the given equation

 $(2k+1)x^2 - (7k+3)x + k + 2 = 0$

are reciprocal to each other, then the value of k will be

(A) 0	(B) 1
-------	-------

(C) 2 (D) 3

58. If the roots of the equation $ax^{2} + bx + c = 0$ are 1 and 21, then (A) $b^2 = 9ac$ (B) $2b^2 = 9ac$ (D) $a^2 = c^2$ (C) $b^2 = -4ac$ The sum of the roots of a equation is 2 and 59. sum of their cubes is 98, then the equation is (A) $x^2 + 2x + 15 = 0$ (B) $x^2 + 15x + 2 = 0$ (C) $2x^2 - 2x + 15 = 0$ (D) $x^2 - 2x - 15 = 0$ If roots of the **60**. the equation $ax^{2} + bx + c = 0$ are α, β , then the value of $\alpha\beta^2 + \alpha^2\beta + \alpha\beta$ will be (A) $\frac{c(a-b)}{a^2}$ (B) 0(C) $-\frac{bc}{a^2}$ (D) None of these 61. If the roots of the equation $ax^{2} + bx + c = 0$ are real and of the form $\frac{\alpha}{\alpha-1}$ and $\frac{\alpha+1}{\alpha}$, then the value of $(a + b + c)^2$ is

(A)
$$b^2 - 4ac$$
 (B) $b^2 - 2ac$
(C) $2b^2 - ac$ (D) None of these

62. If the ratio of the roots of $ax^2 + 2bx + c = 0$ is same as the ratio of the roots of $px^2 + 2qx + r = 0$, then

(A)
$$\frac{b}{ac} = \frac{q}{pr}$$
 (B) $\frac{b^2}{ac} = \frac{q^2}{pr}$
(C) $\frac{2b}{ac} = \frac{q^2}{pr}$ (D) None of these

Rootsoftheequation $x^2 + bx - c = 0(b, c > 0)$ are

63.

- (A) Both positive (B) Both negative
- (C) Of opposite sign (D) None of these

64.	If p and q are the	roots of the equation	71.	The harmonic mean	n of the roots of the
	$x^2 + pq = (p+1)x, t$	then $q=$		equation	
	(A) –1	(B) 1		$(5+\sqrt{2})x^2 - (4+\sqrt{2})x^2$	$(5)x + 8 + 2\sqrt{5} = 0$ is
	(C) 2	(D) None of these		(A) 2	(B) 4
65.	If the roots of ax ²	$+bx+c=0$ are α,β		(C) 6	(D) 8
	and the roots of	$Ax^2 + Bx + C = 0 are$	72.	If the roots of x^2	-bx + c = 0 are two
		$B^2 - 4AC$.		consecutive integers,	then $b^2 - 4c$ is
	$\alpha - \kappa, p - \kappa, \text{then}$	$\frac{1}{b^2 - 4ac}$ is equal to		(A) 1	(B) 2
				(C) 3	(D) 4
	(A) 0	(B) 1	73.	If α and β are	roots of the equation
	(C) $\left(\frac{A}{A}\right)^2$	(d) $\left(\frac{a}{a}\right)^2$		$Ax^2 + Bx + C = 0, t$	hen value of $\alpha^3 + \beta^3$ is
	$\left(a \right)$	(A)		(A) $\frac{3ABC - B^3}{2}$	(B) $\frac{3ABC + B^3}{2}$
66.	If p and q are the ro	ots of $x^2 + px + q = 0$,		A^3	A^3
	then			(C) $\frac{B^3 - 3ABC}{2}$	(D) $\frac{B^3 - 3ABC}{2}$
	(A) $p = 1, q = -2$	(B) $p = -2, q = 1$		A^3	B ³
	(C) $p = 1, q = 0$	(D) $p = -2, q = 0$	74.	If α,β are the re	oots of the equation
67.	If one root of th	e quadratic equation,		$x^{2} - (1 + n^{2})x + \frac{1}{2}(1 + n^{2})x$	$(+n^{2}+n^{4})=0$
	$ix^2 - 2(i+1)x + (2 - 1)x + (2 $	(-i) = 0 is $2 - i$, then the		2	02.
	other root is			then the value of α^2	$+\beta^2$ 1S
	$(\mathbf{A}) - i$	(B) <i>i</i>		(A) 2n	(B) n^{3}
	(C) $2 + i$	(D) $2 - i$		(C) n^2	(D) $2n^2$
68.	If the roots of equa	ation $5x^2 - 7x + k = 0$	75.	The value of p for	which one root of the
	are reciprocal to each	ch other, then value of		equation $x^2 - 30x +$	p = 0 is the square of
	k is			the other, are	
	(A) 5	(B) 2		(A) 125 only	(B) 125 and -216
	(C) 1/5	(D) 1		(C) 125 and 215	(D) 216 only
69.	If roots of $x^2 - 7x$	$+6=0$ are α,β , then	76.	What is the sum of	the squares of roots of
	$\frac{1}{-+-}$			$\mathbf{x}^2 - 3\mathbf{x} + 1 = 0$	
	αβ			(A) 5	(B) 7
	(A) 6/7	(B) 7/6		(C) 9	(D) 10
	(C) 7/10	(D) 8/9	77.	Sum of roots is -	-1 and sum of their
70.	70. If α,β are the roots of $x^2 - 2x + 4 = 0$,			reciprocals is $\frac{1}{6}$, the	n equation is
	then $\alpha^5 + \beta^5$ is equal	l to		$(\Lambda) \mathbf{x}^2 + \mathbf{x} \in 0$	(D) $y^2 - y + 6 = 0$
	(A) 16	(B) 32		(A) $x + x - 0 = 0$ (C) $(-2^{2}) = 1 - 0$	(D) $x - x + 0 = 0$ (D) $-x^{2} - x + 0 = 0$
	(C) 64	(D) None of these		(C) $bx^{-} + x + 1 = 0$	(D) $x^2 - 6x + 1 = 0$

78. If the sum of the roots of the equation $x^{2} + px + q = 0$ is equal to the sum of their squares, then (A) $p^2 - q^2 = 0$ (B) $p^2 + q^2 = 2q$ (C) $p^2 + p = 2q$ (D) None of these If α , β are roots of $x^2 - 3x + 1 = 0$, then the 79. equation whose roots are $\frac{1}{\alpha - 2}, \frac{1}{\beta - 2}$ is (A) $x^2 + x - 1 = 0$ (B) $x^2 + x + 1 = 0$ (C) $x^2 - x - 1 = 0$ (D) None of these 80. The equation formed by decreasing each root of $ax^2 + bx + c = 0$ by 1 is $2x^{2} + 8x + 2 = 0$, then (A) a = -b(B) b = -c(D) b = a + c(C) c = -aIf $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, 81. then the equation whose roots are α/β and β/α is (A) $3x^2 - 25x + 3 = 0$ (B) $x^2 + 5x - 3 = 0$ (C) $x^2 - 5x + 3 = 0$ (D) $3x^2 - 19x + 3 = 0$ Difference between the corresponding roots 82. of $x^{2} + ax + b = 0$ and $x^{2} + bx + a = 0$ is same and $a \neq b$, then (A) a + b + 4 = 0(B) a + b - 4 = 0(C) a - b - 4 = 0(D) a - b + 4 = 083. Product of real roots of the equation $t^2 x^2 + |x| + 9 = 0$ (A) Is always positive (B) Is always negative (C) Does not exist (D) None of these 84. If the roots of equation the $12x^2 - mx + 5 = 0$ are in the ratio 2 : 3, then m =(A) $5\sqrt{10}$ (B) $3\sqrt{10}$

- If one root of the equation $x^2 + px + q = 0$ is $2 + \sqrt{3}$, then values of p and q are (A) - 4, 1(B) 4, -1(D) $-2, -\sqrt{3}$ (C) 2, $\sqrt{3}$ The condition that one root of the equation 86.
 - $ax^{2} + bx + c = 0$ is three times the other is (B) $3b^2 + 16ac = 0$ (A) $b^2 = 8ac$ (C) $3b^2 = 16ac$ (D) $b^2 + 3ac = 0$
 - The equation whose roots are reciprocal of 87. roots of the equation the $3x^2 - 20x + 17 = 0$ is (A) $3x^2 + 20x - 17 = 0$ (B) $17x^2 - 20x + 3 = 0$ (C) $17x^2 + 20x + 3 = 0$ (D) None of these If α β are the roots of the equation 88.

x ² + 2x + 4 = 0, then $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to (A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) 32 (D) $\frac{1}{4}$	If α , β are the	roots of the equation
(A) $-\frac{1}{2}$ (B) $\frac{1}{2}$ (C) 32 (D) $\frac{1}{4}$	$x^2 + 2x + 4 = 0$, the	en $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$ is equal to
(C) 32 (D) $\frac{1}{4}$	(A) $-\frac{1}{2}$	(B) $\frac{1}{2}$
	(C) 32	(D) $\frac{1}{4}$

89.

85.

The equation of the smallest degree with real coefficients having 1+i as one of the root is (A) $x^{2} + x + 1 = 0$ (B) $x^{2} - 2x + 2 = 0$

C)
$$x^{2} + 2x + 2 = 0$$
 (D) $x^{2} + 2x - 2 = 0$

- 90. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation
 - (A) $x^2 18x 16 = 0$
 - (B) $x^2 18x + 16 = 0$
 - (C) $x^2 + 18x 16 = 0$
 - (D) $x^2 + 18x + 16 = 0$
- (C) $2\sqrt{10}$ (D) None of these

Condition for common roots, Quadratic expressions and Position of roots

- 91. If x be real, then the minimum value of $x^2 - 8x + 17$ is (A) -1 (B) 0 (C) 1 (D) 2
- 92. If x is real, then the maximum and minimum values of expression $\frac{x^2 + 14x + 9}{x^2 + 2x + 3}$ will be (A) 4, -5 (B) 5, -4 (C) - 4, 5 (D) - 4, -5
- 93. If x is real, the expression $\frac{x+2}{2x^2+3x+6}$ 1 takes all value in the interval
 - (A) $\left(\frac{1}{13}, \frac{1}{3}\right)$ (B) $\left[-\frac{1}{13}, \frac{1}{3}\right]$ (C) $\left(-\frac{1}{3}, \frac{1}{13}\right)$ (D) None of these
- 94. If $x^2 + px + 1$ is a factor of the expression $ax^3 + bx + c$, then (A) $a^2 + c^2 = -ab$ (B) $a^2 - c^2 = -ab$
- (C) $a^2 c^2 = ab$ (D) None of these 95. If x, y, z are real and distinct, then

95. If x, y, z are real and distinct, then u = x² + 4y² + 9z² - 6yz - 3zx - zxy is always (A) Non-negative (B) Non-positive (C) Zero (D) None of these
96. If x be real, then the maximum value of 5+4x-4x² will be equal to

- (A) 5 (B) 6 (C) 1 (D) 2
- 97. If x is real, the function $\frac{(x-a)(x-b)}{(x-c)}$ will assume all real values, provided
 - (A) a > b > c (B) a < b < c(C) a > c < b (D) a < c < b

98.	If x is real, then	the maximum and	
	minimum values	of the expression	
	$x^2 - 3x + 4$ will be		
	$\frac{1}{x^2+3x+4}$ will be		
	(A) 2, 1	(B) $5, \frac{1}{5}$	
	1	5	
	(C) $7, \frac{1}{7}$	(D) None of these	
99.	If x is real, t	hen the value of	
	$x^2 + 34x - 71$ doos n	ot lia hatwaan	
	$x^2 + 2x - 7$ does in		
	(A) - 9 and -5	(B) -5 and 9	
	(C) 0 and 9	(D) 5 and 9	
100.	If x is real, then the	value of $x^2 - 6x + 13$	
	will not be less than		
	(A) 4	(B) 6	
	(C) 7	(D) 8	
101.	The smallest value	of $x^2 - 3x + 3$ in the	
	interval $(-3, 3/2)$ is		
	(A) 3/4	(B) 5	
	(C) –15	(D) –20	
102.	If the roots of $x^2 + x + x$	a = 0 exceed <i>a</i> , then	
	(A) $2 < a < 3$	(B) $a > 3$	
	(C) $-3 < a < 3$	(D) a < −2	
103.	If the roots	of the equation	
	$x^{2} - 2ax + a^{2} + a - 3 = 0$ are real and less		
	than 3, then		
	(A) a < 2	(B) $2 \le a \le 3$	
	(C) $3 < a \le 4$	(D) a > 4	
104.	If x be real, the least	value of $x^2 - 6x + 10$	
	is		
	(A) 1	(B) 2	
	(C) 3	(D) 10	
105.	Let α, β be	the roots of	
	$x^2 + (3 - \lambda)x - \lambda = 0$. The value of λ for	
	which $\alpha^2 + \beta^2$ is min	imum, is	
	(A) 0	(B) 1	
	(C) 2	(D) 3	

	Solution of quadratic inequations and		(C) 5 (D) 7
	Miscellaneous equations		If two roots of the equation $x^3 - 3x + 2 = 0$
			are same, then the roots will be
106.	If $x^2 + 2ax + 10 - 3a > 0$ for all $x \in \mathbb{R}$,		(A) 2, 2, 3 (B) 1, 1, -2
	then		(C) - 2, 3, 3 $(D) - 2, -2, 1$
	(A) $-5 < a < 2$ (B) $a < -5$	112.	If a, b, c are real and $x^3 - 3b^2x + 2c^3$ is
	(C) $a > 5$ (D) $2 < a < 5$		divisible by $x - a$ and $x - b$, then
107.	The roots of the equation		(A) $a = -b = -c$
	$x^4 - 4x^3 + 6x^2 - 4x + 1 = 0$ are		(B) $a = 2b = 2c$
	(A) 1, 1, 1, 1 (B) 2, 2, 2, 2		(C) $a = b = c$, $a = -2b = -2c$
	(C) 3, 1, 3, 1 (D) 1, 2, 1, 2		(D) None of these
108.	If the roots of the equation	113.	If α , β and γ are the roots of $x^3 + 8 = 0$,
	$8x^3 - 14x^2 + 7x - 1 = 0$ are in G.P., then		then the equation whose roots are
	the roots are		α^2, β^2 and γ^2 is
	(A) $1, \frac{1}{2}, \frac{1}{4}$ (B) 2, 4, 8		(A) $x^3 - 8 = 0$ (B) $x^3 - 16 = 0$
	(C) 3, 6, 12 (D) None of these		(C) $x^3 + 64 = 0$ (D) $x^3 - 64 = 0$.
109.	If the sum of the two roots of the equation	114.	If α, β, γ are the roots of the equation
	$4x^3 + 16x^2 - 9x - 36 = 0$ is zero, then the		$x^{3} + 4x + 1 = 0,$
	roots are		then $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$
	(A) 1 2 -2 (B) $-2\frac{2}{2}-\frac{2}{2}$		(A) 2 (B) 3
	(1) 1, 2 2 (D) 2, 3, 3		(C) 4 (D) 5
	(C) $-3, \frac{3}{2}, -\frac{3}{2}$ (D) $-4, \frac{3}{2}, -\frac{3}{2}$	115.	If the sum of two of the roots of
			$x^3 + px^2 + qx + r = 0$ is zero, then $pq =$
110.	One root of the following given equation		$(\mathbf{A}) - r \qquad \qquad (\mathbf{B}) r$
	$2x^{2} - 14x^{2} + 31x^{2} - 64x^{2} + 19x + 130 = 0$		(C) $2 r$ (D) $- 2 r$

is

(A) 1 (B) 3