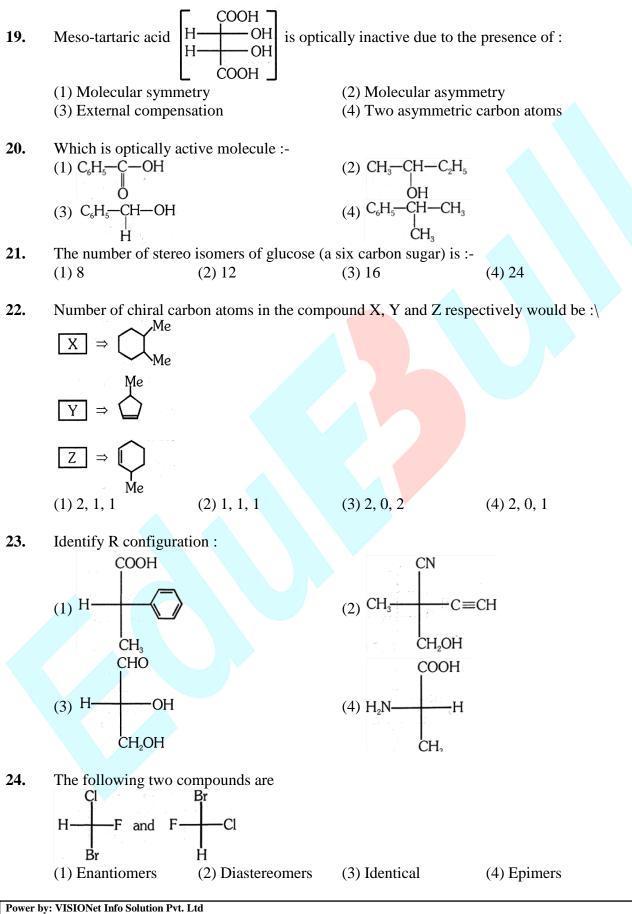
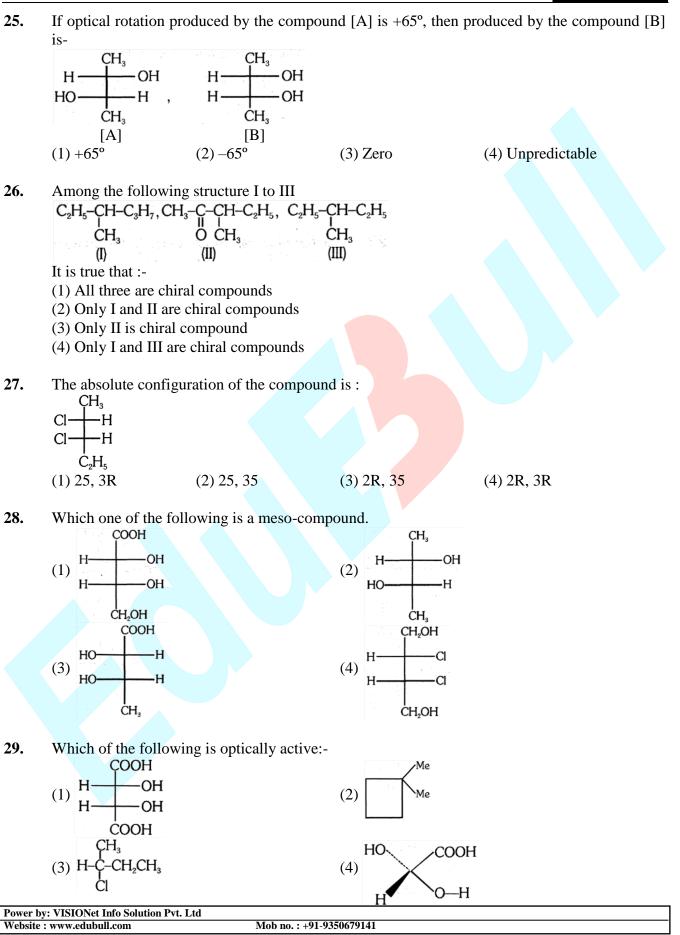

EXE	RCISE-1 (Conceptual Questions)	Build Up Your Understanding						
	STRUC	TURAL ISOMERISM						
1.	CH ₃ CHOHCH ₂ CHO and CH ₃ CH ₂ CH (1) Position isomers (2) Metamers	H ₂ COOH constitute a pair of :-						
2.	The minimum number of carbon isomerism is	atoms present in an organic compound to show chain						
3.	(1) 2 (2) 3 The minimum number of carbon at position isomerism is :-	(3) 5 (4) 4 toms present in an organic compound to be able to show						
	$(1) 3 \qquad (2) 4$	(3) 2 (4) 5						
4.	Which of the following compound is (1) $CH_3 - C - OC_2H_5$ 0 (3) $CH_3 - CH(OH) - CH_3$	s isomeric with propanoic acid :- (2) $CH_2 - CH_2 - C - H$ OH O (4) $CH_3O - CH_2 - CH_2OH$						
5.	CH ₃ –NH–C ₂ H ₅ and (CH ₃) ₃ N show v (1) Position (2) Functional	which type of isomerism :-						
6.	(1) Position isomers	¹ ₂ CH ₂ CCl are constitute a pair of :- O (2) Metamers						
7.	 (3) Optical isomers The minimum number of carbon atom (1) 3 (2) 4 	(4) Functional group isomers ms in ketone to show position isomerism :- (3) 5 (4) 6						
8.	Which are metamers :- (1) $CH_3-O-CH_2CH_2CH_3$, $CH_3-CH_2-O-CH_2-CH_3$ (2) $C_2H_5-O-C_2H_5$, $CH_3CH_2CH_2CH_2OH$ (3) $CH_3-O-C_2H_5$, $CH_3-CH_2-O-CH_3$ CH_3-C-CH_3 , CH_3-CH_2-C-H (4) 0 0							
9.	Which similarity is necessary for iso (1) Molecular formula (3) Physical formula	merism (2) Structure formula (4) Chemical formula						
10.	Number of structural isomers of C_6H (1) 3 (2) 4	I_{14} is - (3) 5 (4) 6						

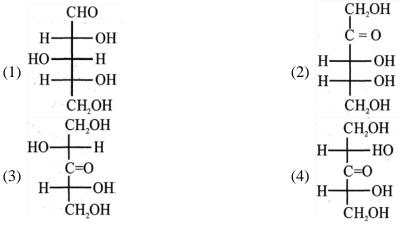
GEOMETRICAL AND OPTICAL ISOMERISM


Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

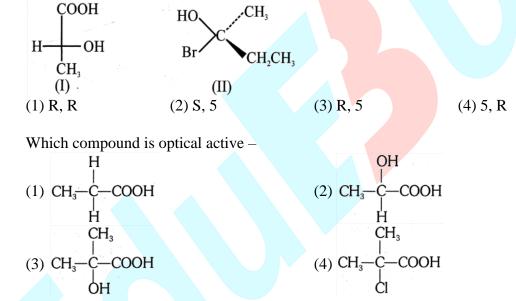
Mob no. : +91-9350679141

Edubull

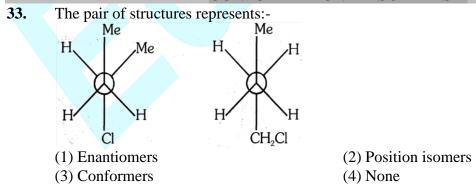

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com


 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141


Edubull

30. Amongst the following, which one could be the structure of an optically inactive monosaccharide having the molecular weight 150 :-



31. The correct configuration assigned for compounds (I) and (II) respectively are :-

32.

CONFORMATIONAL ISOMERISM

34. Rotational angle require. to get maximum stable conformer from minimum stable conformer in n-butane is :

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Edubull

	(1) 360°	(2) 180°	(3) 120°	(4) 240°
35.	Which conformation (1) Gauche	of butane will have the (2) Anti/staggered	e minimum energy :- (3) Eclipsed	(4) None

ANSWER KEY

EXERCISE-I													
1.	(4)	2.	(4)	3.	(3)	4.	(2)	5.	(2)	6. 🧹	(4)	7.	(3)
8.	(1)	9.	(1)	10.	(3)	11.	(2)	12.	(2)	13.	(4)	14.	(4)
15.	(3)	16.	(3)	17.	(2)	18.	(3)	19.	(1)	20.	(2)	21.	(3)
22.	(4)	23.	(3)	24.	(1)	25.	(3)	26.	(2)	27.	(3)	28.	(4)
29.	(3)	30.	(4)	31.	(1)	32.	(2)	33.	(2)	34.	(2)	35.	(2)
		200			(1)		(_)		(_)		(-)	201	(_)