EXERCISE-I

Modulus of vector, Algebra of vectors

1. If the position vectors of A and B are $\mathbf{i} + 3\mathbf{j} - 7\mathbf{k}$ and $5\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$, then the direction cosine of \overrightarrow{AB} along *y*-axis is

(A)
$$\frac{4}{\sqrt{162}}$$
 (B) $-\frac{5}{\sqrt{162}}$
(C) -5 (D) 11

- 2. If the resultant of two forces is of magnitude *P* and equal to one of them and perpendicular to it, then the other force is
 - (A) $P\sqrt{2}$ (B) P(C) $P\sqrt{3}$ (D) None of these
- 3. The direction cosines of vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ in the direction of positive axis of x, is

(A)
$$\pm \frac{3}{\sqrt{50}}$$
 (B) $\frac{4}{\sqrt{50}}$
(C) $\frac{3}{\sqrt{50}}$ (D) $-\frac{4}{\sqrt{50}}$

4. The point having position vectors $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$, $3\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$, $4\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ are the vertices of

(A) Right angled triangle (B) Isosceles triangle(C) Equilateral triangle (D) Collinear

- 5. Let α , β , γ be distinct real numbers. The points with position vectors $\alpha \mathbf{i} + \beta \mathbf{j} + \gamma \mathbf{k}$, $\beta \mathbf{i} + \gamma \mathbf{j} + \alpha \mathbf{k}$, $\gamma \mathbf{i} + \alpha \mathbf{j} + \beta \mathbf{k}$
 - (A) Are collinear
 - (B) Form an equilateral triangle
 - (C) Form a scalene triangle
 - (D) Form a right angled triangle
- 6. If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ and $|\mathbf{a} + \mathbf{b}| = 5$, then $|\mathbf{a} \mathbf{b}| =$
 - (A) 6 (B) 5
 - (C) 4 (D) 3

7. If OP = 8 and \overrightarrow{OP} makes angles 45° and 60° with *OX*-axis and *OY*-axis respectively, then $\overrightarrow{OP} =$

(A)
$$8(\sqrt{2}i + j \pm k)$$
 (B) $4(\sqrt{2}i + j \pm k)$
(C) $\frac{1}{4}(\sqrt{2}i + j \pm k)$ (D) $\frac{1}{8}(\sqrt{2}i + j \pm k)$

- 8. If a and b are two non-zero and non-collinear vectors, then a + b and a b are
 - (A) Linearly dependent vectors
 - (B) Linearly independent vectors
 - (C) Linearly dependent and independent vectors
 - (D) None of these

9. If the vectors
$$6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$$
, $2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$ and $3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$ form a triangle, then it is
(A) Right angled (B) Obtuse angled

- (C) Equilteral (D) Isosceles
- 10. If the resultant of two forces of magnitudes P and Q acting at a point at an angle of 60° is $\sqrt{7}Q$, then P/Q is

(A) 1 (B)
$$\frac{3}{2}$$

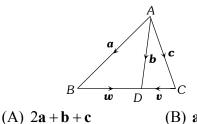
(C) 2 (D) 4

11. If *P* and *Q* be the middle points of the sides *BC* and *CD* of the parallelogram *ABCD*, then $\overrightarrow{AP} + \overrightarrow{AQ} =$

(A)
$$\overrightarrow{AC}$$
 (B) $\frac{1}{2}\overrightarrow{AC}$
(C) $\frac{2}{3}\overrightarrow{AC}$ (D) $\frac{3}{2}\overrightarrow{AC}$

- 12. *P* is a point on the side *BC* of the \triangle ABC and *Q* is a point such that \overrightarrow{PQ} is the resultant of $\overrightarrow{AP}, \overrightarrow{PB}, \overrightarrow{PC}$. Then *ABQC* is a
 - (A) Square (B) Rectangle
 - (C) Parallelogram (D) Trapezium

13. In the figure, a vector \mathbf{x} satisfies the equation $\mathbf{x} - \mathbf{w} = \mathbf{v}$. Then $\mathbf{x} =$



(B) a + 2b + c

(C)
$$a + b + 2c$$
 (D) $a + b + b$

- 14. A vector coplanar with the non-collinear vectors **a** and **b** is
 - (A) $\mathbf{a} \times \mathbf{b}$
 - (B) $1 \neq 0, m \neq 0, n \neq 0$
 - $(C) \mathbf{a} \cdot \mathbf{b}$
 - (D) None of these
- **15.** If *ABCD* is a parallelogram, AB = 2i + 4j 5kand AD = i + 2j + 3k, then the unit vector in the direction of *BD* is

(A)
$$\frac{1}{\sqrt{69}}(\mathbf{i}+2\mathbf{j}-8\mathbf{k})$$
 (B) $\frac{1}{69}(\mathbf{i}+2\mathbf{j}-8\mathbf{k})$
(C) $\frac{1}{\sqrt{69}}(-\mathbf{i}-2\mathbf{j}+8\mathbf{k})$ (D) $\frac{1}{69}(-\mathbf{i}-2\mathbf{j}+8\mathbf{k})$

- 16. If **a**, **b** and **c** be three non-zero vectors, no two of which are collinear. If the vector $\mathbf{a} + 2\mathbf{b}$ is collinear with \mathbf{c} and $\mathbf{b} + 3\mathbf{c}$ is collinear with \mathbf{a} , then (λ being some non-zero scalar) $\mathbf{a} + 2\mathbf{b} + 6\mathbf{c}$ is equal to
 - (A) λa (B) λ**b** (D) **0**
 - (C) λ**c**
- 17. If $\mathbf{a} = 2\mathbf{i} + 5\mathbf{j}$ and $\mathbf{b} = 2\mathbf{i} \mathbf{j}$, then the unit vector along y = 0 will be

(A)
$$\frac{i-j}{\sqrt{2}}$$
 (B) $ap + bq + cr = 0$
(C) 90° (D) $\frac{i+j}{\sqrt{2}}$

- added **18.** What should be in vector $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ to get its resultant a unit vector i
 - (A) 2i 4j + 2k(B) -2i + 4j - 2k(C) 2i + 4j - 2k(D) None of these

19. If a = i + 2j + 3k, b = -i + 2j + kand $\mathbf{c} = 3\mathbf{i} + \mathbf{j}$, then the unit vector along its resultant is

(A)
$$3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}$$
 (B) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{50}$
(C) $\frac{3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k}}{5\sqrt{2}}$ (D) None of these

20. In a regular hexagon *ABCDEF*, \overrightarrow{AE} = (A) 2a - 3b(B) $\overrightarrow{AC} + \overrightarrow{AF} - \overrightarrow{AB}$ (C) $\overrightarrow{AC} + \overrightarrow{AB} - \overrightarrow{AF}$ (D) None of these

Scalar or Dot product of two vectors and its applications

21. If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 4$ and the angle between \mathbf{a} and **b** be 120° , then $|4\mathbf{a}+3\mathbf{b}| =$ (A) 25 (B) 12 (C) 13 (D) 7

22. A vector whose modulus is $\sqrt{51}$ and makes the same angle with $\mathbf{a} = \frac{\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}}{3}$, $\mathbf{b} = \frac{-4\mathbf{i} - 3\mathbf{k}}{5}$ and $\mathbf{c} = \mathbf{j}$, will be (A) 5i + 5j + k(B) 5i + j - 5k(C) 5i + j + 5k(D) $\pm (5i - j - 5k)$

- 23. If a, b, c are coplanar vectors, then
 - С h b С (B) a.a a.b a.c = 0(A) $| \mathbf{b} \ \mathbf{c} \ \mathbf{a} | = \mathbf{0}$ b.a b.b b.c С a b (C) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{c}.\mathbf{a} & \mathbf{c}.\mathbf{b} & \mathbf{c}.\mathbf{c} \end{vmatrix} = \mathbf{0}$ (D) $\begin{vmatrix} \mathbf{a} & \mathbf{b} & \mathbf{c} \\ \mathbf{a}.\mathbf{b} & \mathbf{a}.\mathbf{a} & \mathbf{a}.\mathbf{c} \end{vmatrix} = \mathbf{0}$ b.a b.c b.b c.a c.c c.b
- 24. If λ is a unit vector perpendicular to plane of vector **a** and **b** and angle between them is θ , then **a** . **b** will be

(A) $ \mathbf{a} \mathbf{b} \sin \theta \vec{\lambda}$	(B) $ \mathbf{a} \mathbf{b} \cos \theta \vec{\lambda}$
(C) $ \mathbf{a} \mathbf{b} \cos \theta$	(D) $ \mathbf{a} \mathbf{b} \sin \theta$
	1

25. If p = i - 2j + 3k and q = 3i + j + 2k, then a vector along **r** which is linear combination of **p** and **q** and also perpendicular to **q** is (A) i + 5j - 4k(B) i - 5j + 4k(C) $-\frac{1}{2}(\mathbf{i}+5\mathbf{j}-4\mathbf{k})$ (D) None of these

26.	If $\mathbf{d} = \lambda (\mathbf{a} \times \mathbf{b}) + \mu (\mathbf{b})$	$(\mathbf{c} \times \mathbf{c}) + \mathbf{v} (\mathbf{c} \times \mathbf{a})$ and
	$[\mathbf{abc}] = \frac{1}{8}$, then $\lambda + \mu +$	v is equal to
	(A) $8d.(a+b+c)$	(B) $8\mathbf{d} \times (\mathbf{a} + \mathbf{b} + \mathbf{c})$
	(C) $\frac{\mathbf{d}}{8}$.($\mathbf{a} + \mathbf{b} + \mathbf{c}$)	(D) $\frac{\mathbf{d}}{8} \times (\mathbf{a} + \mathbf{b} + \mathbf{c})$
27.	The horizontal force and	d the force inclined at
	an angle 60° with	the vertical, whose

an angle 60° with the vertical, whose resultant is in vertical direction of *P* kg, are

(A)
$$P, 2P$$
 (B) $P, P\sqrt{3}$

- (C) 2P, $P\sqrt{3}$ (D) None of these
- **28.** If **a** and **b** are mutually perpendicular vectors, then $(\mathbf{a} + \mathbf{b})^2 =$

(A)
$$a+b$$
 (B) $a-b$
(C) $a^2 - b^2$ (D) $(a-b)^2$

- **29.** $\mathbf{a} \cdot \mathbf{b} = 0$, then
 - (A) $\mathbf{a} \perp \mathbf{b}$
 - $(B) \ \pmb{a} \parallel \pmb{b}$
 - (C) Angle between **a** and **b** is 60°
 - (D) None of these
- **30.** If $|\mathbf{a}| = 3$, $|\mathbf{b}| = 1$, $|\mathbf{c}| = 4$ and $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, then $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a} =$
 - $\begin{array}{ll} (A) 13 & (B) 10 \\ (C) 13 & (D) 10 \end{array}$
- 31. If the position vectors of the points A, B, C, D be $\mathbf{i} + \mathbf{j} + \mathbf{k}$, $2\mathbf{i} + 5\mathbf{j}$, $3\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$ and $\mathbf{i} - 6\mathbf{j} - \mathbf{k}$, then the angle between the vectors \overrightarrow{AB} and \overrightarrow{CD} is

(A)
$$\frac{\pi}{4}$$
 (B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$ (D) π

32. If θ be the angle between the unit vectors **a** and **b**, then $\mathbf{a} - \sqrt{2}\mathbf{b}$ will be a unit vector if $\theta =$

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$
(C) p**i** + q**j** + r**k** (D) $\frac{2\pi}{3}$

- 33. If the angle between a and b be 30°, then the angle between 3 a and 4 b will be
 (A) 150°
 (B) 90°
 - $\begin{array}{c} (A) & 150 \\ (C) & 120^{\circ} \\ (C) & 120^{\circ} \\ (D) & 30^{\circ} \\ (D) & 30^{\circ} \\ (C) & 120^{\circ} \\ (C) & 120^{\circ}$
- 34. The angle between the vectors $\mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ is

(A)
$$\cos^{-1}\left(\frac{1}{\sqrt{15}}\right)$$
 (B) $\cos^{-1}\left(\frac{4}{\sqrt{15}}\right)$
(C) $\cos^{-1}\left(\frac{4}{15}\right)$ (D) $\frac{\pi}{2}$

- **35.** The position vector of vertices of a triangle *ABC* are $4\mathbf{i} 2\mathbf{j}, \mathbf{i} + 4\mathbf{j} 3\mathbf{k}$ and $-\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ respectively, then $\angle ABC =$
 - (A) $\pi/6$ (B) $\pi/4$ (C) $\pi/3$ (D) $\pi/2$
- 36. The value of x for which the angle between the vectors $\mathbf{a} = x\mathbf{i} - 3\mathbf{j} - \mathbf{k}$, $\mathbf{b} = 2x\mathbf{i} + x\mathbf{j} - \mathbf{k}$ is acute and the angle between the vectors **b** and the axis of ordinate is obtuse, are

(A) 1, 2
(B)
$$-2, -3$$

(C) $x > 0$
(D) None of these

37. If a and b are unit vectors and a − b is also a unit vector, then the angle between a and b is

(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$	(D) $\frac{2\pi}{3}$

38. If θ be the angle between two vectors **a** and **b**, then $\mathbf{a}.\mathbf{b} \ge 0$ if

(A)
$$0 \le \theta \le \pi$$

(B) $\frac{\pi}{2} \le \theta \le \pi$
(C) $0 \le \theta \le \frac{\pi}{2}$
(D) None of these

- **39.** If $\mathbf{a} = \mathbf{i} + 2\mathbf{j} 3\mathbf{k}$ and $\mathbf{b} = 3\mathbf{i} \mathbf{j} + 2\mathbf{k}$, then the angle between the vectors $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} \mathbf{b}$ is (A) 30° (B) 60° (C) 90° (D) 0°
- 40. The value of x for which the angle between the vectors $\mathbf{a} = -3\mathbf{i} + x\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = x\mathbf{i} + 2x\mathbf{j} + \mathbf{k}$ is acute and the angle between **b** and x-axis lies between $\pi/2$ and π satisfy
 - (A) x > 0 (B) x < 0(C) x > 1 only (D) x < -1 only

Vector or Cross product of two vectors and its applications

41. If A(-1, 2, 3), B(1, 1, 1) and C(2, -1, 3) are points on a plane. A unit normal vector to the plane ABC is

(A)
$$\pm \left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$$
 (B) $\pm \left(\frac{2\mathbf{i}-2\mathbf{j}+\mathbf{k}}{3}\right)$
(C) $\pm \left(\frac{2\mathbf{i}-2\mathbf{j}-\mathbf{k}}{3}\right)$ (D) $-\left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$

42. The unit vector perpendicular to the vectors 6i + 2j + 3k and 3i - 6j - 2k, is

(A)
$$\frac{2i - 3j + 6k}{7}$$
 (B) $\frac{2i - 3j - 6k}{7}$
(C) $\frac{2i + 3j - 6k}{7}$ (D) $\frac{2i + 3j + 6k}{7}$

- **43.** For any two vectors **a** and **b**, $(\mathbf{a} \times \mathbf{b})^2$ is equal to (B) $a^2 + b^2$ (A) $a^2 - b^2$ (C) $a^2b^2 - (a.b)^2$ (D) None of these
- 44. The unit vector perpendicular to 3i + 2j kand $12\mathbf{i} + 5\mathbf{j} - 5\mathbf{k}$, is

(A)
$$\frac{5i - 3j + 9k}{\sqrt{115}}$$
 (B) $\frac{5i + 3j - 9k}{\sqrt{115}}$
(C) $\frac{-5i + 3j - 9k}{\sqrt{115}}$ (D) $\frac{5i + 3j + 9k}{\sqrt{115}}$

45. The sine of the angle between the two vectors $3\mathbf{i}+2\mathbf{j}-\mathbf{k}$ and $12\mathbf{i}+5\mathbf{j}-5\mathbf{k}$ will be

(A)
$$\frac{\sqrt{115}}{\sqrt{14}\sqrt{194}}$$
 (B) $\frac{51}{\sqrt{14}\sqrt{144}}$
(C) $\frac{\sqrt{64}}{\sqrt{14}\sqrt{194}}$ (D) None of these

- 46. For any two vectors **a** and **b**, if $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then (A) a = 0(B) b = 0
 - (C) Not parallel (D) None of these
- 47. If **a** and **b** are two vectors, then $(\mathbf{a} \times \mathbf{b})^2$ equals
 - $(A) \begin{vmatrix} \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{a} \\ \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{a} \end{vmatrix}$ (B) **a** . **a a** . **b b** . **a b** . **b** (C) $\begin{vmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{b} & \mathbf{a} \end{vmatrix}$ (D) None of these

48.	For any vectors a , b , c		
	$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) + \mathbf{b} \times (\mathbf{c} + \mathbf{a}) + \mathbf{c} \times (\mathbf{a} + \mathbf{b}) =$		
	(A) 0	(B) $\mathbf{a} + \mathbf{b} + \mathbf{c}$	
	(C) [a b c]	(D) $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$	
49.	If $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c}$, $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$	$\mathbf{a} = \mathbf{a} \neq 0$, then	
	$(\mathbf{A}) \mathbf{b} = 0$	(B) $\mathbf{b} \neq \mathbf{c}$	
	(C) $\mathbf{b} = \mathbf{c}$	(D) None of these	
50.	If $ a = 2$, $ b = 5$ and $ a = 5$	$\mathbf{a} \times \mathbf{b} \mid = 8$, then $\mathbf{a} \cdot \mathbf{b}$ is	
	equal to		
	(A) 0	(B) 2	
	(C) 4	(D) 6	
51.	$\mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a}; \ \mathbf{r} \times \mathbf{b} = \mathbf{a} \times \mathbf{b}$	b ; $\mathbf{a} \neq 0$; $\mathbf{b} \neq 0$; $\mathbf{a} \neq \lambda \mathbf{b}$,	
	a is not perpendicular to b , then $\mathbf{r} =$		
	(A) a – b	(B) a + b	
	(C) $\mathbf{a} \times \mathbf{b} + \mathbf{a}$	(D) $\mathbf{a} \times \mathbf{b} + \mathbf{b}$	

- 52. If i, j, k are unit orthonormal vectors and a is a vector, if $\mathbf{a} \times \mathbf{r} = \mathbf{j}$, then $\mathbf{a} \cdot \mathbf{r}$ is (A) 0 **(B)** 1
 - (C) 1(D) Arbitrary scalar
- 53. A unit vector perpendicular to each of the vector $2\mathbf{i} - \mathbf{j} + \mathbf{k}$ and $3\mathbf{i} + 4\mathbf{j} - \mathbf{k}$ is equal to

(A)
$$\frac{(-3\mathbf{i} + 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}$$
 (B) $\frac{(3\mathbf{i} - 5\mathbf{j} + 11\mathbf{k})}{\sqrt{155}}$
(C) $\frac{(6\mathbf{i} - 4\mathbf{j} - \mathbf{k})}{\sqrt{53}}$ (D) $\frac{(5\mathbf{i} + 3\mathbf{j})}{\sqrt{34}}$

54. If $\vec{A} = 3i + j + 2k$ and $\vec{B} = 2i - 2j + 4k$ and θ is the angle between \vec{A} and \vec{B} , then the value of $\sin \theta$ is

(A)
$$\frac{2}{\sqrt{7}}$$
 (B) $\sqrt{\frac{2}{7}}$
(C) $\frac{4}{\sqrt{7}}$ (D) $\frac{3}{\sqrt{7}}$

55. A unit vector perpendicular to vector c and coplanar with vectors **a** and **b** is

(A)
$$\frac{\mathbf{a} \times (\mathbf{b} \times \mathbf{c})}{|\mathbf{a} \times (\mathbf{b} \times \mathbf{c})|}$$
 (B) $\frac{\mathbf{b} \times (\mathbf{c} \times \mathbf{a})}{|\mathbf{b} \times (\mathbf{c} \times \mathbf{a})|}$
(C) $\frac{\mathbf{c} \times (\mathbf{a} \times \mathbf{b})}{|\mathbf{c} \times (\mathbf{a} \times \mathbf{b})|}$ (D) None of these

S	calar triple product and	d their applications	(
56.	Let <i>a</i> , <i>b</i> , <i>c</i> be distinct no the vectors $a\mathbf{i} + a\mathbf{j} + c\mathbf{k}$, lie in a plane, then <i>c</i> is (A) The arithmetic mean (B) The geometric mean (C) The harmonic mean	$\mathbf{i} + \mathbf{k}$ and $\mathbf{ci} + \mathbf{cj} + \mathbf{bk}$ n of <i>a</i> and <i>b</i> n of <i>a</i> and <i>b</i>	
57.	(D) Equal to zero If a , b , c are any th inverse are \mathbf{a}^{-1} , \mathbf{b}^{-1} , \mathbf{c}^{-1}		(
	$[a^{-1}b^{-1}c^{-1}]$ will be (A) Zero (C) Non-zero	(B) One (D) [a b c]	(
58.	If $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + 2\mathbf{j} - \mathbf{i}$ are coplanar then the val	k and $\mathbf{c} = 3\mathbf{i} + p\mathbf{j} + 5\mathbf{k}$ ue of <i>p</i> will be	
59.	(A) - 6 (C) 2 If i , j , k are the unit	(B) – 2 (D) 6 vectors and mutually	(
	perpendicular, then [i k (A) 0	j] is equal to (B) – 1	
60.	(C) 1 If three vectors $\mathbf{b} = 8\mathbf{i} - 12\mathbf{j} - 9\mathbf{k}$ and	(D) None of these $\mathbf{a} = 12\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$	(
	represents a cube, then i $(A) 616$	·	(
61.	(C) 154 If $a = 2i + j - k$, $b = i + 2j$	(D) None of these + \mathbf{k} and $\mathbf{c} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$,	
	then $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) =$ (A) 6 (C) 12	(B) 10 (D) 24	
62.	Three concurrent edge parallelopiped are represent $2\mathbf{i} + \mathbf{j} - \mathbf{k}, \ \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$	sented by three vectors	1
	volume of the solid so for (A) 5 (C) 7	0	,
63.	If $\mathbf{x} \cdot \mathbf{a} = 0$, $\mathbf{x} \cdot \mathbf{b} = 0$ and zero vector \mathbf{x} , then the tur (A) $[\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$	$\mathbf{x} \cdot \mathbf{c} = 0$ for some non-	,
	(C) $[a b c] = 1$	(D) None of these	

		vectors & 3D	
64.	If the given vectors	$(-bc, b^2 + bc, c^2 + bc),$	
	$(a^2 + ac, -ac, c^2 + ac)$ and	$(a^2+ab, b^2+ab, -ab)$	
	are coplanar, where none of a , b and c is zero,		
	then		
	(A) $a^2 + b^2 + c^2 = 1$		
	(B) $bc + ca + ab = 0$		
	(C) a+b+c=0		
	(D) $a^2 + b^2 + c^2 = bc + c$	a + ab	
65.	If a , b , c are three co	planar vectors, then	
	$[\mathbf{a}+\mathbf{b} \ \mathbf{b}+\mathbf{c} \ \mathbf{c}+\mathbf{a}] =$		
	(A) [a b c]	(B) 2 [a b c]	
	(C) 3 [a b c]	(D) 0	
66.	If a,b,c are vectors such	h that $[abc] = 4$, then	
	$[a \times b b \times c c \times a] =$		
	(A) 16	(B) 64	
(7	(C) 4 The volume of the r	(D) 8	
67.	The volume of the p conterminous edges are		
	and $3i-5j+2k$ is	J = J + K, Z = J + J K	
	(A) 4	(B) 3	
	(C) 2	(D) 8	
68.	[i k j]+[k j i]+[j k i]		
	(A) 1	(B) 3	
	(C) – 3	(D) – 1	
69.	If u , v and w are three		
	then $(u + v - w).[(u - v)]$	/ = 1	
	(A) 0	(B) $(u.(v \times w)$	
	(C) $(u.(w \times v))$	(D) $3u.(v \times w)$	
70.	a.[(b+c)×(a+b+c)] is	equal to	
	(A) [a b c]	(B) 2[a b c]	
	(C) 3[a b c]	(D) 0	
	Vector triple i	araduat	

Vector triple product

71. $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is equal to

(A) $(a.c)b - (a.a)b$	(B) $(a.c)a-(b.c)a$
(C) $(a.c)b - (a.b)c$	(D) $(a.b)c-(a.c)b$

72. If a × b = c, b × c = a and a, b, c be moduli of the vectors a, b, c respectively, then
(A) a = 1, b = c
(B) c = 1, a = 1

(C) b = 2, c = 2a (D) b = 1, c = a

73.	If $\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$,	$\mathbf{b} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ and	
	$\mathbf{c} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, then $(\mathbf{a} \times$	b)× c is equal to	
	(A) $24i + 7j - 5k$	(B) $7i - 24j + 5k$	
	(C) $12i + 3j - 5k$	(D) $i + j - 7k$	
74.	$\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) =$		
	(A) 1	(B) 0	
	(C) – 1	(D) None of these	
75.	If three unit vectors a	a, b, c are such that	
$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{\mathbf{b}}{2}$, then the vector \mathbf{a} makes with \mathbf{b}			
and c respectively the angles			
	(A) $40^{\circ}, 80^{\circ}$	(B) 45°, 45°	
	(C) 30° , 60°	(D) 90°, 60°	

Application of vectors in three dimensional geometry

- 76. The position vectors of two points P and Q are $3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$ respectively. The equation of the plane through Q and perpendicular to PQ is (A) $\mathbf{r}.(2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) = 28$
 - (B) $\mathbf{r}.(2\mathbf{i}+3\mathbf{j}+6\mathbf{k}) = 32$
 - (C) $\mathbf{r} \cdot (2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}) + 28 = 0$
 - (D) None of these
- 77. The vector equation of the plane passing through the origin and the line of intersection of the plane $\mathbf{r.a} = \lambda$ and $\mathbf{r.b} = \mu$ is
 - (A) $\mathbf{r}.(\lambda \mathbf{a} \mu \mathbf{b}) = 0$ (B) $\mathbf{r}.(\lambda \mathbf{b} \mu \mathbf{a}) = 0$ (C) $\mathbf{r}.(\lambda \mathbf{a} + \mu \mathbf{b}) = 0$ (D) $\mathbf{r}.(\lambda \mathbf{b} + \mu \mathbf{a}) = 0$
- 78. The position vectors of points A and B are $\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $3\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$ respectively. The equation of a plane is $\mathbf{r} \cdot (5\mathbf{i} + 2\mathbf{j} - 7\mathbf{k}) + 9 = 0$.

The points A and B

- (A) Lie on the plane
- (B) Are on the same side of the plane
- (C) Are on the opposite side of the plane
- (D) None of these

- 79. The vector equation of the plane through the point $2\mathbf{i} - \mathbf{j} - 4\mathbf{k}$ and parallel to the plane $\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) - 7 = 0$ is (A) $\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 0$ (B) $\mathbf{r}.(4\mathbf{i} - 12\mathbf{j} - 3\mathbf{k}) = 32$
 - (C) $\mathbf{r}.(4\mathbf{i}-12\mathbf{j}-3\mathbf{k}) = 12$
 - (D) None of these
- 80. The vector equation of the plane through the point (2, 1, -1) and passing through the line of intersection of the plane r.(i+3j-k) = 0 and r.(j+2k) = 0 is
 (A) r.(i+9j+11k) = 0
 (B) r.(i+9j+11k) = 6
 (C) r.(i-3j-13k) = 0
 - (D) None of these

System of co-ordinates, Direction cosines and direction ratios, Projection

81. Distance of the point (1, 2, 3) from the co-ordinate axes are

(A) 13, 10, 5	(B) $\sqrt{13}, \sqrt{10}, \sqrt{5}$	
(C) $\sqrt{5}, \sqrt{13}, \sqrt{10}$	(D) $\frac{1}{\sqrt{13}}, \frac{1}{\sqrt{10}}, \frac{1}{\sqrt{5}}$	

- 82. If the centroid of triangle whose vertices are (a,1, 3), (-2, b, -5) and (4, 7, c) be the origin, then the values of a, b, c are
 - $\begin{array}{ll} (A)-2,-8,-2 \\ (C)-2,-8,2 \end{array} \qquad \begin{array}{ll} (B)\ 2,\ 8,-2 \\ (D)\ 7,-1,\ 0 \end{array}$
- **83.** Which of the following set of points are non-collinear
 - (A) (1, -1, 1), (-1, 1, 1), (0, 0, 1) (B) (1, 2, 3), (3, 2, 1), (2, 2, 2) (C) (-2,4, -3), (4, -3, -2), (-3, -2, 4) (D) (2, 0, -1), (3, 2, -2), (5, 6, -4)
- **84.** If a straight line in space is equally inclined to the co-ordinate axes, the cosine of its angle of inclination to any one of the axes is

(A)
$$\frac{1}{3}$$
 (B) $\frac{1}{2}$
(C) $\frac{1}{\sqrt{3}}$ (D) $\frac{1}{\sqrt{2}}$

- 85. If a line makes angles of 30° and 45° with x-axis and y-axis, then the angle made by it with z-axis is
 - (A) 45° (B) 60°
 - (C) 120° (D) None of these
- 86. Direction ratios of the normal to the plane passing through the points (0, 1, 1), (1, 1, 2) and (-1, 2, -2) are
 - (A) (1, 1, 1) (B) (2, 1, -1)
 - (C) (1, 2, -1) (D) (1, -2, -1)
- **87.** If the length of a vector be 21 and direction ratios be 2, -3, 6 then its direction cosines are
 - (A) $\frac{2}{21}, \frac{-1}{7}, \frac{2}{7}$ (B) $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$ (C) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$ (D) None of these
- 88. If the co-ordinates of the points P,Q,R,S be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 0, 2) respectively, then
 - (A) $PQ \parallel RS$ (B) $PQ \perp RS$ (C) $PQ \perp RS$ (D) None of these
 - (C) PQ = RS (D) None of these
- 89. If the co-ordinates of the points A, B, C, D be (2, 3, -1), (3, 5, -3), (1, 2, 3) and (3, 5, 7) respectively, then the projection of AB on CD is
 - (A) 0 (B) 1
 - (C) 2 (D) $\sqrt{3}$
- **90.** If the co-ordinates of the points *P* and *Q* be (1, -2, 1) and (2, 3, 4) and *O* be the origin, then
 - (A) OP = OQ (B) $OP \perp OQ$

(C)
$$OP \parallel OQ$$
 (D) None of these

91. If the sum of the squares of the distance of a point from the three co-ordinate axes be 36,then its distance from the origin is

(A) 6	(B) $3\sqrt{2}$	
(C) $2\sqrt{3}$	(D) None of these	

92. The line joining the points (-2, 1, -8) and (a, b, c) is parallel to the line whose direction ratios are 6, 2, 3. The values of a, b, c are (A) 4, 3, -5 (B) 1, 2, -13/2

(C) 10, 5, -2 (D) None of these

- **93.** The direction ratios of the line joining the points (4, 3, -5) and (-2, 1, -8) are
 - (A) $\frac{6}{7}, \frac{2}{7}, \frac{3}{7}$ (B) 6, 2, 3
 - (C) 2, 4, -13 (D) None of these
- **94.** The co-ordinates of the point in which the line joining the points (3, 5, -7) and (-2, 1, 8) is intersected by the plane *yz* are given by

(A)
$$\left(0, \frac{13}{5}, 2\right)$$
 (B) $\left(0, -\frac{13}{5}, -2\right)$
(C) $\left(0, -\frac{13}{5}, \frac{2}{5}\right)$ (D) $\left(0, \frac{13}{5}, \frac{2}{5}\right)$

95. The co-ordinates of a point which is equidistant from the points (0,0,0), (a,0,0), (0,b,0), and (0,0,c) are given by

$$(A)\left(\frac{a}{2},\frac{b}{2},\frac{c}{2}\right) \qquad (B)\left(-\frac{a}{2},-\frac{b}{2},\frac{c}{2}\right)$$
$$(C)\left(\frac{a}{2},-\frac{b}{2},-\frac{c}{2}\right) \qquad (D)\left(-\frac{a}{2},\frac{b}{2},-\frac{c}{2}\right)$$

Line

96. The co-ordinates of the foot of perpendicular drawn from the origin to the line joining the points (-9, 4, 5) and (10, 0, -1) will be (A) (-3, 2, 1) (B) (1, 2, 2)

$$(C) (4, 5, 3)$$
 (D) None of these

97. The symmetric equation of lines 3x + 2y + z - 5 = 0 and x + y - 2z - 3 = 0, is

(A)
$$\frac{x-1}{5} = \frac{y-4}{7} = \frac{z-0}{1}$$

(B) $\frac{x+1}{5} = \frac{y+4}{7} = \frac{z-0}{1}$
(C) $\frac{x+1}{-5} = \frac{y-4}{7} = \frac{z-0}{1}$
(D) $\frac{x-1}{-5} = \frac{y-4}{7} = \frac{z-0}{1}$

98. The angle between the lines whose direction cosines satisfy the equations 1 + m + n = 0, $1^2 + m^2 - n^2 = 0$ is given by

(A)
$$\frac{2\pi}{3}$$
 (B) $\frac{\pi}{6}$

(C)
$$\frac{5\pi}{6}$$
 (D) $\frac{\pi}{3}$

99. The equation of straight line passing through the points (a, b, c) and (a - b, b - c, c - a), is

(A)
$$\frac{x-a}{a-b} = \frac{y-b}{b-c} = \frac{z-c}{c-a}$$

(B)
$$\frac{x-a}{b} = \frac{y-b}{c} = \frac{z-c}{a}$$

(C)
$$\frac{x-a}{a} = \frac{y-b}{b} = \frac{z-c}{c}$$

(D)
$$\frac{x-a}{2a-b} = \frac{y-b}{2b-c} = \frac{z-c}{2c-a}$$

100. The equation of straight line passing through the point (a, b, c) and parallel to *z*- axis, is

(A)
$$\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{0}$$

(B) $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{1}$
(C) $\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$
(D) $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$

101. The length of the perpendicular drawn from the point (5, 4, -1) on the line $\frac{x-1}{2} = \frac{y}{9} = \frac{z}{5}$ is (A) $\sqrt{\frac{110}{2109}}$ (B) $\sqrt{\frac{2109}{110}}$

(C)
$$\frac{2109}{110}$$
 (D) 54

102. The length of the perpendicular from point (1, 2, 3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ is (A) 5 (B) 6

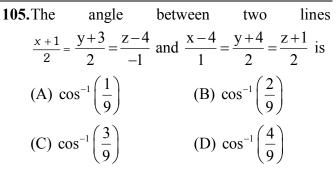
(C) 7 (D)
$$(C)$$
 (D) (C) (D) (C)

103. The angle between the lines whose direction cosines are connected by the relations 1+m+n=0 and 2lm+2nl-mn=0, is (A) $\frac{\pi}{2}$ (B) $\frac{2\pi}{2}$

(A) $\frac{\pi}{3}$	(B) $\frac{2}{3}$
·	

(C) π (D) None of these **104.** The perpendicular distance of the point

(2, 4, -1) from the line	$\frac{x+5}{1} = \frac{y+3}{4}$	$=\frac{z-6}{-9}$ is
(A) 3	(B) 5	,
(C) 7	(D) 9	



Plane

106. The equation of the plane which is parallel to the plane x - 2y + 2z = 5 and whose distance from the point (1, 2, 3) is 1, is

(A)
$$x - 2y + 2z = 3$$
 (B) $x - 2y + 2z + 3 = 0$

(C)
$$x - 2y + 2z = 6$$
 (D) $x - 2y + 2z + 6 = 0$

- **107.** The equation of the plane through (1, 2, 3) and parallel to the plane 2x + 3y 4z = 0 is
 - (A) 2x + 3y + 4z = 4

(B)
$$2x + 3y + 4z + 4 = 0$$

(C)
$$2x - 3y + 4z + 4 = 0$$

- (D) 2x + 3y 4z + 4 = 0
- **108.**Distance of the point (2,3,4) from the plane 3x 6y + 2z + 11 = 0 is

(A) 1	(B) 2
(C) 3	(D) 0

- **109.** The equation of the plane containing the line of intersection of the planes 2x - y = 0 and y - 3z = 0 and perpendicular to the plane 4x + 5y - 3z - 8 = 0 is (A) 28x - 17y + 9z = 0
 - (B) 28x + 17y + 9z = 0
 - (C) 28x 17y + 9x = 0
 - (D) 7x 3y + z = 0
- 110.A point moves in such a way that the sum of its distance from *xy*-plane and *yz*-plane remains equal to its distance from *zx*-plane. The locus of the point is
 - (A) x y + z = 2(B) x + y - z = 0(C) x - y + z = 0(D) x - y - z = 2

- **111.** A point moves so that its distances from the points (3, 4, -2) and (2, 3, -3) remains equal. The locus of the point is
 - (A) A line
 - (B) A plane whose normal is equally inclined to axes
 - (C) A plane which passes through the origin
 - (D) A sphere
- 112. The equation of the perpendicular from the point (α, β, γ) to the plane ax + by + cz + d = 0 is
 - (A) $a(x-\alpha) + b(y-\beta) + c(z-\gamma) = 0$
 - (B) $\frac{x-\alpha}{a} = \frac{y-\beta}{b} = \frac{z-\gamma}{c}$ (C) $a(x-\alpha) + b(y-\beta) + c(z-\gamma) = abc$
 - (D) None of these
- **113.** The equation of *yz*-plane is
 - (A) x = 0(B) y = 0(C) z = 0(D) x + y + z = 0
- 114. The angle between the planes 2x y + z = 6and x + y + 2z = 7 is
 - (A) 30° (B) 45°
 - (C) 0° (D) 60°
- 115. The equation of the plane passing through the line of intersection of the planes x + y + z = 1and 2x + 3y - z + 4 = 0 and parallel to *x*-axis is
 - (A) y-3z-6=0 (B) y-3z+6=0
 - (C) y-z-1=0 (D) y-z+1=0
- 116. The angle between two planes is equal to
 - (A) The angle between the tangents to them from any point
 - (B) The angle between the normals to them from any point
 - (C) The angle between the lines parallel to the planes from any point
 - (D) None of these
- **117.** In three dimensional space, the equation 3y + 4z = 0 represents
 - (A) A plane containing *x*-axis
 - (B) A plane containing *y*-axis
 - (C) A plane containing *z*-axis
 - (D) A line with direction ratios 0, 3, 4

118. A plane meets the co-ordinate axes in A, B, C and (α, β, γ) is the centered of the triangle ABC. Then the equation of the plane is

(A)
$$\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 3$$
 (B) $\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1$
(C) $\frac{3x}{\alpha} + \frac{3y}{\beta} + \frac{3z}{\gamma} = 1$ (D) $\alpha x + \beta y + \gamma z = 1$

- 119.If the planes 3x 2y + 2z + 17 = 0 and 4x + 3y - kz = 25 are mutually perpendicular, then k = (A) 3 (B) - 3 (C) 9 (D) - 6
- **120.** If *O* is the origin and *A* is the point (*a*, *b*, *c*) then the equation of the plane through *A* and at right angles to *OA* is
 - (A) a(x-a) b(y-b) c(z-c) = 0
 - (B) a(x+a) + b(y+b) + c(z+c) = 0
 - (C) a(x-a) + b(y-b) + c(z-c) = 0
 - (D) None of these
- **121.** If from a point P(a,b,c) perpendiculars PA and PB are drawn to *yz* and *zx* planes, then the equation of the plane OAB is
 - (A) bcx + cay + abz = 0
 - (B) bcx + cay abz = 0
 - (C) bcx cay + abz = 0
 - (D) -bcx + cay + abz = 0

122. The graph of the equation $y^2 + z^2 = 0$ in three dimensional space is

- (A) x-axis
 (B) z-axis

 (C) y-axis
 (D) yz-plane
- 123.A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. The locus of the centroid of the tetrahedron OABC is
 - (A) $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$
 - (B) $x^{-2} + y^{-2} + z^{-2} = 16p^{-1}$
 - (C) $x^{-2} + y^{-2} + z^{-2} = 16$
 - (D) None of these

- **124.** The plane ax + by + cz = 1 meets the co-ordinate axes in *A*, *B* and *C*. The centroid of the triangle is
 - (A) (3a, 3b, 3c) (B) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ (C) $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$ (D) $\left(\frac{1}{3a}, \frac{1}{3b}, \frac{1}{3c}\right)$

125. The equation of a plane which cuts equal intercetps of unit length on the axes, is

- (A) x + y + z = 0 (B) x + y + z = 1
- (C) x + y z = 1 (D) $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$ Line and plane
- **126.** The point where the line $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ meets the plane 2x + 4y - z = 1, is (A) (3, -1, 1) (B) (3, 1, 1) (C) (1, 1, 3) (D) (1, 3, 1) **127.** The distance of the point (-1, -5, -10) from
- 127. The distance of the point (-1, -5, -10) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x-y+z=5, is (A) 10 (B) 11
 - (C) 12 (D) 13
- **128.** The equation of the line passing through (1, 2, 3) and parallel to the planes x y + 2z = 5 and 3x + y + z = 6, is

(A)
$$\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}$$

(B) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{4}$
(C) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{-4}$
(D) None of these

(D) None of these

- **129.** The line drawn from (4, -1, 2) to the point (-3, 2, 3) meets a plane at right angles at the point (-10, 5, 4), then the equation of plane is (A) 7x 3y z + 89 = 0(B) 7x + 3y + z + 89 = 0
 - (C) 7x 3y + z + 89 = 0
 - (D) None of these

130. The ratio in which the line joining the points (a, b, c) and (-a, -c, -b) is divided by the *xy*-plane is (A) a : b (B) b:c(C) c:a (D) c: b131. The line $\frac{x+3}{3} = \frac{y-2}{-2} = \frac{z+1}{1}$ and the plane 4x + 5y + 3z - 5 = 0 intersect at a point (A)(3, 1, -2)(B) (3, -2, 1)(C)(2,-1,3)(D)(-1, -2, -3)**132.** If line $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ is parallel to the plane ax + by + cz + d = 0, then (A) $\frac{a}{1} = \frac{b}{m} = \frac{c}{n}$ (B) al + bm + cn = 0

(C)
$$\frac{a}{1} + \frac{b}{m} + \frac{c}{n} = 0$$

(D) None of these

- 133. The equation of plane through the line of intersection of planes ax + by + cz + d = 0, a'x + b'y + c'z + d' = 0 and parallel to the line y = 0, z = 0 is
 (A) (ab'-a'b)x + (bc'-b'c)y + (ad'-a'd) = 0
 (B) (ab'-a'b)x + (bc'-b'c)y + (ad'-a'd)z = 0
 (C) (ab'-a'b)y + (ac'-a'c)z + (ad'-a'd) = 0
 (D) None of these
- **134.**The equation of the plane which bisects the line joining (2, 3, 4) and (6, 7, 8) is
 - (A) x + y + z 15 = 0 (B) x y + z 15 = 0

(C)
$$x - y - z - 15 = 0$$
 (D) $x + y + z + 15 = 0$

135. The line $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ is parallel to

the plane

- (A) 2x + 3y + 4z = 29
- (B) 3x + 4y 5z = 10
- (C) 3x + 4y + 5z = 38
- (D) x + y + z = 0

Sphere

136. The centre of sphere passes through four points (0, 0, 0), (0, 2, 0), (1, 0, 0) and (0, 0, 4) is

(A)
$$\left(\frac{1}{2}, 1, 2\right)$$
 (B) $\left(-\frac{1}{2}, 1, 2\right)$
(C) $\left(\frac{1}{2}, 1, -2\right)$ (D) $\left(1, \frac{1}{2}, 2\right)$

- **137.** The equation of the sphere touching the three co-ordinate planes is
 - (A) $x^{2} + y^{2} + z^{2} + 2a(x + y + z) + 2a^{2} = 0$
 - (B) $x^{2} + y^{2} + z^{2} 2a(x + y + z) + 2a^{2} = 0$

(C)
$$x^{2} + y^{2} + z^{2} \pm 2a(x + y + z) + 2a^{2} = 0$$

(D) None of these

- **138.**Let (3, 4, -1) and (-1, 2, 3) are the end points of a diameter of sphere. Then the radius of the sphere is equal to
 - (A) 1 (B) 2 (C) 3 (D) 9
- **139.**Co-ordinate of a point equidistant from the points (0,0,0), (*a*, 0, 0), (0, *b*, 0), (0, 0, *c*) is

(A)
$$\left(\frac{a}{4}, \frac{b}{4}, \frac{c}{4}\right)$$
 (B) $\left(\frac{a}{2}, \frac{b}{4}, \frac{c}{4}\right)$
(C) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ (D) (a, b, c)

140. How many different sphere of radius 'r' can be drawn which touches all the three co-ordinate axes