(1) Variable valency

1.

For a catalyst which condition is not essential:

d-BLOCK ELEMENTS

(2) High ionisation energy

	(3) Empty orbita	ls	(4) Free valency o	(4) Free valency on the surface					
2.	To which of the (1) 3d series	following series the tran (2) 4d series	sition element from Z (3) 5d series	= 39 to Z = 48 belong: (4) 6d series					
3.		ng (Y). The (X) and (Y) o_2		(2) Mn2O, Mn2O3					
4.	Which pair of io (1) Mn ³⁺ , Co ³⁺ (3) Zn ²⁺ , Sc ³⁺	ns is colourless :	(2) Fe ³⁺ , Cr ³⁺ (4) Ti ²⁺ , Cu ²⁺						
5.	in air is:			he green coloured powder blowr					
	$(1) \operatorname{Cr}_2 \operatorname{O}_3$	$(2) \operatorname{CrO}_2$	$(3) \operatorname{Cr}_2 \operatorname{O}_4$	$(4) CrO_3$					
6.	$CrO_7^{-2} \hat{\uparrow} \stackrel{\chi_*}{} \stackrel{\chi_*}{} $ 2C1	${\rm CO}_4^{-2}$, X and Y are respectively	ctively						
	(1) $X = OH^-, Y = (3) X = (3) X = OH^-, Y = (3) X = $	= H ⁺	(2) $X = H^+, Y = O$	(2) $X = H^{+}, Y = OH^{-}$ (4) $X = H_{2}O_{2} Y = OH^{-}$					
7.	During estimation (1) KMnO ₄	on of oxalic acid Vs KM (2) Oxalic acid	nO ₄ , self indicator is : (3) K ₂ SO ₄	(4) MnSO ₄					
8.	The higher oxida B, which are:	ation states of transition	elements are found to	be the combination with A and					
	(1) F, O	(2) O, N	(3) O, Cl	(4) F, Cl					
9.		ont of x^{n+} is $\sqrt{24}$ B.M. omic number = 26).	Hence Number of un	paired electron and value of 'n					
	(1) 4, 3	(2) 3, 5	(3) 4, 2	(4) 4, 1					
10.	The product of o	xidation of I with MnC	\mathbf{D}_4^- in alkaline medium	is:					
	(1) IO_3^-	(2) I_2	(3) IO ⁻	(4) IO_4^-					
11.	* *	green when exposed to	0 1						
		ne formation of a layer one formation of a layer of							
	(2) Because of the formation of a layer of basic carbonate of copper on the surface of copper (3) Because of the formation of a layer of cupric hydroxide on the surface of copper.								
	(4) (1) and (3) bo	=		11					
12.		lowing oxide of chromi							
D -	(1) CrO	$(2) \operatorname{Cr}_2 \operatorname{O}_3$	(3) CrO ₃	(4) CrO ₅					
	: VISIONet Info Solution www.edubull.com		91-9350679141						

	(3) Is less stable	(4) Stability depen	ds upon nature of copper salt							
14.	Pick out the wrong statement:- (1) K ₂ Cr ₂ O ₇ reduces ferric sulphate to ferrous sulphate (2) Iron do not form amalgam. (3) Permanent magnet is made by an alloy called Alnico (4) In the Lathanides ionic radius decreases from La ⁺³ to Lu ⁺³									
15.	CrO ₃ is red or orange in colour. The natural (1) Acidic (2) Basic	re of oxide is :- (3) Amphoteric	(4) Neutral							
16.	Cl ₂ gas is obtained by various reactions b (1) KMnO ₄ + conc. HCl $\xrightarrow{\Delta}$ (2) KCl + K ₂ Cr ₂ O ₇ + conc. H ₂ SO ₄ $\xrightarrow{\Delta}$ (3) MnO ₂ + conc. HCl $\xrightarrow{\Delta}$ (4) KCl + F ₂ $\xrightarrow{\Delta}$									
17.	Maximum magnetic moment is shown by $(1) d^5$ $(2) d^6$	$7: \qquad (3) d^7$	(4) d8							
18.	Disproportion can be shown by (1) MnO ₄ ²⁻ in acidic medium (3) Cl ₂ in alkaline medium	(2) Cu ⁺ in aqueous (4) All of these	s medium							
19.	The basic character of the transition metal monoxides follows the order : (Atomic number $Ti = 22$, $V = 23$, $Cr = 24$, $Fe = 26$) (1) $TiO > FeO > VO > CrO$ (2) $TiO > VO > CrO > FeO$ (3) $VO > CrO > TiO > FeO$ (4) $CrO > VO > FeO > TiO$									
20.	Which of the following reactions is used to estimate copper volumetrically.? (1) $2Cu^{2+} + 4F^{-} \longrightarrow Cu_{2}F_{2} + F_{2}$ (2) $Cu^{2+} + 4NH_{3} \longrightarrow [Cu(NH_{3})^{2+}$ (3) $2Cu^{2+} + 2CNS^{-} + SO_{2} + 2H_{2}O \longrightarrow Cu_{2}(CNS)_{2} + H_{2}SO_{4} + 2H^{+}$ (4) $2Cu^{2+} + 4\Gamma \longrightarrow Cu_{2}I_{2} + I_{2}$									
21.	Atomic size of gold is almost the same as that of silver. It is due to: (1) the same crystal structure of silver and gold (2) almost the same electropositive character of the two metals (3) transition metals contraction in a series. (4) the effect of lanthanide contraction									
22.	Which among the following statements is (1) In d-block elements oxidation state di (2) In p-block metals oxidation state diffe (3) In a group of p-block lower oxidation	ffer by unity. er by two units.	the heavier members.							

Mob no.: +91-9350679141

Compared to Cu²⁺ having 3d⁹ configuration, Cu⁺ having 3d¹⁰ configuration (aq. solution):-

(2) Is equally stable

13.

(1) Is more stable

Power by: VISIONet Info Solution Pvt. Ltd

Website : www.edubull.com

	(4) In a group of d-block higher oxidation states are favoured by the lighter member.								
23.	Which among the following order of oxidiz (1) CrO ₃ > MoO ₃ (3) Fe(CO) ₅ > Mn(CO) ₅	zing character is correct- (2) K ₂ Cr ₂ O ₇ > KMnO ₄ (4) V ₂ O ₃ > V ₂ O ₅							
24.	Which of the following configurations of oxidation states- (1) [Ar] 3d ⁸ 4s ² (3) [Ar] 3d ⁵ 4s ²	of 3d series metals exhibits the largest number of (2) [Ar] 3d ¹⁰ 4s ¹ (4) [Ar] 3d ⁷ 4s ²							
25.	Which of the following statement regarding (1) They are chemically inert (3) They retain metallic conductivity	(2) They are soft and nonconductive							
26.	Which of the following pair of ions has san (1) Cu ⁺ , Cu ²⁺ (2) Co ³⁺ , Fe ²⁺	ame value of "spin-only" magnetic moment (3) Ti^{2+} , V^{2+} (4) Sc^{2+} , Zn^{+2}							
	f-BLOCK	ELEMENTS							
27.	The elements from thorium (At. No. 90) to are filled up are called: (1) lanthanides (2) rare earths	lawrencium (At. No. 1 (3) actinides	(4) transuranics						
28.	Select the element in the following which does not show +4 oxidation state: (1) Ti (2) Zr (3) La (4) Pt								
29.	With increase in atomic number the ionic radii of actinides: (1) contract slightly (2) increase gradually (3) show no change (4) change irregularly								
30.	The general electronic configuration of land (1) [Xe] $4f^{14} 5d^{0-1} 6s^2$ (3) [Xe] $4f^{0-14} 5d^{0-1} 6s^{1-2}$	hanide is: (2) [Xe] 4f ⁰⁻¹⁴ 5d ¹⁻² 6s ¹ (4) None of these							
31.	Cerium can show the oxidation state of +4 because (1) it resemble alkali metals (2) it has very low value of I.E. (3) of its tendency to attain noble gas configuration of xenon (4) of its tendency to attain 4f ⁷ configuration								
32.	In aqueus solution Eu ⁺² acts as: (1) an oxidising agent (3) can ad as redox agent	(2) reducing agent(4) None of these							
33.	The maximum oxidation state shown by ac $(1) +6$ $(2) +7$	tinides is : (3) +5	(4) +4						
34.	The outer electronic configuration of gadolinium (At. No. 64) is : $(1) 4f^75d^16s^2$ (2) $4f^85d^06s^2$								

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no.: +91-9350679141

 $(3) 4f^85d^16s^1$

 $(4) 4f^75d^06s^2$

35. The most characteristic oxidation state of lanthanides is :

(1) + 2

(2) + 3

(3) +4

(4) none of these

36. The common oxidation state of actinides is :

(1) +4

(2) + 3

(3) + 5

(4) + 6

37. Which of the following f - block elements, will change its group on emmitting a-particle (alpha particle):

 $(1)_{58}$ Ce

 $(2)_{70}Lu$

 $(3)_{90}$ Th

 $(4)_{92}U$

Correct answer is :-

(1) Only land 3

(2) Only 2 and 4

(3) All

(4)None

38. Which of the following pair have almost similar size

(1) Ti_{22} and Zr_{40}

(2) Nb₄₁ and Ta₇₃

 $(3) Y_{39}$ and La₅₇

(4) Ca₂₀ and Ir₃₁

- 39. An increase in both atomic and ionic radii with atomic number occurs in any group of the periodic table. In accordance of this the ionic radii of Ti (IV) and Zr (IV) ions are 0.68 Å and 0.74 Å respectively but for Hf (IV) ion the ionic radius is 0.75 Å, which is almost the same as that for Zr (IV) ion. This is due to:-
 - (1) greater degree of covalency in compounds of Hf⁴⁺
 - (2) Lanthanide contraction
 - (3) Difference in the co-ordination number of Zr⁺⁴ and Hf⁺⁴ in their compounds
 - (4) Actinide contraction

ANSWER KEY

EXERCISE-I (Conceptual Questions)														
1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(1)	6.	(1)	7.	(1)	
8.	(1)	9.	(3)	10.	(1)	11.	(2)	12.	(2)	13.	(3)	14.	(1)	
15.	(1)	16.	(2)	17.	(1)	18.	(4)	19.	(2)	20.	(4)	21.	(4)	
22.	(4)	23.	(1)	24.	(3)	25.	(2)	26.	(2)	27.	(3)	28.	(3)	
29.	(1)	30.	(4)	31.	(3)	32.	(2)	33.	(2)	34.	(1)	35.	(2)	
36.	(2)	37.	(1)	38.	(2)	39.	(2)							

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141