EXERCISE-I

8.

9.

Slope of line, Equations of line in different forms

1. The equation of the line whose slope is 3 and which cuts off an intercept 3 from the positive x – axis is

(A) y = 3x - 9 (B) y = 3x + 3

(C) y = 3x + 9 (D) None of these

- If the coordinates of the points A, B, C, D, be (a, b), (a', b'), (-a, b) and (a', -b') respectively, then the equation of the line bisecting the line segments AB and CD is
 - (A) 2a'y 2bx = ab a'b'
 - (B) 2ay 2b' x = ab a'b'
 - (C) 2ay 2b'x = a'b ab'
 - (D) None of these
- 3. The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is

(A)
$$x - y = 5$$
 (B) $x + y = 5$
(C) $x + y = 1$ (D) $x - y = 1$

- 4. If the coordinates of A and B be (1, 1) and (5, 7), then the equation of the perpendicular bisector of the line segment AB is
 - (A) 2x + 3y = 18 (B) 2x 3y + 18 = 0

(C)
$$2x + 3y - 1 = 0$$
 (D) $3x - 2y + 1 = 0$

5. If the coordinates of the points A, B, C be (-1, 5), (0, 0) and (2, 2) respectively and D be the middle point of BC, then the equation of the perpendicular drawn from B to the line AD is

(A) x + 2y = 0 (B) 2x + y = 0(C) x - 2y = 0 (D) 2x - y = 0 6. The equation of the line passing through the point (x', y') and perpendicular to the line yy' = 2a (x + x') is
(A) xy' + 2ay + 2ay' - x'y' = 0
(B) xy' + 2ay - 2ay' - x'y' = 0

(C)
$$xy' + 2ay + 2ay' + x'y' = 0$$

(D)
$$xy' + 2ay - 2ay' + x'y' = 0$$

7. If the middle points of the sides *BC*, *CA* and *AB* of the triangle *ABC* be (1, 3), (5, 7) and (-5, 7), then the equation of the side *AB* is

(A)
$$x - y - 2 = 0$$
 (B) $x - y + 12 = 0$

(C)
$$x + y - 12 = 0$$
 (D) None of these

- If the coordinates of the vertices of the triangle ABC be (-1, 6), (-3, -9), and (5, -8) respectively, then the equation of the median through *C* is
 - (A) 13x 14y 47 = 0
 - (B) 13x 14y + 47 = 0
 - (C) 13x + 14y + 47 = 0
 - (D) 13x + 14y 47 = 0
- The equation of the line perpendicular to the line $\frac{x}{a} - \frac{y}{b} = 1$ and passing through the point at which it cuts *x*-axis, is

(A)
$$\frac{x}{a} + \frac{y}{b} + \frac{a}{b} = 0$$
 (B) $\frac{x}{b} + \frac{y}{a} = \frac{b}{a}$
(C) $\frac{x}{b} + \frac{y}{a} = 0$ (D) $\frac{x}{b} + \frac{y}{a} = \frac{a}{b}$

10. The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is

(A)
$$y - x + 1 = 0$$
 (B) $y - x - 1 = 0$

(C)
$$y - x + 2 = 0$$
 (D) $y - x - 2 = 0$

- 11. The equation of a line through the intersection of lines x = 0 and y = 0 and through the point (2, 2), is
 - (A) y = x 1 (B) y = -x(C) y = x (D) y = -x + 2
- 12. Equation of a line through the origin and perpendicular to, the line joining (a, 0) and (-a, 0), is
 - (A) y = 0 (B) x = 0(C) x = -a (D) y = -a
- **13.** For specifying a straight line how many geometrical parameters should be known
 - (A) 1 (B) 2
 - (C) 4 (D) 3
- 14. The points A (1, 3) and C (5, 1) are the opposite vertices of rectangle. The equation of line passing through other two vertices and of gradient 2, is
 - (A) 2x + y 8 = 0 (B) 2x y 4 = 0(C) 2x - y + 4 = 0 (D) 2x + y + 7 = 0
- 15. The intercept cut off from *y*-axis is twice that from *x*-axis by the line and line is passes through (1, 2) then its equation is
 - (A) 2x + y = 4(B) 2x + y + 4 = 0(C) 2x - y = 4(D) 2x - y + 4 = 0
- 16. The equation of line, which bisect the line joining two points (2, -19) and (6, 1) and perpendicular to the line joining two points (-1, 3) and (5, -1), is
 - (A) 3x 2y = 30 (B) 2x y 3 = 0
 - (C) 2x + 3y = 20 (D) None of these
- 17. The equation of line whose mid point is (x_1, y_1) in between the axes, is
 - (A) $\frac{x}{x_1} + \frac{y}{y_1} = 2$ (B) $\frac{x}{x_1} + \frac{y}{y_1} = \frac{1}{2}$ (C) $\frac{x}{x_1} + \frac{y}{y_1} = 1$ (D) None of these

- 18. The equation of line passing through (c, d)and parallel to ax + by + c = 0, is (A) a(x+c) + b(y+d) = 0(B) a(x+c) - b(y+d) = 0(C) a(x-c) + b(y-d) = 0(D) None of these The equation of line passing through point 19. of intersection of lines 3x - 2y - 1 = 0 and x - 4y + 3 = 0 and the point $(\pi, 0)$, is (A) $x - y = \pi$ (B) $x - y = \pi(y + 1)$ (C) $x - y = \pi(1 - y)$ (D) $x + y = \pi(1 - y)$ 20. A line perpendicular to line the ax + by + c = 0 and passes through (a, b). The equation of the line is (A) $bx - ay + (a^2 - b^2) = 0$
 - (B) $bx ay (a^2 b^2) = 0$
 - (C) bx ay = 0
 - (D) None of these
- **21.** The equation of the line which cuts off the intercepts $2a \sec \theta$ and $2a \csc \theta$ on the axes is
 - (A) $x\sin\theta + y\cos\theta 2a = 0$
 - (B) $x\cos\theta + y\sin\theta 2a = 0$
 - (C) $x \sec \theta + y \csc \theta 2a = 0$
 - (D) $x \csc\theta + y \sec\theta 2a = 0$
- 22. If the equation y = mx + c and $x \cos \alpha + y \sin \alpha = p$ represents the same straight line, then

(A)
$$p = c\sqrt{1 + m^2}$$
 (B) $c = p\sqrt{1 + m^2}$
(C) $cp = \sqrt{1 + m^2}$ (D) $p^2 + c^2 + m^2 = 1$

23. The equation to the straight line passing through the point of intersection of the lines 5x - 6y - 1 = 0 and 3x + 2y + 5 = 0and perpendicular to the line 3x - 5y + 11 = 0 is

- (A) 5x + 3y + 8 = 0 (B) 3x 5y + 8 = 0
- (C) 5x + 3y + 11 = 0 (D) 3x 5y + 11 = 0

- **24.** Line passing through (1, 2) and (2, 5) is(A) 3x y + 1 = 0(B) 3x + y + 1 = 0(C) y 3x + 1 = 0(D) 3x + y 1 = 0
- 25. Equation of line passing through (1, 2) and perpendicular to 3x + 4y + 5 = 0 is
 - (A) 3y = 4x 2 (B) 3y = 4x + 3

(C) 3y = 4x + 4 (D) 3y = 4x + 2

26. The number of lines that are parallel to 2x + 6y + 7 = 0 and have an intercept of length 10 between the coordinate axes is (A) 1 (B) 2 (C) 4 (D) L f it 1

- 27. A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its *y*-intercept is
 - (A) 1/3
 (B) 2/3
 (C) 1
 (D) 4/3
- 28. A straight the makes an angle of 135° with the *x*-axis and cuts *y*-axis at a distance - 5 from the origin. The equation of the line is (A) 2x + y + 5 = 0 (B) x + 2y + 3 = 0(C) x + y + 5 = 0 (D) x + y + 3 = 0
- **29.** A straight line through P(1, 2) is such that its intercept between the axes is bisected at P. Its equation is
 - (A) x + 2y = 5 (B) x y + 1 = 0(C) x + y - 3 = 0 (D) 2x + y - 4 = 0
- **30.** The equation of the straight line joining the point (a, b) to the point of intersection of
 - the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{b} + \frac{y}{a} = 1$ is (A) $a^2y - b^2x = ab(a - b)$ (B) $a^2y + b^2y = ab(a + b)$ (C) $a^2y + b^2x = ab$ (D) $a^2x + b^2y = ab(a - b)$

- 31. Equation of a line passing through (1, -2)and perpendicular to the line 3x - 5y + 7 = 0 is (A) 5x + 3y + 1 = 0 (B) 3x + 5y + 1 = 0(C) 5x - 3y - 1 = 0 (D) 3x - 5y + 1 = 0
- 32. If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2, -3) and (4, -5), then (a, b)= (A) (1, 1) (B) (-1, 1) (C) (1, -1) (D) (-1, -1)
- 33. If the slope of a line passing through the point A (3, 2) be 3/4, then the points on the line which are 5 units away from A, are (A) (5, 5), (-1, -1) (B) (7, 5), (-1, -1) (C) (5, 7), (-1, -1) (D) (7, 5), (1, 1)
- 34. For the lines 2x + 5y = 7 and 2x 5y = 9, which of the following statement is true (A) Lines are parallel
 (B) Lines are coincident
 - (C) Lines are intersecting
 - (D) Lines are perpendicular
- **35.** The opposite angular points of a square are (3, 4) and (1, -1). Then the co-ordinates of other two points are

(A)
$$D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$$

(B) $D\left(\frac{1}{2}, \frac{9}{2}\right), B\left(\frac{1}{2}, \frac{5}{2}\right)$
(C) $D\left(\frac{9}{2}, \frac{1}{2}\right), B\left(-\frac{1}{2}, \frac{5}{2}\right)$

(D) None of these

36.

Two consecutive sides of a parallelogram are 4x + 5y = 0 and 7x + 2y = 0. If the equation to one diagonal is 11x + 7y = 9, then the equation of the other diagonal is

- (A) x + 2y = 0 (B) 2x + y = 0
- (C) x y = 0 (D) None of these

- 37. One diagonal of a square is along the line 8x 15y = 0 and one of its vertex is (1, 2). Then the equation of the sides of the square passing through this vertex, are (A) 23x + 7y = 9, 7x + 23y = 53
 - (B) 23x 7y + 9 = 0, 7x + 23y + 53 = 0
 - (C) 23x 7y 9 = 0, 7x + 23y 53 = 0
 - (D) None of these
- 38. The opposite vertices of a square are (1, 2) and (3, 8), then the equation of a diagonal of the square passing through the point (1, 2), is

(A) 3x - y - 1 = 0 (B) 3y - x - 1 = 0(C) 3x + y + 1 = 0 (D) None of these

39. The ends of the base of an isosceles triangle are at (2a, 0) and (0, a). The equation of one side is x = 2a The equation of the other side is

(A)
$$x + 2y - a = 0$$
 (B) $x + 2y = 2a$
(C) $3x + 4y - 4a = 0$ (D) $3x - 4y + 4a = 0$

- 40. The equation of the lines on which the perpendiculars from the origin make 30° angle with *x*-axis and which form a triangle of area $\frac{50}{\sqrt{3}}$ with axes, are (A) $x + \sqrt{3}y \pm 10 = 0$ (B) $\sqrt{3}x + y \pm 10 = 0$
 - (C) $x \pm \sqrt{3}y 10 = 0$ (D) None of these
- 41. If a, b, c are in harmonic progression, then straight line \$\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0\$ always passes through a fixed point, that point is

 (A) (-1, -2)
 (B) (-1, 2)
 (C) (1, -2)
 (D) (1, -1/2)

 42. If the straight line ax + by + c = 0 always
 - passes through(1, -2), then *a*, *b*, *c* are(A) In A.P.(B) In H.P.(C) In G.P.(D) None of these

43. If $u = a_1 x + b_1 y + c_1 = 0$,

$$\mathbf{v} = \mathbf{a}_2 \mathbf{x} + \mathbf{b}_2 \mathbf{y} + \mathbf{c}_2 = 0$$
 and $\frac{\mathbf{a}_1}{\mathbf{a}_2} = \frac{\mathbf{b}_1}{\mathbf{b}_2} = \frac{\mathbf{c}_1}{\mathbf{c}_2}$,

then the curve u + kv = 0 is (A) The same straight line *u*

- (B) Different straight line
- (B) Different straight line (C) It is not a straight line
- (C) It is not a straight line(D) None of these
- 44. For what values of *a* and *b* the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x - 3y + 6 = 0 on the axes

(A)
$$a = \frac{8}{3}, b = -4$$
 (B) $a = -\frac{8}{3}, b = -4$
(C) $a = \frac{8}{3}, b = 4$ (D) $a = -\frac{8}{3}, b = 4$

45. If a and b are two arbitrary constants, then the straight line (a-2b)x + (a+3b)y + 3a + 4b = 0

will pass through

(A)
$$(-1, -2)$$
 (B) $(1, 2)$
(C) $(-2, -3)$ (D) $(2, 3)$

46. Equation of the straight line making equal intercepts on the axes and passing through the point (2, 4) is

(A) 4x - y - 4 = 0 (B) 2x + y - 8 = 0

- (C) x + y 6 = 0 (D) x + 2y 10 = 0
- 47. The equation of the straight line passing through the point (4, 3) and making intercepts on the co-ordinate axes whose sum is -1 is

(A)
$$\frac{x}{2} - \frac{y}{3} = 1$$
 and $\frac{x}{-2} + \frac{y}{1} = 1$
(B) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
(C) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
(D) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$

48. The line which is parallel to *x*-axis and crosses the curve $y = \sqrt{x}$ at an angle of 45° is equal to

(A)
$$x = \frac{1}{4}$$
 (B) $y = \frac{1}{4}$
(C) $y = \frac{1}{2}$ (D) $y = 1$

- 49. The equation of the line perpendicular to line ax + by + c = 0 and passing through (a, b) is equal to
 - (A) bx ay = 0
 - (B) bx + ay 2ab = 0
 - (C) bx + ay = 0
 - (D) None of these
- 50. The points (1, 3) and (5, 1) are the opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c, then the value of *c* will be (A) 4 (B) - 4
 - (A) 4 (B) -4(C) 2 (D) -2

Angle between two straight lines, Bisector of angle between two lines

- 51. To which of the following types the straight lines represented by 2x + 3y 7 = 0 and 2x + 3y 5 = 0 belong
 - (A) Parallel to each other
 - (B) Perpendicular to each other
 - (C) Inclined at 45° to each other
 - (D) Coincident pair of straight lines
- 52. The obtuse angle between the lines y = -2and y = x + 2 is
 - (A) 120° (B) 135° (C) 150° (D) 160°
- 53. The line passes through (1, 0) and $(-2, \sqrt{3})$ makes an angle of with *x*-axis (A) 60° (B) 120°
 - (C) 150° (D) 135°

- 54. Angle between x = 2 and x 3y = 6 is (A) ∞ (B) $\tan^{-1}(3)$ (C) $\tan^{-1}\left(\frac{1}{3}\right)$ (D) None of these 55. If the lines $y = (2 + \sqrt{3})x + 4$ and
 - y = kx + 6 are inclined at an angle 60° to each other, then the value of *k* will be

(A) 1 (B) 2
(C)
$$-1$$
 (D) -2

56. A straight line
$$(\sqrt{3} - 1)x = (\sqrt{3} + 1)y$$

makes an angle 75° with another straight

line which passes through origin. Then the equation of the line is

(A)
$$x = 0$$

(B) $y = 0$
(C) $x + y = 0$
(D) $x - y = 0$

57. The angle between the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, is

(A)
$$\tan^{-1} \frac{a_1b_2 + a_2b_1}{a_1a_2 - b_1b_2}$$

(B) $\cot^{-1} \frac{a_1a_2 + b_1b_2}{a_1b_2 - a_2b_1}$
(C) $\cot^{-1} \frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$
(D) $\tan^{-1} \frac{a_1b_1 - a_2b_2}{a_1a_2 + b_1b_2}$

58. The inclination of the straight line passing through the point (-3, 6) and the midpoint of the line joining the point (4, -5) and (-2, 9) is

(A)
$$\pi/4$$
 (B) $\pi/6$
(C) $\pi/3$ (D) $3\pi/4$
The angle between the lines 2 π

59. The angle between the lines 2x - y + 3 = 0and x + 2y + 3 = 0 is

- (A) 90° (B) 60°
- (C) 45° (D) 30°

60.	The angle between the	ne straight lines
	$x - y\sqrt{3} = 5$ and $\sqrt{3x} + y = 7$ is	
	(A) 90° (B)	60°
	(C) 75° (D)	30°
61.	The lines $a_1x + b_1y + c_1 = 0$ and	
	$a_2 x + b_2 y + c_2 = 0$ are	perpendicular to
	each other, if	
	(A) $a_1b_2 - b_1a_2 = 0$ (B)	$a_1a_2 + b_1b_2 = 0$
	(C) $a_1^2 b_2 + b_1^2 a_2 = 0$ (D) $a_1 b_1 + a_2 b_2 = 0$	
62.	The lines $y = 2x$ and $x = -2y$ are	
	(A) Parallel	
	(B) Perpendicular	
	(C) Equally inclined to axes	
	(D) Coincident	
63.	If the line passing through $(4, 3)$ and $(2, k)$	
	is perpendicular to $y = 2x + 3$, then $k =$	
	(A) -1 (B)	1
	(C) - 4 (D)	4
64.	The number of straight lines which is	
	equally inclined to both th	he axes is
	(A) 4 (B)	2
	(C) 3 (D)	
65.	The equation of the bisector of the acute angle between the lines $3x - 4y + 7 = 0$ and	
	12x + 5y - 2 = 0 is	
	(A) $21x + 77y - 101 = 0$	
	(B) $11x - 3y + 9 = 0$	
	(C) $31x + 77y + 101 = 0$	

(D) 11x - 3y - 9 = 0