RELATIONS AND FUNCTIONS

Let X be a family of sets and R be a relation on X defined by 'A is disjoint from B'. Then R is (A) Reflexive (B) Symmetric

(C) Anti-symmetric (D) Transitive

2. If *R* is a relation from a set *A* to a set *B* and *S* is a relation from *B* to a set *C*, then the relation *SoR*

(A) Is from A to C	(B) Is from C to A
(C) Does not exist	(D) None of these

- 3. If $R \subset A \times B$ and $S \subset B \times C$ be two relations, then $(SoR)^{-1} =$
 - (A) $S^{-1}oR^{-1}$ (B) $R^{-1}oS^{-1}$ (C) SoR (D) RoS
- 4. If *R* be a relation < from $A = \{1, 2, 3, 4\}$ to $B = \{1, 3, 5\}$ *i.e.*, $(a,b) \in R \Leftrightarrow a < b$, then RoR^{-1} is (A) $\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$ (B) $\{(3, 1) (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$ (C) $\{(3, 3), (3, 5), (5, 3), (5, 5)\}$ (D) $\{(3, 3) (3, 4), (4, 5)\}$
- 5. A relation from P to Q is (A) A universal set of $P \times Q$ (B) $P \times Q$
 - (C) An equivalent set of $P \times Q$
 - (D) A subset of $P \times Q$
- 6. Let $A = \{a, b, c\}$ and $B = \{1, 2\}$. Consider a relation *R* defined from set *A* to set *B*. Then *R* is equal to set

$(\mathbf{A}) A$		(B) <i>B</i>	
(C) $A \times B$		(D) $B \times$	A
			~

- 7. Let n(A) = n. Then the number of all relations on *A* is
 - (A) 2^n (B) $2^{(n)!}$
 - (C) 2^{n^2} (D) None of these
- 8. If *R* is a relation from a finite set *A* having *m* elements to a finite set *B* having *n* elements, then the number of relations from *A* to *B* is
 - (A) 2^{mn} (B) $2^{mn} 1$
 - (C) 2mn (D) m^n

- **9.** Let *R* be a reflexive relation on a finite set *A* having *n*-elements, and let there be *m* ordered pairs in *R*. Then
 - (A) $m \ge n$ (B) $m \le n$ (C) m = n(D) None of these
- **10.** The relation *R* defined on the set $A = \{1, 2, 3, 4, 5\}$ by
 - $R = \{(x, y) : |x^2 y^2| < 16\}$ is given by
 - (A) $\{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$
 - (B) $\{(2, 2), (3, 2), (4, 2), (2, 4)\}$
 - (C) $\{(3, 3), (3, 4), (5, 4), (4, 3), (3, 1)\}$
 - (D) None of these
- **11.** A relation *R* is defined from $\{2, 3, 4, 5\}$ to $\{3, 6, 7, 10\}$ by $xRy \Leftrightarrow x$ is relatively prime to *y*. Then domain of *R* is
 - (A) $\{2, 3, 5\}$ (B) $\{3, 5\}$ (C) $\{2, 3, 4\}$ (D) $\{2, 2, 4\}$
 - (C) $\{2, 3, 4\}$ (D) $\{2, 3, 4, 5\}$
- 12. Let *R* be a relation on *N* defined by x + 2y = 8. The domain of *R* is
 (A) {2, 4, 8}
 (B) {2, 4, 6, 8}
 - $(C) \{2, 4, 6\} \qquad (D) \{1, 2, 3, 4\}$
- **13.** If $R = \{(x, y) | x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in Z, then domain of R is (A) $\{0, 1, 2\}$ (B) $\{0, -1, -2\}$ (C) $\{-2, -1, 0, 1, 2\}$ (D) None of these
 - (C) $\{-2, -1, 0, 1, 2\}$ (D) None of these *R* is a relation from $\{11, 12, 12\}$ to $\{2, 10, 1, 12\}$
- **14.** R is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by y = x 3. Then R^{-1} is

 (A) $\{(8, 11), (10, 13)\}$ (B) $\{(11, 18), (13, 10)\}$
 - (C) $\{(10, 13), (8, 11)\}$ (D) None of these
- **15.** Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. If relation *R* from *A* to *B* is given by $R = \{(1, 3), (2, 5), (3, 3)\}$. Then R^{-1} is (A) $\{(3, 3), (3, 1), (5, 2)\}$ (B) $\{(1, 3), (2, 5), (3, 3)\}$ (C) $\{(1, 3), (5, 2)\}$ (D) None of these
- **16.** Let $A = \{1, 2, 3, 4\}$ and let $R = \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on A. Then R is(A) Reflexive(B) Symmetric(C) Transitive(D) None of these

- 17. The void relation on a set *A* is(A) Reflexive
 - (B) Symmetric and transitive
 - (C) Reflexive and symmetric
 - (D) Reflexive and transitive
- **18.** Let R_1 be a relation defined by
 - $R_1 = \{(a, b) \mid a \ge b, a, b \in R\}$. Then R_1 is
 - (A) An equivalence relation on R
 - (B) Reflexive, transitive but not symmetric
 - (C) Symmetric, Transitive but not reflexive
 - (D) Neither transitive not reflexive but symmetric
- **19.** Which one of the following relations on R is an equivalence relation
 - (A) $a R_1 b \Leftrightarrow |a| = |b|$ (B) $a R_2 b \Leftrightarrow a \ge b$
 - (C) $aR_3b \Leftrightarrow a$ divides b (D) $aR_4b \Leftrightarrow a < b$
- **20.** If *R* is an equivalence relation on a set *A*, then R^{-1} is
 - (A) Reflexive only
 - (B) Symmetric but not transitive
 - (C) Equivalence
 - (D) None of these
- **21.** *R* is a relation over the set of real numbers and it is given by $nm \ge 0$. Then *R* is
 - (A) Symmetric and transitive
 - (B) Reflexive and symmetric
 - (C) A partial order relation
 - (D) An equivalence relation
- **22.** In order that a relation *R* defined on a nonempty set *A* is an equivalence relation, it is sufficient, if *R*
 - (A) Is reflexive
 - (B) Is symmetric
 - (C) Is transitive
 - (D) Possesses all the above three properties
- **23.** The relation "congruence modulo *m*" is
 - (A) Reflexive only
 - (B) Transitive only
 - (C) Symmetric only
 - (D) An equivalence relation

- **24.** Solution set of $x \equiv 3 \pmod{7}$, $p \in Z$, is given by (A) {3} (B) $\{7p-3: p \in Z\}$
 - (C) $\{7p+3: p \in Z\}$ (D) None of these
- **25.** Let *R* and *S* be two equivalence relations on a set *A*. Then
 - (A) $R \cup S$ is an equivalence relation on A
 - (B) $R \cap S$ is an equivalence relation on A
 - (C) R-S is an equivalence relation on A
 - (D) None of these
- **26.** Let $R = \{(3,3), (6,6), (9,9), (12,12), (6,12), (3,9), (3,12), (3,6)\}$ be a relation on the set $A = \{3, 6, 9, 12\}$. The relation is
 - (A) An equivalence relation
 - (B) Reflexive and symmetric only
 - (C) Reflexive and transitive only
 - (D) Reflexive only
- **27.** $x^2 = xy$ is a relation which is
 - (A) Symmetric(B) Reflexive(C) Transitive(D) None of these
- **28.** Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation *R* is
 - (A) Reflexive (B) Transitive
 - (C) Not symmetric (D) A function
- **29.** The number of reflexive relations of a set with four elements is equal to
 - (A) 2^{16} (B) 2^{12} (C) 2^{8} (D) 2^{4}
- **30.** Let *S* be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on *S* is
 - (A) Reflexive and symmetric but not transitive
 - (B) Reflexive and transitive but not symmetric
 - (C) Symmetric, transitive but not reflexive
 - (D) Reflexive, transitive and symmetric