EXE	RCISE-I (Conceptual Quest	cions)	B	Build Up Your Understanding
	DEVI	τι ορμεντ οι	F PERIODIC TAB	(F
1.	Mendeleev's periodic table			
	(1) Atomic number			
	(2) Increasing order of num	ber of protons		
	(3) Electronic configuration	1		
	(4) None of the above			
2.	Which of the following is/a	re Dobereiners tr	riad:-	
	(a) P, As, Sb		(b) Cu, Ag, Au	
	(c) Fe, Co, Ni		(d) S, Se, Te	
	Correct answer is :- ·			
	(1) a and b (2) b	and c	(3) a and d	(4) All
3.	Which of the following sets	of elements foll	ows Newland's octa	ve rule :-
	(1) Be, Mg, Ca		(2)Na, K,Rb	
	(3) F, Cl, Br		(<mark>4) B, AL</mark> , Ga	
	TT 71 * 1			
4.	Which are correct match:-		(h) Else elseninisme	Ca
	(a) Eka silicon - Be (c) Eka manganese - Tc		(b) Eka aluminium (d) Eka scandium -	
	(c) Exa manganese - $1c$ (1) b, c (2) a	b d	(3) a, d	(4) All
	(1) 0, 0 (2) 4	, o, u	(5) u, u	
5.		b is 120. What w	vill be the atomic wt	. of as, as per Dobereiners triad
	rule:-		(2) 00 (2)	
	(1) 151 (2) 7	5.5	(3) 89.5	(4) Unpredictable
6.	The places that were left en	npty by Mendele	ev's were, for:-	
	(1) Aluminium & Silicon		(2) Galium and ger	
	(3) Arsenic and antimony		(4) Molybdenum an	nd tungstun
7.	Which is not anomalous pa	ir of elements in	the Mendeleev's per	iodic table:-
	(l)Ar and K	in or cicilicities in	(2) Co and Ni	
	(3) Te and I		(4) Al and Si	
8.	The law of triads is applical	ble to :-		
	(1) Os, Ir, Pt (2) Eq. Co. Ni		(2) Ca, Sr, Ba	
	(3) Fe, Co, Ni		(4) Ru, Rh, Pt	
9.	Elements which occupied p	osition in the oth	er meyer curve, on t	he peaks, were:-
	(1) Alkali metals		-	
	(2) Highly electro positive			
	(3) Elements having large a	tomic volume		

- (4) All
- 10. In a period the elements are arranged in :

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

	(1) Decreasing order of nuclear charge		
	(2) Decreasing order of No. of electrons(3) Increasing order of nuclear charge		
	(4) In order of same nuclear charge		
11	-		
11.	Which of the following statement is wrong (1) No inert gas is present in 7 th period	:	
	(1) No mert gas is present in 7 period (2) 3^{rd} periodcontains 18 elements		
	(3) 1 st period contains two non metals		
	(4) In p-block, metal, nonmetal and metallo	oids are present	
12.	Which of the following element was absent (1) Tc (2) Si	t in the Mendeleev's pe (3) B	riodic table:- (4) F
13.	IUPAC name of the element placed just aft	er actinide series :-	
	(1) Unniltrium	(2) Unnilpentilium	
	(3) Unnilquadium	(4) Ununbium	
14.	Which statement is wrong for the long form	n of periodic table:-	
	(1) Number uf periods are 7 and groups 18		
	(2) No. of valence shell electrons in a period	d are, same	
	(3) III B group contains 32 elements		
15.	(4) Lanthanides and actinides are placed in The elements which. are cited as an exam		idity of mandalaay's pariodic
13.	low are	inple to proove the val	haity of mendeleev's periodic
	(1) H, He (2) Ga, Sc	(3) Co, Ni	(4) Zr, Hf
16.	Which pair of successive elements follow	s increasing order of a	at6mic weight in mendeleev's
	periodic table.		
	(1) Argon and potassium	(2) Lithium and Bery	
	(3) Cobalt and nickel	(4) Tellurium and ioc	line
17.	Which of the following statement is false :-		
1/1	(1) Elements of ns^2np^6 electronic configura		riod
	(2) Typical elements lies in 3^{rd} period		
	(3) The seventh period will accommodate t	hirty two elements	
	(4) Boron and silicon are diagonally related		
18.	Among the Lanthanides the one obtained b		
	(1) Lu (2) Pm	(3) Pr	(4) Ce
	PERIOD CRO	UP AND BLOCK	
19.	Which of the following set of elements below		
	(1) Zn, Cd, Hg (2) Fr, Ra, U	(3) K, Ca, Ag	(4)None
20	The element with store a surely of 7 115	will be placed in	
20.	The element with atomic number $Z = 115 v$ (1) 7 th period, IA group	(2) 8 th period, NA gr	
	(3) 7 th period, VA group	(2) 8 period, NA gro (4) 6^{th} period, VB gro	
	(), period, in group	(1) o period, v b git	Jup
	y: VISIONet Info Solution Pvt. Ltd	250/80141	
website :	: www.edubull.com Mob no. : +91-9	350679141	

21.	Elements upto atomic no. 112 have bee configuration of the element possessing at (1) [Rn] $5f^{44} 6d^6 7s^2$ (3) [Rn] $5f^{14} 6d^8 7s^0$		
22.	In 6 th period of the modern periodic table, (1) 6s, 4f, 5d, 6p (3) 4f, 5d, 6s, 6p	electronic energy level (2) 6s, 6p, 4f, 5d (4) None	s are in the order
23.	Out of first 100 elements no. of elemen electronic configuration) are :- (1) 80 (2) 100	ts having electrons in (3) 40	3d orbital (in their complete (4) 60
24.	The IUPAC name of the element which is (1) Un nil pentium (3) Un nil hexium	s placed after Db ₁₀₅ is t (2) Un un nilium (4) Un nil quadium	
25.	The element with the electronic configurat (1) s- block (3) d - block	ion $ns^2(n-1)s^2p^6d^0(n-2)$ (2) p - block (4) f - block	$(2)s^2p^6d^{10}f^7$ lies in the :-
26.	 (3) d² block The element with atomic number Z= 118 v (1) Noble gas (3) Alkali metal 		
27.	The atom having the valence shell electron (1) Group II A and period 3 (3) Group N A and period 4	nic configuration 4s ² 4p (2) Group II B and p (4) Group N A and p	period 4
28.	The electronic configuration of d-block electronic (1) $ns^{1-2}(n-1)d^{1-10}$ (3) $(n-1)d^{10}s^2$	ements is exhibited by (2) $ns^2 (n-1) d^{10}$ (4) $ns^2 np^5$:-
29.	The electronic configuration of the element (1) $(n-1)d^7ns^2$ (3) nd^7ns^2	t with atomic number (2) $(n-1)d^9ns^2$ (4) $(n-1)d^5ns^2np^2$	109 if discovered will be:-
30.	The element having electronic configuration (1) d-block, 12 th group (3) f-block, 14 th group	on 4f ¹⁴ 5d ⁰ 6s ² belongs to (2) f-block, III B grou (4) s-block, 2 nd grou	oup
31.	Element with the electronic configuration table $1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}$, 5 (1) 3^{rd} (2) 5^{th}	n given below, belong s^25p^3 (3) 15^{th}	to which group in the periodic (4) 17 th
32.	(1) 5 (2) 5 $4d^35s^2$ configuration belongs to which group (1) II A (2) II B		(4) IT (4) III B

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

33.	Which of the. following electronic configure (1) (1) (2) (1) (1)	
	(1) $ns^2 (n-1)d^{10}$ (3) ns^2np^6	(2) $ns^2 (n-1)s^2p^6$ (4) None
34.	From atomic number 58 to 71, elements are (1) 5 th pariod and III A group	
	(1) 5th period and III A group(3) Separate period and group	 (2) 6th period and III B group (4) 7th period and. N B group
35.	True statement is :- (1) All the transuranic elements are synthet	ic elements
	(2) Elements of third group are called bridg	
	(3) Element of $1s^2$ configuration is placed in	
	(4) Electronic configuration of elements of	a group is same
36.	Elements having $ns^2 np^6$ valence shell elect	ronic configuration lies in :-
	(1) '0' gp. and $1^{st}-7^{th}$ period (3) 18^{th} gp. and $1^{st}-6^{th}$ period	 (2) 18th gp. and 2nd-6th period (4) All are correct
	(3) 18 gp. and 1 –0 period	(4) All ale contect
37.	Which of the following match is correct:-	
	(1) Last natural element - Uub(2) General electronic configuration of IA g	$aroup - ns^2$
	(3) Inert gas elements lies in $2^{nd} - 6^{th}$ period	
38.	(4) Typical elements- 3 rd period elements The electronic configuration of elements	X and Z are $1s^2 2s^2 2p^6 3s^2 3p^5$ and $1s^2 2s^2 2p^5$
30.		ent X with respect to position of Z in the periodic
	table -	
	(1) Just below Z(3) Left to the Z	(2) Just above Z(4) right to the Z
39.	Which of the following sequence contains a (1) 55, 12, 18, 53	atomic number of only representative elements (2) 13, 33, 54, 83
	(1) 55, 12, 18, 55 (3) 3, 33, 53, 87	(4) 22, 33, 55, 66
40		
40.		lement in the periodic table. The last element of the is Uub. What will be the total number of transuranic
	elements in the periodic table :-	
	(1) 21 (2) 20	(3) 11 (4) 12
41.	Which-two elements are in same period as	well as same group of modem periodic table :-
	(1) $Z = 23$, $Z = 31$ (2) $Z = 65$, $Z = 66$ (4) $Z = 58$, $Z = 46$	
	(3) $Z = 52, Z = 87$	(4) $Z = 58, Z = 46$
42.	Which of the following statement is not cor	
	$1s^2$, $2s^22p^6$, $3s^23p^63d^{10}$, $4s^24p^64d^{10}4f^{14}$, $5s^2$ (1) It belongs to IIB group and 6 th period	5p°5d°°, 6s ²
	(2) It is liquid at room temperature	
	(3) It is a transition element	
	(4) It is not used in high temperature thermo	ometer

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

43.	General electronic configure (n-1) s ² (n-1)p ⁶ (n-1)d ^x ns ² . If n (1) > 25 (2) < 24		and penultimate shell is protons in the nucleus will be :- (4) 30
44.	An ion M^{+3} has electronic config (1) s-block (2) p-bloc		I belongs to :- (4) f-block
45.	What is the atomic number of ele (1) 33 (2) 17	ement having maximum numbe (3) 53	er of unpaired e ⁻ in 4p subshell:- (4) 15
	Zeff. SCREENIN	G CONSTANT & ATOMIC	RADIUS
46.	The formula for effective nuclea		
	(1) $Z - \sigma$ (2) $Z + \sigma$	(3) Z σ^{-1}	(4) Z σ
47.	According to Slater rule, Effectiv (1) Increases down the group (3) Remains constant	ve nuclear charge in group gene (2) Decreases dow (4) First increases	n the group
48.	In sodium atom the screening is (1) $3s^2$, $3p^6$ (2) $2s^1$	due to :- (3) $1s^2$, $2s^2$, $2p^6$	(4) $1s^2$, $2s^2$
49.	If the difference in atomic size o Na – Li = x; Rb – K = y; Fr – Cs Then correct order will be:-	\mathbf{f} : $\mathbf{s} = \mathbf{z}$	
	(1) $X = y = Z$ (2) $X > y$	> Z (3) X $<$ y $<$ Z	(4) $X < y << Z$
50.	The correct order of size would (1) Ni < Pd \propto Pt (3) Pt > Ni > Pd	be:- (2) Pd < Pt < Ni (4) Pd > Pt > Ni	
51.	Which of the following order of (1) Li < Be < Mg (3) O < F < Ne	radii is correct (2) $H^+ < Li^+ < H^-$ (4) $Na^+ > F^- > O^{-2}$	
52.	K ⁺ , Ar, Ca ²⁺ and S ^{2–} contains - (1) Same electronic configuratio (2) Different electronic configuratio (3) Same electronic configuratio (4) None	ation but same IP.	
53.	Which of the following is not iso (1) Cl^- , P^{3-} , Ar (3) B^{+3} , He, Li^+	Delectronic series :- (2) N^{3-} , Ne, Mg^{+2} (4) N^{3-} , S^{2-} , Cl^{-8}	
54.	Which group of atoms have near (1) Na, K, Rb, Cs (3) Fe, Co, Ni	ly same atomic radius:- (2) Li, Be, B, C (4) F, Cl, Br, I	

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

55.	Atomic radii of (1) 0.72, 1.60 (3) 0.72, 0.72	Fluorine and Neon in A	ngstrom units are giv (2) 1.60, 1.60 (4) None of the		
56.	Which of the fo (1) $1s^2 2s^2 2p^6 3$ (3) $1s^2 2s^2 2p^6 3$	llowing has largest radii s^2 $s^2 3p^3$	us :- (2) $1s^2 2s^2 2p^6$ (4) $1s^2 2s^2 2p^6$	$3s^2 3p^1$ $3s^2 3p^5$	
57.	Which of the fo (1) $\Gamma > I > I^+$ (3) $P^{+5} < P^{+3}$	llowing order of atomic	/ionic radius is not co (2) $Mg^{+2} > Na^+$ (4) Li > Be > B	> F ⁻	
58.	(1) Electrons of(2) Electrons of			is caused by-	
59.	Correct order of (1) $Ti^{4+} < Mn^{7+}$ (3) $K^+ > Cl^-$		(2) $37Cr^{-} < 350$ (4) $P^{3+} > P^{5+}$		
60.	The radius of p be :- (1) 0.133	otassium atom is 0.203 (2) 0.231	nm. The radius of th (3) 0.234	ne potassium ion in nanomet (4) 0.251	er will
61.	S ⁻² is not isoele (1) Ar	ctronic with :- (2) CI^-	(3) HS ⁻	(4) Ti ⁺³	
62.	atomic numbers (1) Outer electro (2) Closer packi (3) The number	to account for the ge increase within a perio ons repel inner electrons ing among the nuclear p of neutrons increases ng nuclear charge exerts	d of the periodic tabl articles is achieved		as the
63.	In an anion:-				
	(1) Number of p	proton decreases clear charge is more		more than electrons rger than neutral atom	
64.	Maximum size (1) Maximum n (3) Minimum Z		iod is due to (2) Maximum s (4) All	creening effect	
65.		llowing. ion has largest		2	
	(1) F	(2) Al^{+3}	(3) Cs^+	(4) O^{-2}	
66.	In which of the	following pair radii of s	econd species is sma	ller than that of first species :	-

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

(a) $Li < Be < Na$ (b) $Ni < Cu < Zn$ (c) $Ti > V > Cr$ (d) $Ti > Zr \propto Hf$ Correct answer is : (1) All (2) a, b (3) b, c (4) b, d (1) $3s^2$ (2) $3s^3 2p^3$ (3) $3s^1$ (4) $3s^2 3p_x^2 3p_{xy}^2 3p_x^1$ (b) $Br - Sr^2 > CT > N^3$ (c) $N^3 > S^{-2} > CT > Br^{-1}$ (c) $Br - Sr^2 > CT > N^3$ (c) $N^3 > S^{-2} > CT > Br^{-1}$ (c) $Br - Sr^2 > CT > N^3$ (c) $N^3 > CT > S^{-2} > Br^{-1}$ (1) $Br - Sr^2 > N^3$ (2) $N^3 > CT > S^{-2} > Br^{-1}$ (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (5) 0.8 Å (2) 0.37 Å (3) 0.37 Å (3) 0.8 Å (4) 0.8 Å (3) $7A$ (3) 0.8 Å (2) 0.37 Å , 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (2) 0.37 Å , 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) 0.8 Å (4) 0.8 Å (7) 0.37 Å (3) $1 n^3 S n^{-2} S n^{-2} S n^{-2}$ (4) $\Gamma, Se^{-2} R^{-1}, P^{-1}$ 74. Elemept having maximum number of low shielding electrons:- (1) $ Xe 4f^4, 5d^{10}, 6s^2, 6p^2$ (2) $ Rn 5f^{14}, 6d^1, 7s^2$ (3) $ Ar 3d^{10}, 4s^2$ (4) $ Ne 3s^2, 3p^1$ 75. Incorrect order, of ionic radlus is : (1) $ La ^{-3} S n^{-2} S b^{-3} = Lu^{-3}$ (4) $K^+ > Sc^{-3} > V^{-4} > V^{+5}$ (3) $ m^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{-3} > V^{+3} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na $		(1) Li, Na	(2) Na^+ , F^-	$(3) N^{-3}, Al^{+3}$	(4) Mn^{+7} , Mn^{+4}
(1) $r_{Cu > Zn}$ (2) $r_{Cl > F}$ (3) $r_{F > S}$ (4) $r_{Sc > Tl}$ 68. Which of the following orders of atomic radii are correct :- (a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr \propto Hf Correct answer is :: (1) All (2) a, b (3) b, c (4) b, d 69. Which electronic configuration of an atom is smallest in size :- (1) $3s^2$ (2) $as^2 3p^2$ (2) $as^2 3p^2$ (3) $3s^1$ (4) $3s^2 3p_1^2 3p_2^2 3p_2^3$ (3) $3s^1$ (2) $N^4 > S^2 > CT > Br^-$ (1) $Br^- > C^2 > CT > N^-3$ (2) $N^4 > S^2 > CT > Br^-$ (1) $Br^- > CT > S^2 > CT > N^-3$ (2) $N^4 > S^2 > CT > Br^-$ (1) $Br^- > CT > S^2 > N^-3$ (2) $N^4 > S^2 > CT > Br^-$ (3) $Br^- > CT > S^2 > N^{-3}$ (2) $N^4 > S^2 > CT > Br^-$ (4) $Dr > S^2 > CT > N^{-3}$ (2) $N^4 > S^2 > CT > Br^-$ (7). Which of the following statement is wrong (1) According to Slater, Z_{sfT} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) $Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (5) Screening effect in a period remains constant (4) In a Period atomic radius is radii of hydrogen respectively are :- (1) 0.37Å, 0.8Å (2) 0.5\%, Br^-, F^-(3) Sc^2 T. Br F, F^- (2) \Gamma, Sc^2 O^2, Br^-, F^-(3) Sc^2 T. Br F, F^- (2) \Gamma, Sc^2 O^2, Br^-, F^-(3) [Ar] 3d^{10}, 4s^2 (4) [Ne] 3s^2, 3p^175. Incorrect order of ionic radius is :(1) [Li^{-3} Scl^{-3} Scl^{-3} Z + 2l^{-3} Z$	67.	Spot the incorre	ct order of atomic radii :	_	
(a) Li < Be < Na (b) Ni < Cu < Zn (c) Ti > V > Cr (d) Ti > Zr \propto Hf Correct answer is :. (1) All (2) a, b (3) b, c (4) b, d (4) b, d (5) Which electronic configuration of an atom is smallest in size :- (1) 3s ² (2) 3s ² 3p ³ (3) 3s ¹ (4) 3s ² 3p ² ₃ 3p ³ ₃ (3) 3s ¹ (2) N ³ > S ² > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻ > N ⁻³ (2) N ³ > S ² > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻ > N ⁻³ (4) N ³ > Cr > S ⁻ > Br ⁻ (7) Decreasing order of size of ions is : (1) Br ⁻ > S ⁻ > Cr > N ⁻³ (2) N ³ > S ⁻ > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻ > N ⁻³ (4) N ³ > Cr > S ⁻ > Br ⁻ (7) Which of the following statement is wrong (1) According to Slater, Z _{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (5) Ne ² - T Br O ² F (2) Cr > S ⁻ > Br ⁻ , F ⁻ (7) The covalent and vander Waal's radii of hydrogen respectively are :- (1) 0.37Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å 0.8Å (4) 0.8Å, 0.37Å (4) 0.8 ⁻ - F ⁻ , O ⁻² , F ⁻ (7) Elemept having maximum number of low shielding electrons:- (1) [Xe] 4 ⁴⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5 ⁴⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ (4) [N ² - Sc ¹³ > V ¹⁴ > V ¹⁵ (3) [Ar] 3d ¹⁰ , 4s ² (4) [N ³ - Sc ¹³ > V ¹⁴ > V ¹⁵ (3) [Ar] 3d ¹⁰ , 4s ² (4) [A ³ - Sc ¹³ > V ¹⁴ > V ¹⁵ (3) [Ar] 3d ¹⁰ , 4s ² (4) [A - Sc ¹³ > V ¹⁴ > V ¹⁵ (3) [Ar] 3d ¹⁰ , 4s ² (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K (2) Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p		-			(4) $r_{Sc > Ti}$
(c) Ti > V > Cr (d) Ti > Zr \propto Hf Correct answer is :. (1) All (2) a, b (3) b, c (4) b, d (3) s ² (2) 3s ³ 2p ³ (3) 3s ¹ (2) 3s ² (2) 3s ³ 2p ³ (3) 3s ¹ (2) 3s ² 3p ³ ₂ 3p ¹ ₂ (3) 3s ¹ (2) N ³ > S ⁻² > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻² > Cr > N ⁻³ (2) N ³ > S ⁻² > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻² > N ⁻³ (4) N ³ > Cr > S ⁻² > Br ⁻ (3) Br ⁻ > Cr > S ⁻² > N ⁻³ (4) N ³ > Cr > S ⁻² > Br ⁻ (4) N ³ > Cr > S ⁻² > Br ⁻ (7). Which of the following statement is wrong (1) According to Slater, Z _{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (5) The covalent and vander Waal's radii of hydrogen respedively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (4) 0.8Å, 0.37Å (5) Incorrect order of period remains constent (1) [Xe] 4f ⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ (4) [Ne] 3s ² , 3p ¹ (5) Incorrect order, of ionic radlus is : (1) [La ⁴³ > Gd ⁻³ > Eu ⁴³ > Lu ⁴³ (2) V ⁴² > V ⁴³ > V ⁴⁵ > V ⁴⁵ (3) In ¹ > Sn ¹² > Sh ⁴³ (4) (Ne) Sl ³ = N ¹⁷ (5) According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K ¹ . (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K (7) Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p	68.	Which of the fol	lowing orders of atomic	radii are correct :-	
Correct answer is :. (1) All (2) a, b (3) b, c (4) b, d (1) All (2) a, b (3) b, c (4) b, d (1) $3s^2$ (2) $3s^3p^2$ (3) $3s^1$ (2) $3s^3p^2$ (3) $3s^1$ (2) $3s^3p^2$ (3) $3s^1$ (3) $3s^2p^23p^2_3p^2_3p^2_4$ (1) $Br^- > S^- > Cr > N^-3$ (2) $N^3 > S^- > Cr > Br^-$ (3) $Br^- > Cr > S^- > N^-3$ (4) $N^3 > Cr > S^- > Br^-$ (3) $Br^- > Cr > S^- > N^-3$ (4) $N^3 > Cr > S^- > Br^-$ (3) $Br^- > Cr > S^- > N^-3$ (4) $N^3 > Cr > S^- > Br^-$ (1) Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (5) Sc^2, \Gamma, Br^-, C^2 (4) $\Gamma, Sc^2, Dr^-, C^-, Fr^-$ (5) Sc ² , Γ, Br^-, C^- (6) Sc ¹ , Br^-, Fr^- (7) Elemept having maximum number of low shielding electrons:- (1) [Xe] 4d^4, 3d^0, 6s^2, 6p^2 (2) [Rn[5d^4], 6d^1, 7s^2 (3) [Ar] 3d^0, 4s^2 (4) [Ne] 3s^2, 3p^1 75. Incorrect order, of ionic radlus is : (1) La ¹³ > Gd ¹³ > Eu ¹³ > Lu ¹³ (2) $V^{12} > V^{13} > V^{14} > V^{15}$ (3) $In^+ > Sn^{-2} > Sb^{-3}$ (4) $K^- > Sc^{-3} > V^{-5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) Li > Na > K (2) $K > Na > Li$ (3) $Na > Li > K$ (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) $4f < 4d < 4p$		(a) $Li < Be < Na$	l	(b) $Ni < Cu < Zn$	
(1) All (2) a, b (3) b, c (4) b, d 69. Which electronic configuration of an atom is smallest in size :- (1) $3s^2$ (2) $3s^23p^3$ (3) $3s^1$ (4) $3s^2 3p_s^2 3p_{ss}^2 3p_{ss}^2$ 70. Decreasing order of size of ions is : (1) $Br^- > S^{-2} > Cr > N^{-3}$ (2) $N^3 = S^{-2} > Cr > Br^-$ (3) $Br^- > Cr > S^{-2} > N^{-3}$ (4) $N^{-3} > Cr > S^{-2} > Br^-$ 71. Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se^{-2} , Γ , Br^- , Γ^{-2} (4) Γ , Se^{-2} , Br^- , Γ^{-7} 74. Elemept having maximum number of low shielding electrons:- (1) $ Xe 4t^4, 5d^{10}$, $6s^2$, $6p^2$ (2) $ Rn 5t^{14}$, $6d^1$, $7s^2$ (3) $ Ar ^3 3d^{10}$, $4s^2$ (4) $ Xe ^3 > V^{+3} > V^{+5} > Mn^{+7}$ 75. Incorrect order, of ionic radlus is : (1) $ Xe ^4 3d^{-1} 3d^{-1} 4d^{-1} 3d^{-1} 3d^{-1} 4d^{-1} 3d^{-1} 3d^{-$		(c) $Ti > V > Cr$		(d) $Ti > Zr \propto Hf$	
69. Which electronic configuration of an atom is smallest in size :- (1) $3s^2$ (2) $3s^23p_3^2$, $3p_{xy}^23p_{xy}^23p_{xy}^2$ (3) $3s^1$ (4) $3s^23p_x^23p_{xy}^23p_{xy}^2$ 70. Decreasing order of size of ions is : (1) $Br^- > S^- > C\Gamma > N^-3$ (2) $N^3 - S^{-2} > C\Gamma > Br^-$ (3) $Br^- > C\Gamma > S^{-2} > N^-3$ (4) $N^{-3} > C\Gamma > S^{-2} > Br^-$ 71. Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se^{-2} \Gamma B^{-2} F^{-} (2) $\Gamma, Se^{-2} O^{-2}, Br^{-}, F^{-}$ (3) $Se^{-2}, \Gamma, Br^{-}, F^{-}, O^{-2}$ (4) $\Gamma, Se^{-2}, O^{-2}, Br^{-}, O^{-2}, F^{-}$ 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4t ⁴⁴ , 5d ¹⁰ , 6s^{2}, 6p^{2} (2) [Rn]5f ¹⁴ , 6d ¹ , 7s^{2} (3) [Ar] 3d ¹⁰ , 4s^{2} (4) [Ne] 3s^{2}, 3p^{1} 75. Incorrect order .of ionic radlus is : (1) La ⁴³ > Gd ⁴³ > Eu ⁻³ > La ⁺³ (2) Vr ² > Vr ⁴ > Vr ⁴ > Vr ⁴⁵ (3) In ⁻¹ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > Vr ⁴ > Vr ⁴⁵ (4) IL i < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p		Correct answer i	s :.		
(1) $3s^2$ (2) $3s^3 s^3 p_x^2 3p_x^2 3p_x^2 3p_x^2 3p_x^2$ (3) $3s^1$ (4) $3s^2 3p_x^2 3p_x^2 3p_x^2 3p_x^2$ (5) Br ⁻ > Cr > N ⁻³ (6) Decreasing order of size of ions is : (1) Br ⁻ > S ⁻ > Cr > N ⁻³ (2) N ³⁻ > S ⁻ > Cr > Br ⁻ (3) Br ⁻ > Cr > S ⁻ > N ⁻³ (4) N ⁻³ > Cr > S ⁻² > Br ⁻ (7) Which of the following statement is wrong (1) According to Slater, Z _{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) Se ⁻² , Γ, Br ⁻ , F ⁻ , O ⁻² (4) Γ , Se ⁻² , Br ⁻ , F ⁻ (7) Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f ⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order, of ionic radlus is : (1) La ⁻³ > Gd ⁻⁴ > Eu ⁻³ > Lu ⁺³ (2) V ⁺² > V ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁻¹ > Sn ⁻² > Sb ⁺³ (4) K ⁺ > Sc ⁻³ > V ⁺⁴ > V ⁺⁵ (5) In ⁻⁵ > Ms ⁻⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p Power by: WMONE Hab SubMutan Pt-Ltd		(1) All	(2) a, b	(3) b, c	(4) b, d
(1) $3s^2$ (3) $3s^1$ (4) $3s^2 3p_x^2 3p_{xy}^2 3p_{zy}^2$ (5) $3s^1$ (6) $3s^2 3p_x^2 3p_{xy}^2 3p_{zy}^2$ (7) Decreasing order of size of ions is : (1) $Br^- > S^{-2} > C\Gamma > N^{-3}$ (2) $N^3 > S^{-2} > C\Gamma > Br^-$ (3) $Br^- > C\Gamma > S^{-2} > N^{-3}$ (4) $N^{-3} > C\Gamma > S^{-2} > Br^-$ (7) Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (5) $St^2 - \Gamma B O^2 F$ (1) $St^2 - \Gamma B O^2 F$ (2) $\Gamma, Se^{-2} O^2, Br^-, F$ (3) $Se^{-2}, \Gamma, Br^-, F, O^{-2}$ (4) $\Gamma, Se^{-2}, Br^-, O^{-2}, F^-$ (5) $Se^{-2}, \Gamma, Br^-, F, O^{-2}$ (4) $\Gamma, Se^{-2}, Br^-, O^{-2}, F^-$ (5) $Icorrect order .of ionic radius is : (1) Ix^{-3} + Gt^{-3} > Lu^{-3}(2) Vt^{-2} > Vt^{-3} > Vt^{-4} > Vt^{-5}(3) Iarl^{-3} dt^{-3} > Lu^{-3}(4) K^+ > Sc^{-3} > Vt^{-4} > Vt^{-5}(5) Incorrect order .of ionic radius is : (1) Ia^{-3} > Gt^{-3} > Lu^{-3}(2) Vt^{-2} > Vt^{-3} > Vt^{-4} > Vt^{-5}(3) Iarl^{-3} Sar^{-2} > Sb^{-3}(4) K^+ > Sc^{-3} > Vt^{-5} > Mn^{+7}(5) Incorrect order .of ionic radius is : (1) Ia^{-3} > Sar^{-2} > Sb^{-3}(4) K^+ > Sc^{-3} > Vt^{-5} > Mn^{+7}(5) Iarl > Na > K(2) K > Na > Li(3) Na > Li > K(4) Li < Na = K(7) Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons(1) 4d < 4f < 4p(2) 4f < 4d < 4p$	69.	Which electronic	c configuration of an ato	om is smallest in size :-	
(3) $3s^1$ (4) $3s^2 3p_x^2 3p_x^2 3p_x^2$ 70. Decreasing order of size of ions is : (1) $Br^- > S^- > C\Gamma > N^-3$ (2) $N^3 > S^{-2} > C\Gamma > Br^-$ (3) $Br^- > C\Gamma > S^- > N^-3$ (4) $N^3 > C\Gamma > S^- > Br^-$ (5) $Br^- > C\Gamma > S^- > N^-3$ (6) $N^3 > C\Gamma > S^- > Br^-$ (7) Which of the following statement is wrong (1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (4) In a period atomic radius of inert gas element is maximum (5) The covalent and vander Waal's radii of hydrogen respedtively are :- (1) $0.37 \text{ Å}, 0.8 \text{ Å}$ (2) $0.37 \text{ Å}, 0.37 \text{ Å}$ (3) $0.8 \text{ Å}, 0.8 \text{ Å}$ (4) $0.8 \text{ Å}, 0.37 \text{ Å}$ (5) $Br^- \Gamma, Br^- \Gamma, r^- C^-$ (2) $\Gamma, Se^- 2 O^-^2, Br^-, F^-$ (3) $Se^{-2} \Gamma, Br^-, F, O^-^2$ (4) $\Gamma, Se^{-2}, Br^-, O^-^2, F^-$ 74. Elemept having maximum number of low shielding electrons:- (1) $[Xe] 4f^4, 5d^0, 6s^2, 6p^2$ (2) $[Rn]5f^{14}, 6d^1, 7s^2$ (3) $[Ar] 3d^{10}, 4s^2$ (4) $[Ne] 3s^2, 3p^1$ 75. Incorrect order. of ionic radius is : (1) $[La^{13} > Gd^{-3} > Eu^{1-3} > Lu^{1-3}$ (2) $V^{-2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Se^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $[Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$			e		
(1) Br $^{-}$ S ⁻² > CT > N ⁻³ (2) N ³ > S ⁻² > CT > Br ⁻ (3) Br $^{-}$ > CT > S ⁻² > N ⁻³ (4) N ⁻³ > CT > S ⁻² > Br ⁻ 71. Which of the following statement is wrong (1) According to Slater, Z _{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se ⁻² T B ⁻ O ⁻² F ⁻ (2) Γ , Se ⁻² O ⁻² , Br ⁻ , F ⁻ (3) Se ⁻² , Γ , Br ⁻ , F ⁻ , O ⁻² (4) Γ , Se ⁻² O ⁻² , Fr 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4t ⁴⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order .of ionic radlus is : (1) La ⁺³ > Gd ⁺³ > Eu ⁺³ > Lu ⁺³ (2) V ⁺² > V ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁴ > M ⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p Cover by: VISIONET Info Slotter Pt. Ltd				(4) $3s^2 3p_x^2 3p_{xy}^2 3p_{yy}^2 3p_{yy}^$	l z
(1) Br $^{-}$ S ⁻² > CT > N ⁻³ (2) N ³ > S ⁻² > CT > Br ⁻ (3) Br $^{-}$ > CT > S ⁻² > N ⁻³ (4) N ⁻³ > CT > S ⁻² > Br ⁻ 71. Which of the following statement is wrong (1) According to Slater, Z _{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se ⁻² T B ⁻ O ⁻² F ⁻ (2) Γ , Se ⁻² O ⁻² , Br ⁻ , F ⁻ (3) Se ⁻² , Γ , Br ⁻ , F ⁻ , O ⁻² (4) Γ , Se ⁻² O ⁻² , Fr 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4t ⁴⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order .of ionic radlus is : (1) La ⁺³ > Gd ⁺³ > Eu ⁺³ > Lu ⁺³ (2) V ⁺² > V ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁴ > M ⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p Cover by: VISIONET Info Slotter Pt. Ltd	70	Decreasing orde	r of size of ions is :		
(3) $Br^- > C\Gamma > S^{-2} > N^{-3}$ (4) $N^{-3} > C\Gamma > S^{-2} > Br^{-3}$ (4) $N^{-3} > C\Gamma > S^{-2} > Br^{-3}$ (4) $N^{-3} > C\Gamma > S^{-2} > Br^{-3}$ (5) Screening to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respectively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) Se^{-2} , Γ , Br^{-} , P^{-2} (2) Γ , Se^{-2} , O^{-2} , F^{-} 74. Elemept having maximum number of low shielding electrons:- (1) $ Xe ^{2}4f^{4}$, Sd^{10} , $6s^{2}$, $6p^{2}$ (2) $ Rn ^{2}5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $ Ar ^{3}3d^{10}$, $4s^{2}$ (4) $ Ne ^{3}s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $La^{13} > Gd^{13} > Eu^{13} > Lu^{13}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $\ln^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONET Info Slater by L1dd				(2) $N^{3-} > S^{-2} > C1$	$\sim \mathrm{Br}^{-}$
71.Which of the following statement is wrong (1) According to Slater, Zeff in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum72.The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37 Å, 0.8 Å (3) 0.8 Å, 0.8 Å(2) 0.37 Å, 0.37 Å (3) 0.8 Å, 0.8 Å (4) 0.8 Å, 0.37 Å73.Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se ⁻² \Gamma B O ⁻² F (2) Γ , Se ⁻² O ⁻² , Br ⁻ , F ⁻ (3) Se ⁻² , Γ , Br ⁻ , F ⁻ , O ⁻² (4) Γ , Se ⁻² , Br ⁻ , O ⁻² , F ⁻ 74.Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f ⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ⁴⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75.Incorrect order , of ionic radlus is : (1) La ⁺³ > Gd ⁺³ > Eu ⁺³ > Lu ⁺³ (2) V ⁺² > V ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁵ > Mn ⁺⁷ 76.According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K77.Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p				$(4) N^{-3} > CI^{-} > S^{-1}$	$r^{-2} > Br^{-1}$
(1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (5) Se ⁻² , Γ , B^- , O^-^2 , Γ^- (2) Γ , Se ⁻² , O^-^2 , B^- , F^- (3) Se ⁻² , Γ , B^- , P^- , O^-^2 (4) Γ , Se ⁻² , B^- , O^-^2 , F^- 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f^4, 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order of ionic radlus is : (1) $La^{13} > Gd^{13} > Eu^{13} > Lu^{13}$ (2) $V^{12} > V^{13} > V^{14} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p Power by: VISIONE Info Solution Pvt. Ltd			0 / 11		
(1) According to Slater, Z_{eff} in group remains constant (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (5) Se ⁻² , Γ , B^- , O^-^2 , Γ^- (2) Γ , Se ⁻² , O^-^2 , B^- , F^- (3) Se ⁻² , Γ , B^- , P^- , O^-^2 (4) Γ , Se ⁻² , B^- , O^-^2 , F^- 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f^4, 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order of ionic radlus is : (1) $La^{13} > Gd^{13} > Eu^{13} > Lu^{13}$ (2) $V^{12} > V^{13} > V^{14} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p Power by: VISIONE Info Solution Pvt. Ltd	71	Which of the fol	lowing statement is wro	ng	
 (2) In a period atomic size decreases (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se⁻² Γ B⁻ O⁻² F⁻ (2) Γ, Se⁻² O⁻², Br⁻, F⁻ 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f⁴, 5d¹⁰, 6s², 6p² (2) [Rn]5f¹⁴, 6d¹, 7s² (3) [Ar] 3d¹⁰, 4s² (4) [Ne] 3s², 3p¹ 75. Incorrect order .of ionic radlus is : (1) La⁴³ > Gd⁴³ > Eu⁴³ > Lu⁴³ (2) V⁺² > V⁺³ > V⁺⁴ > V⁺⁵ (3) In⁺ > Sn⁺² > Sb⁺³ (4) K⁺ > Se⁺³ > V⁺⁵ > Mn⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p 	/ 1.		-	-	
 (3) Screening effect in a period remains constant (4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se⁻² Γ B⁻O⁻² F⁻ (2) Γ, Se⁻² O⁻², Br⁻, F⁻ (3) Se⁻², Γ, Br⁻, F⁻, O⁻² (4) Γ, Se⁻², Br⁻, O⁻², F⁻ 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f⁴⁴, 5d¹⁰, 6s², 6p² (2) [Rn]5f¹⁴, 6d¹, 7s² (3) [Ar] 3d¹⁰, 4s² (4) [Ne] 3s², 3p¹ 75. Incorrect order of ionic radlus is : (1) La⁴³ > Gd⁴³ > Eu⁴³ > Lu⁴³ (2) V⁴² > V⁴³ > V⁴⁴ > V⁴⁵ (3) In⁴ > Sn⁴² > Sb⁴³ (4) K⁺ > Sc⁺³ > V⁺⁵ > Mn⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < dd < 4p 		_		liants constant	
(4) In a period atomic radius of inert gas element is maximum 72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8Å (2) 0.37Å, 0.37Å (3) 0.8Å, 0.8Å (4) 0.8Å, 0.37Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) $Se^{-2} \Gamma B O^{-2} F$ (2) $\Gamma, Se^{-2} O^{-2}, Br^{-}, F^{-}$ (3) $Se^{-2}, \Gamma, Br^{-}, F, O^{-2}$ (4) $\Gamma, Se^{-2}, Br^{-}, O^{-2}, F^{-}$ 74. Elemept having maximum number of low shielding electrons:- (1) $[Xe] 4f^{t4}, 5d^{10}, 6s^{2}, 6p^{2}$ (2) $[Rn]5f^{14}, 6d^{1}, 7s^{2}$ (3) $[Ar] 3d^{10}, 4s^{2}$ (4) $[Ne] 3s^{2}, 3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Se^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONEt Info Solution Pvt. Ltd		· · · •		constant	
72. The covalent and vander Waal's radii of hydrogen respedtively are :- (1) 0.37Å, 0.8 Å (2) 0.37Å, 0.37Å (3) 0.8 Å, 0.8 Å (4) 0.8 Å, 0.37 Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) $Se^{-2} \Gamma B^{-} O^{-2} F^{-}$ (2) Γ , $Se^{-2} O^{-2}$, Br^{-} , F^{-} (3) Se^{-2} , Γ , Br^{-} , F^{-} , O^{-2} (4) Γ , Se^{-2} , Br^{-} , O^{-2} , F^{-} 74. Elemept having maximum number of low shielding electrons:- (1) $[Xe] 4f^{4}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (2) $[Rn]5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $[Ar] 3d^{10}$, $4s^{2}$ (4) $[Ne] 3s^{2}$, $3p^{1}$ 75. Incorrect order, of ionic radius is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONET Info Solution PV-L Lid					
(1) 0.37Å, 0.8 Å (3) 0.8 Å, 0.8 Å (3) 0.8 Å, 0.8 Å (4) 0.8 Å, 0.37Å (4) 0.8 Å, 0.37Å (5) 0.8 Å, 0.8 Å (6) 0.8 Å, 0.37Å (7) 0.8 $e^{-2} \Gamma B^{-} O^{-2} F^{-}$ (7) $\Gamma Se^{-2} O^{-2}, Br^{-}, F^{-}$ (7) $\Gamma Se^{-2}, \Gamma, Br^{-}, \Gamma, O^{-2}$ (7) $\Gamma Se^{-2}, \Gamma, Br^{-}, O^{-2}, F^{-}$ (7) Elemept having maximum number of low shielding electrons:- (1) $[Xe] 4t^{4}, 5d^{10}, 6s^{2}, 6p^{2}$ (2) $[Rn]5f^{14}, 6d^{1}, 7s^{2}$ (3) $[Ar] 3d^{10}, 4s^{2}$ (4) $[Ne] 3s^{2}, 3p^{1}$ (5) Incorrect order of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ (5) According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K:- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ (7) Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$		(4) In a period a	tomic radius of there gas	element is maximum	
(3) 0.8 Å, 0.8 Å (4) 0.8 Å, 0.37 Å 73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) Se ⁻² Γ B ⁻ O ⁻² F ⁻ (2) Γ , Se ⁻² O ⁻² , Br ⁻ , F ⁻ (3) Se ⁻² , Γ , Br ⁻ , Γ , O ⁻² (4) Γ , Se ⁻² , Br ⁻ , O ⁻² , F ⁻ 74. Elemept having maximum number of low shielding electrons:- (1) [Xe] 4f ⁴⁴ , 5d ¹⁰ , 6s ² , 6p ² (2) [Rn]5f ¹⁴ , 6d ¹ , 7s ² (3) [Ar] 3d ¹⁰ , 4s ² (4) [Ne] 3s ² , 3p ¹ 75. Incorrect order .of ionic radlus is : (1) La ³ > Gd ⁴³ > Eu ⁴³ > Lu ⁴³ (2) V ⁺² > V ⁺³ > V ⁺⁴ > V ⁺⁵ (3) In ⁺ > Sn ⁺² > Sb ⁺³ (4) K ⁺ > Sc ⁺³ > V ⁺⁵ > Mn ⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p Power by: VISIONE Info Solution Pvt. Ltd	72.			hydrogen respedtively	/ are :-
73. Which of the following sequence is correct for decreasing order of ionic radius :- (1) $Se^{-2} \Gamma B^{-} O^{-2} F^{-}$ (2) Γ , $Se^{-2} O^{-2}$, Br^{-} , F^{-} (3) Se^{-2} , Γ , Br^{-} , F^{-} , O^{-2} (4) Γ , Se^{-2} , Br^{-} , O^{-2} , F^{-} 74. Elemept having maximum number of low shielding electrons:- (1) $[Xe] 4f^{44}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (2) $[Rn]5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $[Ar] 3d^{10}$, $4s^{2}$ (4) $[Ne] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd		(1) 0.37Å, 0.8 Å		(2) 0.37 Å, 0.37Å	
(1) $\operatorname{Se}^{-2} \Gamma \operatorname{B}^{-0} \operatorname{P}^{-2} \operatorname{F}^{-1}$ (2) Γ , $\operatorname{Se}^{-2} \operatorname{O}^{-2}$, Br^{-1} , F^{-1} (3) Se^{-2} , Γ , Br^{-1} , F^{-1} , O^{-2} , F^{-1} 74. Elemept having maximum number of low shielding electrons:- (1) $[\operatorname{Xe}] 4f^{44}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (2) $[\operatorname{Rn}]5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $[\operatorname{Ar}] 3d^{10}$, $4s^{2}$ (4) $[\operatorname{Ne}] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $\operatorname{La}^{+3} > \operatorname{Gd}^{+3} > \operatorname{Eu}^{+3} > \operatorname{Lu}^{+3}$ (2) $\operatorname{V}^{+2} > \operatorname{V}^{+3} > \operatorname{V}^{+4} > \operatorname{V}^{+5}$ (3) $\operatorname{In}^{+} > \operatorname{Sn}^{+2} > \operatorname{Sb}^{+3}$ (4) $\operatorname{K}^{+} > \operatorname{Sc}^{+3} > \operatorname{V}^{+4} > \operatorname{V}^{+5} > \operatorname{Mn}^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $\operatorname{Li} > \operatorname{Na} > \operatorname{K}$ (2) $\operatorname{K} > \operatorname{Na} > \operatorname{Li}$ (3) $\operatorname{Na} > \operatorname{Li} > \operatorname{K}$ (4) $\operatorname{Li} < \operatorname{Na} = \operatorname{K}$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONET Info Solution Pvt. Ltd		(3) 0.8 Å, 0.8 Å		(4) 0.8 Å, 0.37 Å	
(1) $\operatorname{Se}^{-2} \Gamma \operatorname{B}^{-0} \operatorname{P}^{-2} \operatorname{F}^{-1}$ (2) Γ , $\operatorname{Se}^{-2} \operatorname{O}^{-2}$, Br^{-1} , F^{-1} (3) Se^{-2} , Γ , Br^{-1} , F^{-1} , O^{-2} , F^{-1} 74. Elemept having maximum number of low shielding electrons:- (1) $[\operatorname{Xe}] 4f^{44}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (2) $[\operatorname{Rn}]5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $[\operatorname{Ar}] 3d^{10}$, $4s^{2}$ (4) $[\operatorname{Ne}] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $\operatorname{La}^{+3} > \operatorname{Gd}^{+3} > \operatorname{Eu}^{+3} > \operatorname{Lu}^{+3}$ (2) $\operatorname{V}^{+2} > \operatorname{V}^{+3} > \operatorname{V}^{+4} > \operatorname{V}^{+5}$ (3) $\operatorname{In}^{+} > \operatorname{Sn}^{+2} > \operatorname{Sb}^{+3}$ (4) $\operatorname{K}^{+} > \operatorname{Sc}^{+3} > \operatorname{V}^{+4} > \operatorname{V}^{+5} > \operatorname{Mn}^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $\operatorname{Li} > \operatorname{Na} > \operatorname{K}$ (2) $\operatorname{K} > \operatorname{Na} > \operatorname{Li}$ (3) $\operatorname{Na} > \operatorname{Li} > \operatorname{K}$ (4) $\operatorname{Li} < \operatorname{Na} = \operatorname{K}$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONET Info Solution Pvt. Ltd	73.	Which of the fol	lowing sequence is corr	ect for decreasing orde	er of ionic radius :-
(3) Se^{-2} , Γ , Br^{-} , O^{-2} (4) Γ , Se^{-2} , Br^{-} , O^{-2} , F^{-7} 74. Elemept having maximum number of low shielding electrons:- (1) $[\operatorname{Xe}] 4f^{44}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (2) $[\operatorname{Rn}]5f^{14}$, $6d^{1}$, $7s^{2}$ (3) $[\operatorname{Ar}] 3d^{10}$, $4s^{2}$ (4) $[\operatorname{Ne}] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $\operatorname{La}^{+3} > \operatorname{Gd}^{+3} > \operatorname{Eu}^{+3} > \operatorname{Lu}^{+3}$ (2) $\operatorname{V}^{+2} > \operatorname{V}^{+3} > \operatorname{V}^{+4} > \operatorname{V}^{+5}$ (3) $\operatorname{In}^{+} > \operatorname{Sn}^{+2} > \operatorname{Sb}^{+3}$ (4) $\operatorname{K}^{+} > \operatorname{Sc}^{+3} > \operatorname{V}^{+5} > \operatorname{Mn}^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $\operatorname{Li} > \operatorname{Na} > \operatorname{K}$ (2) $\operatorname{K} > \operatorname{Na} > \operatorname{Li}$ (3) $\operatorname{Na} > \operatorname{Li} > \operatorname{K}$ (4) $\operatorname{Li} < \operatorname{Na} = \operatorname{K}$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONet Info Solution Pvt. Ltd					
(1) $[Xe] 4f^{4}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (3) $[Ar] 3d^{10}$, $4s^{2}$ (2) $[Rn]5f^{14}$, $6d^{1}$, $7s^{2}$ (4) $[Ne] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONet Info Solution Pvt. Ltd		(3) Se^{-2} , Γ , Br^{-1} ,	F^{-}, O^{-2}	(4) Γ , Se ⁻² , Br ⁻ , O	O^{-2}, F^{-}
(1) $[Xe] 4f^{4}$, $5d^{10}$, $6s^{2}$, $6p^{2}$ (3) $[Ar] 3d^{10}$, $4s^{2}$ (2) $[Rn]5f^{14}$, $6d^{1}$, $7s^{2}$ (4) $[Ne] 3s^{2}$, $3p^{1}$ 75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^{+} > Sn^{+2} > Sb^{+3}$ (4) $K^{+} > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ Power by: VISIONet Info Solution Pvt. Ltd	74	Element having	maximum number of lo	w shielding electrons.	
(3) [Ar] $3d^{10}$, $4s^2$ (4) [Ne] $3s^2$, $3p^1$ 75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd	/ 4.				
75. Incorrect order .of ionic radlus is : (1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) $Li > Na > K$ (2) $K > Na > Li$ (3) $Na > Li > K$ (4) $Li < Na = K$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONET Info Solution Pvt. Ltd		(1) $[\Lambda c]$ 41, 50 (2) $[\Lambda r]$ 2d ¹⁰ 4c	2, 08, 0p	(2) [Ni] 31° , 00, (4) [Ni] $3e^2 2n^1$	78
(1) $La^{+3} > Gd^{+3} > Eu^{+3} > Lu^{+3}$ (2) $V^{+2} > V^{+3} > V^{+4} > V^{+5}$ (3) $In^+ > Sn^{+2} > Sb^{+3}$ (4) $K^+ > Sc^{+3} > V^{+5} > Mn^{+7}$ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p Power by: VISIONet Info Solution Pvt. Ltd		(3) [AI] 50 , 48		(4) [Ive] 58, 5p	
 (3) In⁺ > Sn⁺² > Sb⁺³ (4) K⁺ > Sc⁺³ > V⁺⁵ > Mn⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p Power by: VISIONet Info Solution Pvt. Ltd 	75.	Incorrect order .	of ionic radlus is :		
 (3) In⁺ > Sn⁺² > Sb⁺³ (4) K⁺ > Sc⁺³ > V⁺⁵ > Mn⁺⁷ 76. According to Slater's rule, order of effective nuclear charge for last electron in case of U, N and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) 4d < 4f < 4p (2) 4f < 4d < 4p Power by: VISIONet Info Solution Pvt. Ltd 		(1) $La^{+3} > Gd^{+3}$	$> Eu^{+3} > Lu^{+3}$	(2) $V^{+2} > V^{+3} > V$	$V^{+4} > V^{+5}$
and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd					
and K :- (1) Li > Na > K (2) K > Na > Li (3) Na > Li > K (4) Li < Na = K 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd	76	A according to SI	otorio milo, order of -ff-	ative pueless shares f	four lost algotupon in access of U. N.
(1) $\text{Li} > \text{Na} > \text{K}$ (2) $\text{K} > \text{Na} > \text{Li}$ (3) $\text{Na} > \text{Li} > \text{K}$ (4) $\text{Li} < \text{Na} = \text{K}$ 77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd	/0.		ater's rule, order of effe	cuve nuclear charge I	tor fast electron in case of U, Na
77. Rank the 4p, 4d and 4f orbitals of increasing order in which the electrons present In them ar shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd			$(2) \mathbf{V} \times \mathbf{N}_{\mathbf{a}} \times \mathbf{L}$	(2) $\mathbf{N}_{0} \times \mathbf{L}_{0}^{2} \times \mathbf{V}_{0}$	(4) L: (N_{2}) V
shielded by inner electrons (1) $4d < 4f < 4p$ (2) $4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd		(1) L1 > Na > K	$(2) \mathbf{K} > \mathbf{Na} > \mathbf{L1}$	(3) Na > L1 > K	(4) $L1 < Na = K$
(1) 4d < 4f < 4p $(2) 4f < 4d < 4p$ Power by: VISIONet Info Solution Pvt. Ltd	77.	Rank the 4p, 4d	and 4f orbitals of incre	easing order in which	the electrons present In them are
Power by: VISIONet Info Solution Pvt. Ltd		shielded by inne	r electrons		
		(1) $4d < 4f < 4p$		(2) $4f < 4d < 4p$	
	Power	hv: VISIONet Info Solutio	n Pvt I td		
				91-9350679141	

(4) 4d < 4p < 4f

Edubull

(3) 4p < 4d < 4f

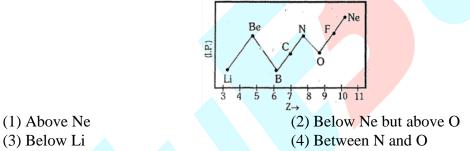
		IONISATIO	N POTENTIAL	
78.	Correct order of 1 st			
	(a) $Li < B < Be < C$	(b) O < N <	$F \qquad (c) Be < N$	< Ne
	(1) a, b	(2) b, c	(3) a, c	(4) a, b, c
=0			1	
79.	-	ntial of isotopes of an e		
	(1) Same		(2) Different	where of a sector of
	(3) Depends on ator	nic masses	(4) Depends on nu	mber. of neutrons
80.	The second ionisation	on notentials in electro	n volts of oxygen and	d fluorine atoms are respectively
00.	given by:-	on potentiais in ciecuo	in voits of oxygen and	a muonne atoms are respectively
	(1) 35.1, 38.3	(2) 38.3, 38.3	(3) 38.3, 35.1	(4) 35.1. 35.1
	(1) 5511, 5615	(1) 2013, 2013	(5) 5015, 5011	
81.	A sudden large jum	p between the values	of 2 nd and 3 rd IP of a	an element would he associated
	with the electronic of	configuration:-		
	(1) $1s^2$, $2s^2 2p^6$, $3s^1$		(2) $1s^2$, $2s^2$ $2p^6$, $3s^2$	
	(3) $1s^2$, $2s^2 2p^6$, $3s^2$	3p ²	(4) $1s^2$, $2s^2 2p^6 3s^2$	
82.	-	st ionisation potential,	the value of second ic	onisation potential of an element
	is :-			
	(1) Negligible	(2) Smaller	(3) Greater	(4) Double
83.	In which of the foll	owing pairs the jonize	tion onergy of the fir	st species is less than that of the
03.	second :-	Jwing pairs, the folliza	tion energy of the m	st species is less than that of the
	$(1) O^-, O^{2-}$	(2) S, P	(3) N, P	(4) Be^+ , Be
	(1) 0, 0	(2) 5, 1	(3) 11, 1	(1) 20 , 20
84.	The correct order of	stability of Al^+ , Al^{+2} ,	Al^{+3} is:-	
	(1) $Al^{+3} > Al^{+2} > Al$		(2) $Al^{+2} > Al^{+3} > A$	\mathbf{M}^+
	(3) $Al^{+2} < Al^{+} > Al^{+}$	3	(4) $Al^{+3} > AI^{+} > A$	l^{+2}
85.	Least ionisation pot	ential will be of :-	2	
	(1) Be^{3+}	(2) H	(3) Li^{+2}	(4) He^+
86.	0.	creases in the order :-		
	(1) Be, B, C, N	(2) B, Be, C, N	(3) C, N, Be, B	(4) N, C, Be, B
07	Ma forma Ma(II) ha	course of t		
87.	Mg forms Mg(II) be			
	(1) The oxidation st	een I.P ₁ and I.P ₂ is gre	otor than $16.0 \mathrm{eV}$	
		e electron in the outerr		Λα
	-	een I.P1 and I.P2 is les		vig
		1.1 1 and 1.1 2 15 168		
88.	Minimum first ionis	ation energy is shown	by which electronic of	configuration:-
	(1) $1s^2 2s^2 2p^5$		(2) $1s^2 2s^2 2p^6 3s^2$	
	(-) -> -> -P		(=) 10 =0 =P 00	- r

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

		Edubull
	$(3) 1s^2 2s^2 2p^6 3s^1 \tag{4}$	$(4) 1s^2 2s^2 2p^6$
89.	With reference to ionisation potential which of (1) $\text{Li} > \text{K} > \text{B}$ (2) $\text{B} > \text{U} > \text{K}$ (2)	one of the following set is correct :- (3) $Cs > Li > K$ (4) $Cs < Li < K$
90.	1651955565Electronic configuration of the element 'X' is:-(1) $1s^2$, $2s^22p^6$, $3s^2 3p^2$	IP ₄ 595
91.	Second IP of which of the element is maximum	
92.	The energy needed to remove one electron fro (1) 1^{st} I.P. (2) 3^{rd} I.P. (3)	om unipositive ion is abbreviated as:- (3) 2^{nd} I.P. (4) 1^{st} E.A.
93.	the highest ionisation energy is (1) [Ne] $3s^2 3p^3$ (2)	conic configuration is given below) the one having (2) [Ne] $3s^2 3p^4$ (4) [Ar] $3d^{10} 4s^2 4p^2$
94.		n energy is :- (2) $Si > Mg > Al > Na$ (4) $Mg > Li > Al > Si$
95.	be.	becies showing minimum and maximum IP would (3) N^{-3} , Mg^{+2} (4) O^{-2} , N^{-3}
96.	The element having highest I.P. in the from of (1) P (2) N (2)	f two series C, N, O and Si, P, S :- (3) S (4) O
97.	Lowest IP will be shown by the element havin (1) [He] $2s^2$ (2) $1s^2$ (2)	ng the configuration:- (3) [He] $2s^2 2p^2$ (4) [He] $2s^2 2p^5$
98.	The strongest reducing agent among the follow (1) Na (2)Mg (2)	wing is:- (3) Al (4) K
99.	Which ionisation potential (IP) in the follow energy:- (1) $K^+ \rightarrow K^{+2} + e^-$ (2) $Li^+ \rightarrow Li^{+2} + e^-$ (2)	wing equations involves the greatest ammount of (3) $Fe \rightarrow Fe^+ + e^-$ (4) $Ca^+ \rightarrow Ca^{+2} + e^-$
100.	which of the following electronic configuratio	an elements are 68, 370, 400, 485. It belongs to on:- (3) $1s^2 2s^2 2p^6 3s^1$ (4) (1) and (3) both
101.	(a) $M_{(g)} \rightarrow M_{(g)}$ (b) $M_{(g)}$	$\rightarrow M^{+}{}_{(g)}$
	by: VISIONet Info Solution Pvt. Ltd re : www.edubull.com Mob no. : +91-93506	679141

- 6	Π	hu	Τ

 $\begin{array}{cccc} (c) \ M^{+}{}_{(g)} \rightarrow M^{+2}{}_{(g)} & (d) \ M^{+2}{}_{(g)} \rightarrow M^{+3}{}_{(g)} \\ \\ Minimum \ and \ maximum \ I.P. \ would \ be \ of :- \\ (1) \ a, \ d & (2) \ b, \ c & (3) \ c, \ d & (4) \ d, \ a \end{array}$


102. Which of the following electronic configuration belongs to least and most metallic character respectively:-(a) $1s^2 2s^1$ (b) $5s^2 5p^5$ (d) $1s^2 2s^2 2p^5$ (c) $3s^2 3p^6 4s^1$ (1) a, b (3) b, a (2) d, c (4) c, d Triad - I $[N^{3-}, O^{-2}, Na^+]$ 103. Triad - II $[N^+, C^+, O^+]$ Choose the speeds of lowest IP from 1riad-I and highest IP from triad-II respectively $(1) N^{3-}, O^+$ $(3) N^{3-}, N^+$ (2) Na^+ , C^+ $(4) O^{-}, C^{+}$

104. The correct values of ionisation energies (in kJ mol⁻¹) of Be, Ne, He and N respectively are (1) 786, 1012, 999, 1256

 (3) 786, 1012, 1256, 999

 (4) 786, 999, 1012, 1256

105. Following graph shows variation of I.P. with atomic number in second period (Li – Ne). Value of I.P. of Na (11) will be :-

- **106.** Which one of the following has highest ionization potential :-(1) Li^+ (2) Mg^+ (3) He (4) Ne
- **107.** In which of the following pairs, the ionization energy of the first species is less than that of the second (1) N, P (2) Be⁺, Be (3) N, N⁻ (4) Ne, Ne⁺
- **108.** Consider the following ionisation reactions $A(g) \rightarrow A^{+}_{(g)} + e^{-} \qquad \text{IE in (KJ/mol) is } A_{1}$ $A^{+}_{(g)} \rightarrow A^{+2}_{(g)} + e^{-} \qquad \text{IE in (KJ/mol) is } A_{2}$ $A^{+2}_{(g)} \rightarrow A^{+3}_{(g)} + e^{-} \qquad \text{IE in (KJ/mol) is } A_{3}$ then correct order of IE is·:-(1) $A_{1} > A_{2} > A_{3}$ (2) $A_{1} = A_{2} = A_{3}$ (3) $A_{1} < A_{2} < A_{3}$ (4) $A_{3} = A_{2} < A_{1}$
- **109.** IE₁ IE₂ and IE₃ of an element are 10 eV, 15 eV, 45 eV respectively, the most stable oxidation state of the element will be :-

(1) +1 (2) +2 (3) +3 (4) +4

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

110. Select the correct order of I.E. :-(1) $Cl^- > Cl > Cl^+$ (3) $Cl > Cl^+ > Cl^-$

(2) $Cl^+ > Cl > Cl^-$ (4) $Cl^- > Cl^+ > Cl$

		еі естро	NI A FFINITV					
111	In the process Cl		N AFFINITY					
111.	(1) Positive $CI_{(g)} + CI_{(g)} + CI_{(g)$	$e^{-} \xrightarrow{\Delta H} Cl^{-}(g), \Delta H i$ (2) Negative	(3) Zero	(4) None				
		(_) 1 (0) 8 4 4 0	(0) 2010					
112.		ximum energy is relea						
	$(1) \mathbf{O} \to \mathbf{O}^{-2}$	(2) $\mathrm{Mg}^+ \rightarrow \mathrm{Mg}^{+2}$	$(3) \operatorname{Cl} \to \operatorname{Cl} +$	$(4) \mathrm{F} \to \mathrm{F}^{-}$				
113.	Which of the followi	ng is energy releasing	process					
	(1) $x^- \rightarrow X(g) + e^-$		(2) $O^{-}(g) + e^{-} \rightarrow O^{2^{-}}$	-				
	$(3) O(g) \rightarrow O^+(g) + e^{-1}$	e	$(4) O(g) + e^- \rightarrow O^-(g)$					
114.		wing process energy is						
	(1) $Cl \rightarrow Cl^+ + e$ (3) $Cl + e \rightarrow Cl^-$		(2) $\operatorname{HCl} \rightarrow \operatorname{H}^{+} + \operatorname{Cl}^{-}$ (4) $\operatorname{O}^{-} + \operatorname{e} \rightarrow \operatorname{O}^{-2}$					
	(5) $CI + C \to CI$							
115.		omic number has highe						
	(1) 35	(2) 17	(3) 9	(4) 53				
116.	The electron affinity							
110.	(1) Of carbon is grea	ter than oxygen	(2) Of fluorine is less than iodine					
	(3) Of fluorine is les		(4) Of sulphur is less than oxygen					
117		· · · · · · · · · · · · · · · · · · ·	nost stable bivelent enion					
117.	(1) Fluorine	(2) Oxygen	most stable bivalent an (3) Chlorine	(4) Nitroyen				
		(2) Oxygen						
118.			n in an atom is called.					
	(l) 1 st IP	$(2) 2^{nd} EA$	$(3) 1^{st} EA$	$(4) 2^{\mathrm{nd}}\mathrm{IP}$				
119.	The amount of ener	gy released for the pr	ocess $X_{(a)} + e^- \rightarrow X^-$	(g) is minimum and maximum				
	respectively for :-	by released for the pr						
	(a) F	(b) Cl	(c) N	(d) B				
	Correct answer is :	$\langle 0 \rangle$ 1.0.1	(2) 0.1	(4) 0 1				
	(1) c & a	(2) d & b	(3) a & b	(4) c & b				
120.	Which of the followi	ng electronic configur		ve highest electron affinity:-				
	(1) $2s^2 2p^0$	(2) $2s^2 2p^2$	(3) $2s^2 2p^3$	(4) $2s^2 2p^1$				
121.	Consider the followi	ng conversions						
141.	(i) $O(g) + e^- \rightarrow O^-(g)$	0	(ii) $F(g) + e^{-} \rightarrow F^{-}(g)$	$(\cdot) \cdot \cdot \Lambda H_2$				
	(i) $O(g) + c \rightarrow O(g)$ (iii) $Cl(g) + e^- \rightarrow Cl_2$		(iv) $Na(g) \rightarrow Na^+(g)$					
			× · · · · · · · · · · · · · · · · · · ·	· ·				

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

122.	 incorrect statement is : (1) ΔH₁ and ΔH₂ is less negative than ΔH₃ (2) ΔH₂ is more negative than ΔH₁ (3) ΔH₂ , ΔH₃ are negative while ΔH₁ is positive (4) ΔH₁ , ΔH₂ and ΔH₃ are negative while ΔH₄ is positive . In which of the following process, least energy is required : 									
	(1) $F^{-}_{(g)} \rightarrow F_{(g)} + e^{-}$ (3) $s^{-}_{(g)} \rightarrow S_{(g)} + e^{-}$			(2) $P^{-}_{(g)} \rightarrow P(g) + e^{-}$ (4) $Cl^{-}_{(g)} \rightarrow Cl^{-}_{(g)} + e^{-}$						
102	The compatent of d		ONEGATIVITY							
123.	(1) Li, H, Na	ecreasing order of ele (2) Na, H, Li	(3) H, Li, Na	(4) Li, Na, H						
124.	Polarity of a bond c (1) Electron affinity (3) Electronegativit		(2) Ionisation pot (4) All of the abo							
125.	Electronegativity va (1) Bond energy of (3) Nature of an oxi	a molecule	useful in predicting :- (2) Polarity of a bond (4) All							
126.	Mulliken scale of el (1) E. A. and EN of (3) E.A and I.P.	ectronegatlvity uses pauling	(2) E. A. and ator	e concept of :- (2) E. A. and atomic size (4) E.A. and bond energy						
127.	The pair with minin (1) F, Cl	num difference in ele (2) C, H	ctronegativity is :- (3) P, H	(4) Na, Cs						
128.	Least electronegativ (1) I	ve element is:- (2) Br	(3) C	(4) Cs						
129.	In which of the fol that of second elem		ents the electronegat	tivity of first element is less than						
	(1) Zr,-Hf	(2) K, Rb	(3) Cl, S	(4) None of the above						
130.	 The nomenclature of ICI is iodine chloride because (1) Size of I < Size of Cl (2) Atomic number of I > Atomic number of Cl (3) E.N, of I < E.N. of Cl (4) E. A. of I < E. A. of Cl 									
131.	Among the followin (a) $C - I$ (1) d and c	ng least and most pola (b) N – O (2) a and d	ar bonds are respectiv (c) $C - F$ (3) b and d	rely:- (d) P – F (4) b and c						

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

		Eadball								
132.	If the ionisation potential is IP, electron a the following relation is correct :-	affinity is EA and electronegativity is X then which of								
	0									
	(1) 2X - EA - IP = 0	(2) 2EA - X - IP = 0								
	(3) $2IP - X - EA = 0$	(4) All of the above								
133.	The properties which are not common to groups 1 and 1 7 elements in the periodic table are :-									
	(1) Electropositive character increases down the groups									
	(2) Reactivity decreases from top to botto	om in these groups								
	(3) Atomic radii increases as the atomic r	number increases								
	(4) Electronegativity decreases on moving down the group									
	(,	Sara 1 Sart								
134.	Electronegativity of an element can be m	easured using '-								
104.	(1) Pauling's scale	(2) Mulliken's scale								
	(1) Fulling's scale (3) Both	(4) None								
	(3) D 0III	(4) None								
135.	As we proceed across the period in period	dia tabla, wa find there is a decrease in t								
133.										
	(1) Ionisation energy (2) Electron experimentation	(2) Electron affinity								
	(3) Electronegativity	(4) Atomic radii								
101										
136.	Which compound strongly absorb CO ₂ ?									
	(1) BeO (2) K_2O	(3) H_3PO_4 (4) P_4O_6								
137.	The electronegativities of the following e	elements:								
	H, O, F, Sand Cl increase in the order :									
	(1) $H < O < F < S < Cl$	(2) Cl < H < O < F < S								
	(3) $H < S < O < Cl < F$	(4) H < S < Cl < O < F								
138.	Which of the following is different from	other three oxides:-								
	of the formed is unitered in from									

(1) MgO (2) SnO (3) PbO (4) ZnO

ANSWER KEY													
EXERCISE-I													
1.	(4)	2.	(3)	3.	(1)	4.	(1)	5.	(2)	6.	(2)	7.	(4)
8.	(2)	9.	(4)	10.	(3)	11.	(2)	12.	(1)	13.	(3)	14.	(2)
15.	(2)	16.	(2)	17.	(1)	18.	(2)	19.	(2)	20.	(3)	21.	(1)
22.	(1)	23.	(1)	24.	(3)	25.	(4)	26.	(1)	27.	(3)	28.	(1)
29.	(1)	30.	(2)	31.	(3)	32.	(3)	33.	(3)	34.	(2)	35.	(1)
36.	(2)	37.	(4)	38.	(1)	39.	(3)	40.	(2)	41.	(2)	42.	(3)
43.	(3)	44.	(2)	45.	(1)	46.	(1)	47.	(3)	48.	(3)	49.	(2)
50.	(1)	51.	(2)	52.	(3)	53.	(4)	54.	(3)	55.	(1)	56.	(1)
57.	(2)	58.	(2)	59.	(4)	60.	(1)	61.	(4)	62.	(4)	63.	(4)
64.	(3)	65.	(3)	66.	(3)	67.	(1)	68.	(3)	69.	(4)	70.	(1)
71.	(3)	72.	(1)	73.	(4)	74.	(2)	75.	(1)	76.	(4)	77.	(3)
78.	(4)	79.	(1)	80.	(3)	81.	(4)	82.	(3)	83.	(2)	84.	(4)
85.	(2)	86.	(2)	87.	(4)	88.	(3)	89.	(2)	90.	(4)	91.	(1)
92.	(3)	93.	(3)	94.	(2)	95.	(3)	96.	(2)	97.	(1)	98.	(4)
99.	(2)	100.	(3)	101.	(1)	102.	(2)	103.	(1)	104.	(3)	105.	(3)

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

												Edub	ull
106.	(1)	107.	(4)	108.	(3)	109.	(2)	110.	(2)	111.	(2)	112.	(3)
113.	(4)	114.	(3)	115.	(2)	116.	(3)	117.	(2)	118.	(2)	119.	(4)
120.	(2)	121.	(3)	122.	(2)	123.	(3)	124.	(3)	125.	(4)	126.	(3)
127.	(3)	128.	(4)	129.	(3)	130.	(1)	131.	(2)	132.	(1)	133.	(2)
134.	(3)	135.	(4)	136.	(2)	137.	(4)	138.	(1)				