MATHEMATICAL REASONING

- 1. Which of the following is not a statement -7. Negation of "Ram is in Class X or Rashmi (A) 3 is an even number is in Class XII" is -(B) New Delhi is in India (A)Ram is not in Class X but Ram is in (C) Every square is a rectangle class XII (D) Today is Monday (B) Ram is not in Class X and Rashmi is 2. Which of the following is not a statement not in Class XII (A) Give me a glass of water (C) Either Ram is not in Class X or Ram is (B) Asia is a continent not in Class XII (C) The earth revolved round the sun (D) None of these (D) The number 6 has two prime factors 2,3 8. The negation of the compound statement 3. Which of the following is not a statement $p \lor (\sim p \lor q)$ is -(A) $\sqrt{3}$ is a rational number (A) $(p \land \sim q) \land \sim p$ (B) $(p \land \sim q) \lor \sim p$ (B) 8 > 7(C) $(p \lor \sim q) \lor \sim p$ (D) None of these (C) Please open the door 9. The negation of statement (D) All prime numbers are odd. $(\sim p \lor q) \land (\sim p \land \sim q)$ is -Which of the following is not a proposition -4. (A) $(p \lor \sim q) \land (p \lor q)$ (A) $\sqrt{3}$ is a prime (B) $(p \land \neg q) \lor (p \lor q)$ (B) $\sqrt{2}$ is irrational (C) $(\sim p \lor q) \lor (\sim p \land \sim q)$ (C) Mathematics is interesting (D) $(p \land \sim q) \land (p \lor q)$ (D) 5 is an even integer 10. The negation of $q \lor \sim (p \land r)$ is -Negation of "2 + 3 = 5 and 8 < 10" is -5. (A) ~q \wedge ~(p \wedge r) (B) ~q \land (p \land r) (A) $2 + 3 \neq 5$ and < 10(C) ~q \lor (p \land r) (D) $q \lor \sim (p \land r)$ (B) 2 + 3 = 5 and 810~ $(p \land q)$ is equal to -11. (C) $2 + 3 \neq 5$ or 810 (A) ~ $p \lor ~ q$ (B) ~ $p \wedge ~ q$ (D) None of these (C) ~ $p \wedge q$ (D) $p \wedge \sim q$ Negation of "3 is an odd number and 7 is 6. 12. The negation of statement a rational number is - $(p \land q) \lor (q \lor \sim r)$ (A)3 is not an odd number and 7 is not (A) $(p \land q) \lor (\sim q \lor \sim r)$ a rational number (B) $(\sim p \land \sim q) \land (\sim q \land r)$ (B) 3 is an odd number or 7 is a rational (C) $(\sim p \lor \sim q) \land (\sim q \land r)$ number (D) None of these (C) 3 is an odd number or 7 is not a 13. ~ $[(\sim p) \land q]$ is equal to rational number (A) $p \lor (\sim q)$ (B) $p \lor q$ (D)3 is not an odd number or 7 is not a (C) $p \land (\sim q)$ (D) ~ $p \land ~ q$ rational number. 14. ~ $(p \lor q)$ is equal to -(A) ~ $p \lor ~ q$ (B) ~ $p \wedge ~ q$
 - $(C) \sim p \lor q \qquad (D) p \lor \sim q$

15.	The statement $(p \land \neg q) \lor p$ is logically
	equivalent to -
	(A) p (B) ~p
	(C) q (D) \sim q
16.	~ $[p \lor ((\sim q))]$ is equal to -
	$(A) \sim p \lor q \qquad \qquad (B) (\sim p) \land q$
	$(C) \sim p \lor \sim p \qquad (D) \sim p \land \sim q$
17.	If p, q, r are simple statement, then
	$(p \land q) \land (q \land r)$ is true then -
	(A) p, q, r are all false
	(B) p, q, r are all true (C)
	(C) p, q are true and r is false (D) n is true and a single false
10	(D) p is true and q and r are faise If $(n - q) = (q - r)$ is true and q and r both
10.	If $(p \land \sim q) \lor (q \land 1)$ is true and, q and 1 both true then p is
	(Δ) True
	(B) False
	(C) may be true or false
	(D) none
19.	If p and q are simple statement, then
	$p \Rightarrow q$ is false when -
	(A) p is true and q is true
	(B) p is false and q is true
	(C) p is true and q is false
	(D) both p and q are false
20.	If p, q, r are simple statement with truth
	values T, F, T, then the truth value of
	$(\sim p \lor q) \land \sim r \Rightarrow p \text{ is -}$
	(A) true (B) false (C) true if r is false (D) true if r is true
	(c) the first laise (D) the first he
21.	Negation of the statement
	If a number is prime then it is odd is.
	(A) A number is not prime but odd.
	(B) A number is prime and it is not odd.
	(C) A number is neutrer primes nor odd.
	(D) None of these If $(p_1, \dots, p_r) \rightarrow (q_r, p_r)$ is followed a and r area
22.	If $(p \land \sim 1) \Rightarrow (q \lor 1)$ is false and q and 1 are both false, then n is
	(Λ) true
	(B) false
	(C) may be true or false
	(D) data insufficient

The statement $(p \rightarrow \neg q) \Leftrightarrow (p \land q)$ is a -
(A) Tautology
(B) contradiction
(C) Neither tautology nor contradiction
(D) None
Negation of the statement : If we control
population growth, we prosper -
(A) If we do not control population growth,
we prosper
(B) If we control population, we do not
prosper
(C) We control population and we do not
prosper
(D) We do not control population, but we
prosper
If p, q, r are substatements with truth
values. T, T, F then the
Statement $r \rightarrow (p \land \sim q) \lor (\sim q \land \sim r)$
will be
(A) True
(B) False
(C) may be true or false
(D) None of these
Negation of the conditional : "If it rains
then I shall go to school" is -
(A) It rains and I shall go to school
(B) It rains and I shall not go to school
(C) If does not rain and I shall go to school
(D) None of these
Which of the following is always false?
(A) $(p \Rightarrow q) \equiv \sim q \Rightarrow \sim p$
$(B) \sim (p \lor q) \equiv \sim p \lor \sim q$
$(C) \sim (p \Rightarrow q) \equiv p \land \sim q$
$(D) \sim (p \lor q) \equiv \sim p \land \sim q$
The Negation of the statement
$(p \land q) \rightarrow r \text{ is } -$
(A) $(\sim p \lor \sim q) \rightarrow r$ (B) $(\sim p \land \sim q) \land \sim r$
(C) $(p \land q) \land r$ (D) $(\neg p \lor \neg q) \land r$
If $p \Rightarrow (q \lor r)$ is false, then the truth values
of p, q, r are respectively -

23.

24.

25.

26.

27.

28.

29.

of p, q, r are respectively -(A) T, F, F (B) F, F, F (C) F, T, T (D) T, T, F 30. If $p \Rightarrow (\sim p \lor q)$ is false, the truth values of p and q are respectively -(A) F, T (B) F. F (D) T, F (C) T, T 31. The contrapositive of $p \Rightarrow (\sim p \land q)$ is -(A) $\sim p \Rightarrow (pv \sim q)$ (B) $(p \land \neg q) \Rightarrow \neg p$ (C) $(pv \sim q) \Rightarrow p$ (D) $(p_{\vee} \sim q) \Rightarrow \sim p$ 32. Which of the following is logically equivalent to $\sim (\sim p \Rightarrow q)$? (A) $p \wedge q$ (B) $p \wedge \sim q$ (C) ~ $p \wedge q$ (D) ~ $p \wedge ~ q$ 33. $p \Rightarrow q$ can also be written as -(A) $p \Rightarrow \sim q$ (B) ~ $p \lor q$ $(C) \sim p \Rightarrow \sim q$ (D) None of these 34. $(\sim p \lor q)$ is logically equal to -(A) $p \rightarrow q$ (B) $q \rightarrow p$ (C) ~ (p \rightarrow q) $(D) \sim (q \rightarrow p)$ 35. Nagation of the statement $p \otimes (\neg q \wedge r)$ is (A) $p \land (q \lor \sim r)$ (B) ~ p \land (q \lor ~ r) (C) $p \lor (q \lor \sim r)$ (D) None of these 36. The contrapositive of $(p \lor q) \Rightarrow r$ is -(A) $\mathbf{r} \Rightarrow (\mathbf{p} \lor \mathbf{q})$ (B) ~ $r \Rightarrow (p \lor q)$ $(C) \sim r \Rightarrow \sim p \land \sim q \qquad (D) p \Rightarrow (q \lor r)$ 37. The statement $p \Leftrightarrow q$ is equal to -(A) $(\sim p \lor q) \lor (p \lor q)$ (B) $(p \land q) \lor (\sim p \land \sim q)$ (C) $(\sim p \lor q) \land (pv \sim q)$ (D) $(p \land q) \lor (p \lor q)$ 38. \sim (p \Leftrightarrow q) is -(A) ~ $p \wedge ~ q$ (B) ~ p \vee ~ q (C) $(p \land \sim q) \lor (\sim p \land q)$ (D) None of these 39. If p and q are simple statement, then $p \Leftrightarrow \sim q$ is true when -(A) p is true and q is true (B) both p and q are false (C) p is false and q is true (D) None of these **40.** The statement $(p \land q) \Leftrightarrow \neg p$ is a (A) Tautology (B) contradiction (C) Neither tautology nor contradiction (D) None of these