Alcohol

- 1. The compound A, B and C in the reaction sequence $CH_3CH_2OH \xrightarrow{PBr_3} A \xrightarrow{alc.KOH} E$ $\xrightarrow{Br_2} C \text{ are given by the set}$
 - (1) C₂H₅Br, CH₃CH₂OH, CH₃CHBr₂
 - (2) C_2H_5Br , $CH\equiv CH$, $CH_2=CHBr$
 - (3) C₂H₅Br, CH₂=CH₂, CH₂Br-CH₂Br
 - (4) C₂H₅Br, CH₃CH₂OH, BrCH₂-CH₂Br
- 2. Primary amines can be converted into alkanols by reaction with
 - (1) Aqueous HCl
- (2) Tilden's reagent
- (3) NaNO₂ and dil. HCl (4) Hypochlorous acid
- 3. Which of the following alcohols gives a red colour in Victor Meyer test

CH₃-CH-OH

 $(1) CH_3-CH_2-CH_2-OH$

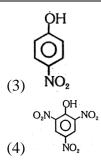
(2) CH₃-CH-CH₂-CH₃

 $(3) (CH_3)_3C-OH$

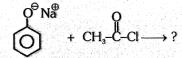
- (4) OH
- 4. Methanol on heating with salicylic acid and a few drops of cone. H₂SO₄ gives the smell of
 - (1) Bitter almonds
- (2) Oil of wintergreen (3) Rotten eggs
- (4) Mustard oil
- 5. Which of the following does not turn orange colour of chromic acid to green
 - (1) 1° alcohol
- (2) 2° alcohol
- (3) 3° alcohol
- (4) Allyl alcohol

- 6. p, s and t-alcohols can be distinguished by:
 - (1) Reimer-Tiemann reaction
 - (2) Tollen's reagent
 - (3) Lucas test
 - (4) Lassaigne's test
- 7. Consider the following reaction:

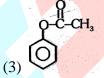
 $C_2H_5OH + H_2SO_4 \rightarrow Product$


Among the following, which one cannot be formed as a product under any conditions?

- $(1) C_2H_5OSO_3H$
- (2) $H_2C=CH_2$,
- (3) HC≡CH
- (4) CH₃–CH₂–O–CH₃


8. Nitration of phenol with cone. nitric acid gives :-

OH NO₂


- 9. Oeoxygenation of phenol can be achieved by distillation with:-
 - (1) Raney nickel
 - (2) Lithium aluminium hydride
 - (3) Sodium borohydride
 - (4) Zinc dust
- Which of the following compounds shows intramolecular hydrogen bonding:-10.
 - (1) p-Nitrophenol
- (2) Ethanol
- (3) o-Nitrophenot
- (4) Methanamine

Sodium phenate 11.

12. The reaction

$$\begin{array}{c}
OH \\
OO \\
OO
\end{array}$$

$$\begin{array}{c}
OH \\
OO \\
OO
\end{array}$$

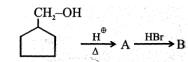
$$\begin{array}{c}
OH \\
OO
\end{array}$$

is called:

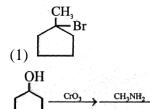
- (1) Schotten Bauman reaction
- (2) Kolbe Schmidt reaction
- (3) Reimer- Tiemann reaction
- (4) Lederer-Manasse reaction
- 13. Phenol can be distinguished from. ethanol by reactions with the following except :-
 - (1) Iodine and alkali (2) Ferric chloride
- (3) Acetyl chloride
- (4) Bromine water
- 14. Phenol on treatment with methyl chloride in the presence of anhydrous AlC13 gives chiefly:-
 - (1) o-cresol
- (2) m-cresol
- (3) anisole
- (4) p-cresol
- Phenol on heating with NaNO₂ and a few drops of cone. H₂SO₄ mainly gives:-15.
 - (1) p-nitrophenol
- (2) p-nitrosophenol
- (3) o-nitrophenol
- (4) m-nitrosophenol

- 16. Phenol and benzoic acid are distinguished by:-
 - (1) Lucas reagent
- (2) Victor Meyer test (3) Caustic soda
- (4) Sodium bicarbonate
- 17. Phenol can be distinguished from ethanol by the reaction with

(1) Na


(2) Br₂/Water

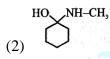
(3) Neutral AlCl₃


(4) 1 and 2 Both

Ether

18.

What is the structure of B:-



19.

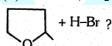
20.

Product [X] of given reaction is :-

CH₃-CH-CH₃ PBr₃ X Mg/ether Y H₂O/H OH

The final product is:

(1) CH₃

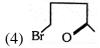

(2) CH₃-CH₂-CH₂-OH

(4) CH₃-CH₂-CH₃

21. In the reaction sequence

 $A \xrightarrow{HBr} B \xrightarrow{C_2H_5ONa}$ Ethoxyethane, A and B are L:

- $(1) C_2H_6, C_2H_5Br$
- (2) CH₄, CH₃Br
- (3) $CH_2 = CH_2$, C_2H_5Br
- (4) CH=CH,CH₂=CHBr



22.

23. $CH_3-CH_2-OH + Ph-CH_2-OH \xrightarrow{H^{\oplus}}$ of which is not obtained?

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

 $(1) CH_3-CH_2-OCH_2-CH_3$

(2) Ph-CH₂-OCH₂-Ph

(3) Ph–CH₂–O–CH₂–CH₃

- (4) Ph–CH₂–O–CH₂–O–CH₃
- 24. Oxonium ion of ether has the structure:

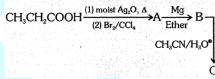
(4)

- $(3) (C_2H_5)_2O \to O$
- 25. What will happen when 9iethyl ether treated with hot and cone. HI:-
 - (1) Ethyl alcohol
- (2) Ethyl iodide
- (3) Methyl iodide
- (4) Methanol
- 26. Which of the following does not react with aq. NaOH::-
 - (1) Phenol
- (2) Benzoic acid
- (3) CH₃COOH
- $(4) CH_3-O-C_6H_5$

Carbonyl Compounds

- Acetaldehyde on warming with Fehling's solution gives a red precipitate of :- · . 27.
 - (1) Elemental copper

(2) Cuprous oxide


(3) Cupric oxide

(4) Mixture of all of the above

- 28. Acetone does not form :-
 - (1) A phenylhydrazone with phenylhydrazine
 - (2) A sodium bisulphite adduct with sodium bisulphite.
 - (3) A silver mirror with Tollen's reagent
 - (4) An oxime with hydroxylamine
- 29. CH₃CHO and CH₃COCH₃ cannot be distinguished by:-

 - (1) Fehling solution (2) Grignard reagent (3) Schiff's reagent (4) Tollen's reagent

30. In the reaction

The product C is:-

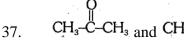
(3)

- (2) CH₃CH₂-CN
- **(4)**
- 31. Acetone is obtained by the hydrolysis of the addition product of methyl magnesium iodide and:-
 - (1) HCHO
- (2) CH₃CHO
- (3) CH₃COCH₃
- $(4) CH_3-C=N$

- Ph-C-CH₃ + aq. KOH \rightarrow A \xrightarrow{KCN} B?
- (1) 50% d + 50% l
- (2) 80% d + 200 l
- (3) Meso compound (4) optically active

- 33.
- can be obtained by -

- (1)
 - 3) + CO + ZnCl₂ + HCN
- (2) O C-Cl + OH
- (4) None of the above
- 34. Which does not react with NaHSO₃

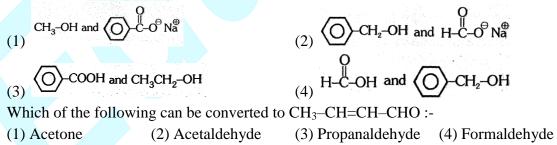

(1)

$$CH_3$$
- O - CH_2 - C - Ph

СН₃-O-{O}-С-H

$$(CH_3)$$

- 35. Ketones can be prepared by:-
 - (1) Rosenmund reduction
 - (2) Etard reaction
 - (3) Cannizzaro reaction
 - (4) Fridel-Craft reaction
- 36. Carbonyl compounds are best purified by:-
 - (1) Steam distillation
 - (2) Hydrolysis of sodium bisulphite adducts
 - (3) fractional crytallisation
 - (4) Sublimation
- 37. Carbonyl compounds readily undergo:-
 - (1) Nucleophilic substitutions
 - (2) Electrophilic addition reactions
 - (3) Nucleophilic addition reactions
 - (4) Free radical substitution reactions



CH₃ and CH₃-C-H are readily distinguished by their reaction with:-

(1) Iodine and alkali

(2) 2,4-dinitrophenylhydrazine

	Edub												
	(3) Tollen's reagent (4) All the above												
39.	Formaldehyde and acetaldehyde are readily distinguished by reaction with :-												
	(1) A solution of 2,4-dinitrophenylhydrazine												
	(2) Fehling's solution												
	(3) Tollen's reagent												
	(4) Iodine and alkali												
40.	Which is the most suitable reagent for the following conversion												
	O CH₃-CH=CH-CH₂-C-CH₃-CH₃-CH=CH-CH₂-C-OH												
	$(1) \xrightarrow{\text{(i)Tollen's reagent}} (2) \xrightarrow{\text{(i)Benzoyal peroxide}} (3) \xrightarrow{\text{(i)I}_2 \text{ and NaOH}} (4) \xrightarrow{\text{KMnO}_4/\text{H}^{\oplus}, \Delta}$												
41.	Formaldehyde reacts with cone. alkali to form:												
	(1) A resinous mass												
	(2) Formic acid												
	(3) A mixture of methanol and sodium formate												
	(4) Methanol												
42.	Which of the following compounds does not give aldol condensation:-												
	(1) CH_3CHO (2) CH_3CH_2CHO (3) H CHO (4) $CH_3CH_2CH_2CHO$												
43.	Cannizzaro reaction is given by:-												
	(1) Aldehydes containing α-hydrogen atoms												
	(2) Aldehydes as well as ketones containing α-hydrogen atoms												
	(3) Aldehydes not containing α-hydrogen atoms												
	(4) Aldehydes containing β-hydrogen atoms												
44.	Benzaldehyde react with formaldehyde in the presence of alkali to form:-												

The product of reaction with primary amine and aldehyde is:-46.

- (1) R-C-OH (2) R-ONO (3) R'-CH=N-R (4) R-NO₂
- 47. Brady's reagent is (1) $[Cu(NH_3)_4]SO_4$ (2) KMnO₄/NaIO₄

45.

Website: www.edubull.com Mob no.: +91-9350679141

- 48. A compound with molecular formula C_3H_6O , not gives silver mirror with Tollen's reagent but forms oxime with hydroxyl amine. Compound will be -
 - (1) CH₂=CH-CH₂-OH

(2) CH₃CH₂CHO

 $(3) CH_2 = CH - O - CH_3$

- (4) CH₃COCH₃
- 49. Aldehyde and ketone are distinguished by reagent
 - (1) Fehling solution (2) H_2SO_4
- H_2SO_4 (3) NaHSO₃
- (4) NH₃
- 50. Carbonyl group is converted into methylene group by-
 - (l) Acidic reduction

(2) Raney Ni

(3) Basic hydrolysis

- (4) Normal Hydrogenation
- 51. When acetaldol is treated with excess of acid then unsaturated product will be:-
 - (1) Alcohol
- (2) Aldehyde
- (3) Acid
- (4) Alkyl halide
- 52. The reagent used for the separation of acetaldehyde from acetophenone is
 - (1) NaHSO₃
- $(2) C_6H_5NHNH_2$
- (3) NH₂OH
- (4) $NaOH + I_2$

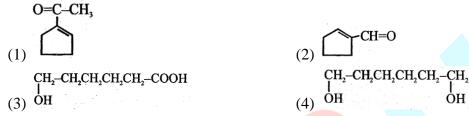
53. The most suitable reagent for the conversion of

$$RCH_2OH \longrightarrow RCHO$$

- (1) KMnO4
- $(2) K_2Cr_2O_7$
- (3) CrO₃
- (4) PCC (Pyridinium chloro chromate)
- 54. The major organic product formed from the following reaction is:-

$$(1) \xrightarrow{\text{NHCH}_3} (2) \xrightarrow{\text{NHCH}_3} (3) \xrightarrow{\text{NHCH}_3} (4) \xrightarrow{\text{NHCH}_3} (4)$$

$$(2) \xrightarrow{\text{NHCH}_3} (3) \xrightarrow{\text{NHCH}_3} (4) \xrightarrow{\text{NHCH}_3} (4)$$


55.

which is incorrect:-

- (1) The reaction completes through addition elimination mechanism.
- (2) $\stackrel{\text{Me}}{\longrightarrow} C = N C NH NH$, is formed as product
- (3) The reaction is an example of condensation reaction
- (4) None

56.
$$+ CH_3MgBr \xrightarrow{H^{\oplus}/H_2O} P \xrightarrow{HBr} Q \xrightarrow{Mg} R \xrightarrow{HCHO} S, S \text{ is:}$$

57. $H-C-CH_2CH_2CH_2CH_2-C-H \xrightarrow{0H/\Delta} Product_{(A) is}$:

58. Which of the following compounds is the product of an aldol reaction:

$$(1) \qquad OH \qquad O$$

$$(2) \qquad OH$$

$$(3) \qquad (4) \qquad OH$$

- 59. Which product is obtained by aldol reaction:
 - (1) α-Hydroxy aldehyde or ketone
 - (2) β-Hydroxy aldehyde or ketone
 - (3) α , β -unsaturated ester
 - (4) β -Hydroxy acid

Carboxylic acid

- 60. When propanoic acid is treated with aqueous sodium bicarbonate, CO₂ is liberated. The C of CO₂ comes from :-
 - (1) methyl group

(2) carboxylic acid group

(3) methylene group

- (4) bicarbonate
- 61. In a set of reactions acetic acid yielded a product $CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{Benzene} B$

$$\xrightarrow{\text{HCN}}$$
 C $\xrightarrow{\text{H}_3\text{O}^{\oplus}}$ D

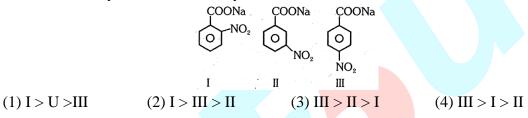
The structure of D would be-

$$\bigcirc CH_2 - C - CH_3$$
(4)

Acid Derivative

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141


62. The compounds A and B in the reaction sequence B \leftarrow Phenol CH₃COCl $\xrightarrow{\text{CH}_3\text{COONa}}$ A are give by the set:-

- (1) CH₃CO-O-COCH₃, C₆H₅CH₂OH
- (2) CH₃CO–O–COCH₃, C₆H₅OCOCH₃
- (3) CH₃COCH₃, C₆H₅OCOCH₃

$$CH_3-C_0-O-C_0-CH_3$$
, $CH_3-C_0-C_6H_1$

63. CH_3 – CH_2 –COOH $\xrightarrow{P/Cl_2}$ $A \xrightarrow{Alc.}$ B structure of B is :-

- СН₃-СН-СООН СН₂-СН₂-СООН О (1) СН₂-СН-СООН (2) СІ (3) СІ (4) СН₃-СН₂-С-СІ
- 64. Correct reactivity order of deearboxylation is

65. Which is most reactive towards hydrolysis

- 66. Which of the following reagents may be used to distinguish between phenol and benzoic acid?
 - (1) Victor-Mayer test

(2) Neutral FeCl₃

(3) Aqueous NaOH

(4) Tollen's reagent

- 67. Acyl chlorides undergo:-
 - (1) Nudeophilic addition reactions
- (2) Nudeophilic substitution reactions
- (3) Erectrophilic substitution reactions
- (4) Electrophilic addition reactions
- 68. The reaction of ethanol on acetic anhydride is an example of :-
 - (1) Nucleophilic addition

(2) Nucleophilic substitution

(3) Electrophilic addition

- (4) Free radical substitution
- 69. The reduction of acetamide gives:-
 - (1) CH₃CH₂NH₂
- (2) (CH₃)₂CHNH₂
- (3) (CH₃)₃CNH₂
- $(4) (CH_3CH_2)_2NH$

- 70. Which is used in preparation of aldehyde by rosenmund reduction
 - (1) Ester
- (2) Acid
- (3) Acid halide
- (4) Alcohol

- 71. Which is maximum reactive :-
 - (l) CH₃CONH₂
- (2) CH₃COOCH₃
- (3) CH₃COCl
- (4) CH₃COOC₂H₅

- 72. $CH_3 \xrightarrow{C-NH_2} \xrightarrow{P_2O_5} ?$
 - (1) CH₃COOH
- $(2) CH_3-CN$
- $(3) CH_3-CH_3$
- (4) CH₃-CHO

- 73. $\bigcirc CHO \xrightarrow{NaOH} A \xrightarrow{H^{\bullet}} ?$
 - (1) CH₂OH COOH
 - (3)

- (4)

EXERCISE-I (Conceptual Questions)

ANSWER KEY

	- 4	•	•		_	_	_	_	_	1.0		4.0	4.0		
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	3	1	2	3	3	3	4	4	3	3	2	3	4	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	3	4	4	3	1	4	2	2	4	2	3	2	3
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	1	1	3	4	2	3	3	4	3	3	3	3	2	2
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	3	4	1	1	2	1	4	2	2	2	2	1	2	4
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73		·
Ans.	1	2	1	1	2	2	2	2	1	3	3	2	2		

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141