EXERCISE-I

Order and degree of differential equations

- 1. The order and degree of the differential equation $\frac{d^2y}{dx^2} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ is
 - (A) 4, 2
- (B) 1. 2
- (C) 2, 2
- (D) $2, \frac{1}{2}$
- 2. The order and the degree of the differential equation $\left(\frac{d^2s}{dt^2}\right)^2 + 3\left(\frac{ds}{dt}\right)^3 + 4 = 0$ are
 - (A) 2.2
- (B) 2,3
- (C) 3,2
- (D) None of these
- **3.** The order and the degree of differential equation

$$\frac{d^4y}{dx^4} - 4\frac{d^3y}{dx^3} + 8\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 4y = 0$$

are respectively

- (A) 4, 1
- (B) 1, 4
- (C) 1, 1
- (D) None of these
- 4. The order of the differential equation

$$y\left(\frac{dy}{dx}\right) = x / \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^3$$
 is

- (A) 1
- (B) 2
- (C)3

- (D) 4
- **5.** The order of the differential equation whose solution is

$$x^2 + y^2 + 2gx + 2fy + c = 0$$
, is

(A) 1

(B) 2

(C)3

- (D)4
- 6. The order of the differential equation of all circles of radius r, having centre on y-axis and passing through the origin is
 - (A) 1
- (B) 2
- (C) 3

(D)4

7. The order of the differential equation whose solution is

 $y = a \cos x + b \sin x + ce^{-x}$ is

(A) 3

(B) 2

(C) 1

- (D) None of these
- **8.** The differential equation of all circles of radius *a* is of order
 - (A) 2

(B) 3

(C)4

- (D) None of these
- 9. The differential equation of all circles in the first quadrant which touch the coordinate axes is of order
 - (A) 1
- (B) 2
- (C)3

- (D) None of these
- 10. Order and degree of differential equation

$$\frac{d^2y}{dx^2} = \left\{ y + \left(\frac{dy}{dx}\right)^2 \right\}^{1/4} \text{ are }$$

- (A) 4 and 2
- (B) 1 and 2
- (C) 1 and 4
- (D) 2 and 4
- 11. The order and degree of the differential

equation
$$\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{d^2y/dx^2}$$
 are respectively

- (A) 2, 2
- (B) 2, 3
- (C) 2, 1
- (D) None of these
- 12. Order of the differential equation of the family of all concentric circles centered at (h, k) is
 - (A) 1
- (B) 2

(C) 3

- (D) 4
- 13. The degree of differential equation $d^2y (dy)^3$

$$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + 6y = 0 \text{ is}$$

(A) 1

- (B) 3
- (C) 2
- (D) 5

The order and degree of the differential 14. $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^4 - xy = 0$

respectively

- (A) 2 and 4
- (B) 3 and 2
- (C) 4 and 5
- (D) 2 and 3
- $\frac{d^3y}{dx^3} + 2\left|1 + \frac{d^2y}{dx^2}\right| = 1$ has degree and order 15.
 - (A) 1, 3
- (B) 2, 3
- (C) 3, 2
- (D) 3, 1
- The degree and order of the differential **16.** equation of the family of all parabolas whose axis is x-axis, are respectively
 - (A) 2, 1
- (B) 1, 2
- (C) 3, 2
- (D) 2, 3
- The degree of the differential equation 17.

$$\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/4} = \left(\frac{d^2y}{dx^2}\right)^{1/3}$$
 is

- (A) $\frac{1}{2}$

- (D) $\frac{3}{4}$
- 18. The order and degree of the differential equation $x \left(\frac{dy}{dx}\right)^3 + 2\left(\frac{d^2y}{dx^2}\right)^2 + 3y + x = 0$

are respectively

- (A) 3, 2
- (B) 2, 1
- (C) 2, 2
- (D) 2, 3
- 19. The degree of the differential equation $\frac{d^2y}{dx^2} - \sqrt{\frac{dy}{dx}} - 3 = x \text{ is}$
 - (A) 2
- (B) 1
- (C) 1/2
- (D) 3
- 20. The order of differential equations of all parabolas having directrix parallel to x-axis is
 - (A) 3
- (B) 1
- (C) 4
- (D)2

Formation of differential equations

- 21. The differential equation of the family of curves $y = a \cos(x + b)$ is
 - (A) $\frac{d^2y}{dx^2} y = 0$ (B) $\frac{d^2y}{dx^2} + y = 0$
 - (C) $\frac{d^2y}{dx^2} + 2y = 0$
- (D) None of these
- 22. The differential equation for all the straight lines which are at a unit distance from the origin is

(A)
$$\left(y - x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$

(B)
$$\left(y + x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$

(C)
$$\left(y - x \frac{dy}{dx}\right)^2 = 1 + \left(\frac{dy}{dx}\right)^2$$

(D)
$$\left(y + x \frac{dy}{dx}\right)^2 = 1 - \left(\frac{dy}{dx}\right)^2$$

If $y = ce^{\sin^{-1}x}$, then corresponding to this 23. the differential equation is

(A)
$$\frac{dy}{dx} = \frac{y}{\sqrt{1-x^2}}$$
 (B) $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$

(B)
$$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$

(C)
$$\frac{dy}{dx} = \frac{x}{\sqrt{1-x^2}}$$
 (D) None of these

- 24. The differential equation of the family of represented by the curves equation $x^2y = a$, is

(A)
$$\frac{dy}{dx} + \frac{2y}{x} = 0$$

(A)
$$\frac{dy}{dx} + \frac{2y}{x} = 0$$
 (B) $\frac{dy}{dx} + \frac{2x}{y} = 0$

(C)
$$\frac{dy}{dx} - \frac{2y}{x} = 0$$
 (D) $\frac{dy}{dx} - \frac{2x}{y} = 0$

(D)
$$\frac{dy}{dx} - \frac{2x}{y} = 0$$

25. The differential equation corresponding to primitive $y = e^{cx}$ is

or

The elimination of the arbitrary constant m from the equation $y = e^{mx}$ gives the differential equation

(A)
$$\frac{dy}{dx} = \left(\frac{y}{x}\right) \log x$$
 (B) $\frac{dy}{dx} = \left(\frac{x}{y}\right) \log y$

(C)
$$\frac{dy}{dx} = \left(\frac{y}{x}\right) \log y$$
 (D) $\frac{dy}{dx} = \left(\frac{x}{y}\right) \log x$

26. The differential equation whose solution is $y = c_1 \cos ax + c_2 \sin ax$ is

(Where c_1, c_2 are arbitrary constants)

(A)
$$\frac{d^2y}{dx^2} + y^2 = 0$$
 (B) $\frac{d^2y}{dx^2} + a^2y = 0$

(C)
$$\frac{d^2y}{dx^2} + ay^2 = 0$$
 (D) $\frac{d^2y}{dx^2} - a^2y = 0$

27. The differential equation for the line y = mx + c is (where c is arbitrary constant)

(A)
$$\frac{dy}{dx} = m$$
 (B) $\frac{dy}{dx} + m = 0$

(C)
$$\frac{dy}{dx} = 0$$
 (D) None of these

28. The differential equation of all straight lines passing through the point (1,-1) is

(A)
$$y = (x+1)\frac{dy}{dx} + 1$$

(B)
$$y = (x+1)\frac{dy}{dx} - 1$$

(C)
$$y = (x-1)\frac{dy}{dx} + 1$$

(D)
$$y = (x - 1)\frac{dy}{dx} - 1$$

29. The differential equation of the family of curves $y^2 = 4a(x + a)$, where a is an arbitrary constant, is

(A)
$$y \left[1 + \left(\frac{dy}{dx} \right)^2 \right] = 2x \frac{dy}{dx}$$

(B)
$$y \left[1 - \left(\frac{dy}{dx} \right)^2 \right] = 2x \frac{dy}{dx}$$

$$(C) \frac{d^2y}{dx^2} + 2\frac{dy}{dx} = 0$$

(D)
$$\left(\frac{dy}{dx}\right)^3 + 3\frac{dy}{dx} + y = 0$$

30. The differential equation of the family of curves $v = \frac{A}{r} + B$, where A and B are arbitrary constants, is

(A)
$$\frac{d^2v}{dr^2} + \frac{1}{r}\frac{dv}{dr} = 0$$
 (B) $\frac{d^2v}{dr^2} - \frac{2}{r}\frac{dv}{dr} = 0$

(C)
$$\frac{d^2v}{dr^2} + \frac{2}{r}\frac{dv}{dr} = 0$$
 (D) None of these

31. Family of curves $y = e^x (A \cos x + B \sin x)$, represents the differential equation

(A)
$$\frac{d^2y}{dx^2} = 2\frac{dy}{dx} - y$$
 (B) $\frac{d^2y}{dx^2} = 2\frac{dy}{dx} - 2y$

(C)
$$\frac{d^2y}{dx^2} = \frac{dy}{dx} - 2y$$
 (D) $\frac{d^2y}{dx^2} = 2\frac{dy}{dx} + y$

32. The elimination of the arbitrary constants A, B and C from $y = A + Bx + Ce^{-x}$ leads to the differential equation

(A)
$$y''' - y' = 0$$

(B)
$$y''' - y'' + y' = 0$$

(C)
$$y''' + y'' = 0$$

(D)
$$y'' + y'' - y' = 0$$

- 33. The differential equation obtained on eliminating A and B from the equation $y = A \cos \omega t + B \sin \omega t$ is
 - (A) $y'' = -\omega^2 y$ (B) y'' + y = 0

 - (C) y'' + y' = 0 (D) $y'' \omega^2 y = 0$
- If $y = ax^{n+1} + bx^{-n}$, then $x^2 \frac{d^2y}{dx^2}$ equals to 34.
 - (A) n(n-1)y
- (B) n(n+1)y
- (C) ny
- (D) $n^2 v$
- The differential equation of all straight 35. lines passing through the origin is
 - (A) $y = \sqrt{x} \frac{dy}{dx}$ (B) $\frac{dy}{dx} = y + x$
 - (C) $\frac{dy}{dx} = \frac{y}{x}$
- (D) None of these

Variable separable type differential equations

- 36. The solution of the differential equation $\frac{dy}{dx} = (1+x)(1+y^2)$ is
 - (A) $y = \tan(x^2 + x + c)$
 - (B) $y = \tan(2x^2 + x + c)$
 - (C) $y = \tan(x^2 x + c)$
 - (D) $y = \tan \left(\frac{x^2}{2} + x + c \right)$
- The solution of $\frac{dy}{dx} = e^x (\sin x + \cos x)$ is 37.
 - (A) $y = e^x (\sin x \cos x) + c$
 - (B) $y = e^{x} (\cos x \sin x) + c$
 - (C) $y = e^x \sin x + c$
 - (D) $y = e^x \cos x + c$
- The general solution of $x^2 \frac{dy}{dx} = 2$ is 38.
 - (A) $y = c + \frac{2}{y}$ (B) $y = c \frac{2}{y}$

 - (C) y = 2cx (D) $y = c \frac{3}{x^2}$

- The solution of $\frac{dy}{dx} = x \log x$ is 39.
 - (A) $y = x^2 \log x \frac{x^2}{2} + c$
 - (B) $y = \frac{x^2}{2} \log x x^2 + c$
 - (C) $y = \frac{1}{2}x^2 + \frac{1}{2}x^2 \log x + c$
 - (D) None of these
- 40. The solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$ is
 - (A) $\log(1+y) = x + \frac{x^2}{2} + c$
 - (B) $(1+y)^2 = x + \frac{x^2}{2} + c$
 - (C) $\log(1 + y) = \log(1 + x) + c$
 - (D) None of these
- 41. The solution of the differential equation

$$(x^2 - yx^2)\frac{dy}{dx} + y^2 + xy^2 = 0$$
 is

- (A) $\log \left(\frac{x}{y} \right) = \frac{1}{y} + \frac{1}{y} + c$
- (B) $\log \left(\frac{y}{y} \right) = \frac{1}{y} + \frac{1}{y} + c$
- (C) $\log(xy) = \frac{1}{y} + \frac{1}{y} + c$
- (D) $\log(xy) + \frac{1}{x} + \frac{1}{y} = c$
- 42. The solution of the differential equation $x \sec y \frac{dy}{dx} = 1$ is
 - (A) $x \sec y \tan y = c$
 - (B) cx = sec y + tan y
 - (C) cy = sec x tan x
 - (D) cy = sec x + tan x

43. The solution of differential equation

$$x \frac{dy}{dx} + y = y^2$$
 is

- (A) y = 1 + cxy
- (B) $v = log\{cxv\}$
- (C) y + 1 = cxy (D) y = c + xy
- If $\frac{dy}{dx} + \frac{1}{\sqrt{1 v^2}} = 0$, then 44.
 - (A) $y + \sin^{-1} x = c$
 - (B) $v^2 + 2\sin^{-1} x + c = 0$
 - (C) $x + \sin^{-1} y = 0$
 - (D) $x^2 + 2\sin^{-1} y = 1$
- If $\frac{dy}{dx} = \frac{xy + y}{xy + x}$, then the solution of the 45.

differential equation is

- (A) $y = xe^x + c$ (B) $y = e^x + c$
- (C) $y = Axe^{x-y}$ (D) y = x + A
- The solution of the differential equation 46.

$$\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{1 + \cos 2y}{1 - \cos 2x} = 0$$

- (A) $\tan y + \cot x = c$ (B) $\tan y \cot x = c$
- (C) $\tan y \cot x = c$ (D) None of these
- The solution of the differential equation 47.

$$(1+x^2)\frac{dy}{dx} = x(1+y^2)$$
 is

- (A) $2 \tan^{-1} v = \log(1 + x^2) + c$
- (B) $\tan^{-1} v = \log(1 + x^2) + c$
- (C) $2 \tan^{-1} y + \log(1 + x^2) + c = 0$
- (D) None of these
- 48. Solution of the equation

$$(e^{x} + 1)ydy = (y + 1)e^{x}dx$$
 is

- (A) $c(v+1)(e^x+1) + e^y = 0$
- (B) $c(v+1)(e^x-1)+e^y=0$
- (C) $c(v+1)(e^x-1)-e^y=0$
- (D) $c(y+1)(e^x+1) = e^y$

49. Solution of the equation

$$(1-x^2)dy + xydx = xy^2dx$$
 is

- (A) $(y-1)^2(1-x^2)=0$
- (B) $(y-1)^2(1-x)^2 = c^2y^2$
- (C) $(y-1)^2(1+x^2) = c^2y^2$
- (D) None of these
- **50.** The solution of the equation

$$\sqrt{a+x}\,\frac{dy}{dx} + x = 0 \text{ is }$$

- (A) $3y + 2\sqrt{a + x} \cdot (x 2a) = 3c$
- (B) $3y + 2\sqrt{x + a} \cdot (x + 2a) = 3c$
- (C) $3y + \sqrt{x + a} \cdot (x + 2a) = 3c$
- (D) None of these
- 51. Solution of the equation

$$\cos x \cos y \frac{dy}{dx} = -\sin x \sin y is$$

- (A) $\sin y + \cos x = c$ (B) $\sin y \cos x = c$
- (C) $\sin y \cdot \cos x = c$ (D) $\sin y = c \cos x$
- The solution of the differential equation **52.** $x(e^{2y} - 1)dy + (x^2 - 1)e^y dx = 0$ is

(A)
$$e^y + e^{-y} = \log x - \frac{x^2}{2} + c$$

(B)
$$e^y - e^{-y} = \log x - \frac{x^2}{2} + c$$

(C)
$$e^y + e^{-y} = \log x + \frac{x^2}{2} + c$$

- (D) None of these
- 53. The solution of

$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y) \text{ is}$$

(A)
$$\log \left[1 + \tan \left(\frac{x + y}{2} \right) \right] + c = 0$$

(B)
$$\log \left[1 + \tan \left(\frac{x+y}{2} \right) \right] = x + c$$

(C)
$$\log \left[1 - \tan \left(\frac{x+y}{2} \right) \right] = x + c$$

(D) None of these

54. The solution of the differential equation

$$\frac{dy}{dx} = \frac{x - y + 3}{2(x - y) + 5}$$
 is

- (A) $2(x y) + \log(x y) = x + c$
- (B) $2(x-y) \log(x-y+2) = x + c$
- (C) $2(x-y) + \log(x-y+2) = x + c$
- (D) None of these
- 55. The solution of the differential equation $(1-x^2)(1-y)dx = xy(1+y)dy$ is

(A)
$$\log[x(1-y)^2] = \frac{x^2}{2} + \frac{y^2}{2} - 2y + c$$

- (B) $\log[x(1-y)^2] = \frac{x^2}{2} \frac{y^2}{2} + 2y + c$
- (C) $\log[x(1+y)^2] = \frac{x^2}{2} + \frac{y^2}{2} + 2y + c$
- (D) $\log[x(1-y)^2] = \frac{x^2}{2} \frac{y^2}{2} 2y + c$
- 56. The general solution of the differential equation $\log \left(\frac{dy}{dx} \right) = x + y$ is

 - (A) $e^x + e^y = c$ (B) $e^x + e^{-y} = c$

 - (C) $e^{-x} + e^{y} = c$ (D) $e^{-x} + e^{-y} = c$
- 57. The general solution of the differential equation $\frac{dy}{dx} = \cot x \cot y$ is
 - (A) $\cos x = c \cos ecy$ (B) $\sin x = c \sec y$

 - (C) $\sin x = c \cos y$ (D) $\cos x = c \sin y$
- **58.** The solution of the equation

$$\frac{dy}{dx} = \frac{y^2 - y - 2}{x^2 + 2x - 3}$$
 is

- (A) $\frac{1}{3} \log \left| \frac{y-2}{y+1} \right| = \frac{1}{4} \log \left| \frac{x+3}{x-1} \right| + c$
- (B) $\frac{1}{3} \log \left| \frac{y+1}{y-2} \right| = \frac{1}{4} \log \left| \frac{x-1}{x+3} \right| + c$
- (C) $4\log\left|\frac{y-2}{y+1}\right| = 3\log\left|\frac{x-1}{x+3}\right| + c$
- (D) None of these

- **59.** The general solution of the differential equation $ydx + (1 + x^2) tan^{-1} xdy = 0$, is
 - (A) $v tan^{-1} x = c$ (B) $x tan^{-1} v = c$
 - (C) $v + tan^{-1} x = c$ (D) $x + tan^{-1} v = c$
- **60.** The general solution of the differential equation $\frac{dy}{dx} = \frac{x^2}{v^2}$ is
 - (A) $x^3 y^3 = c$ (B) $x^3 + y^3 = c$

 - (C) $x^2 + y^2 = c$ (D) $x^2 y^2 = c$
- If $\frac{dy}{dx} = e^{-2y}$ and y = 0 when x = 5, the **61.** value of x for y = 3 is
 - (A) e⁵
- (C) $\frac{e^6 + 9}{2}$
- (D) log_e 6
- The solution of differential equation **62.** $dy - \sin x \sin y dx = 0$ is
 - (A) $e^{\cos x} \tan \frac{y}{2} = c$ (B) $e^{\cos x} \tan y = c$
 - (C) $\cos x \tan y = c$ (D) $\cos x \sin y = c$
- **63.** The general solution of the differential equation $e^y \frac{dy}{dx} + (e^y + 1) \cot x = 0$ is
 - (A) $(e^y + 1)\cos x = K$
 - (B) $(e^{y} + 1) \csc x = K$
 - (C) $(e^y + 1)\sin x = K$
 - (D) None of these
- **64.** Solution of differential equation
 - $\frac{dy}{dx} = \sin x + 2x$, is
 - (A) $y = x^2 \cos x + c$
 - (B) $y = \cos x + x^2 + c$
 - (C) $y = \cos x + 2$
 - (D) $y = \cos x + 2 + c$

65. Solution of differential equation

$$\frac{dy}{dx} = 2xy$$
 is

- (A) $v = ce^{x^2}$
- (B) $y^2 = 2x^2 + c$
- (C) $y = e^{-x^2} + c$ (D) $y = x^2 + c$
- The solution of the differential equation **66.** $(x + y)^2 \frac{dy}{dx} = a^2$ is
 - (A) $(x + y)^2 = \frac{a^2}{2}x + c$
 - (B) $(x + y)^2 = a^2x + c$
 - (C) $(x + y)^2 = 2a^2x + c$
 - (D) None of these
- 67. Solution of the differential equation $\frac{dx}{x} + \frac{dy}{y} = 0$ is
 - (A) xy = c
- (B) x + y = c
- (C) $\log x \log y = c$ (D) $x^2 + y^2 = c$
- The solution of differential equation 68. $y - x \frac{dy}{dx} = a \left(y^2 + \frac{dy}{dx} \right)$ is
 - (A) (x + a)(x + ay) = cy
 - (B) (x + a)(1 ay) = cy
 - (C) (x + a)(1 av) = c
 - (D) None of these
- The solution of $\log \left(\frac{dy}{dx} \right) = ax + by$ is **69.**

 - (A) $\frac{e^{by}}{b} = \frac{e^{ax}}{c} + c$ (B) $\frac{e^{-by}}{b} = \frac{e^{ax}}{c} + c$
 - (C) $\frac{e^{-by}}{c} = \frac{e^{ax}}{c} + c$ (D) None of these
- The solution of $\frac{dy}{dx} = \left(\frac{y}{x}\right)^{1/3}$ is **70.**
 - (A) $x^{2/3} + y^{2/3} = c$ (B) $x^{1/3} + y^{1/3} = c$
 - (C) $v^{2/3} x^{2/3} = c$ (D) $v^{1/3} x^{1/3} = c$

Homogeneous differential equations

- 71. The solution of the differential equation $(x^2 + v^2)dx = 2xydy$ is
 - (A) $x = c(x^2 + v^2)$
 - (B) $x = c(x^2 v^2)$
 - (C) $x + c(x^2 v^2) = 0$
 - (D) None of these
- The solution of the equation $\frac{dy}{dx} = \frac{x+y}{x-y}$ is 72.
 - (A) $c(x^2 + y^2)^{1/2} + e^{\tan^{-1}(y/x)} = 0$
 - (B) $c(x^2 + y^2)^{1/2} = e^{\tan^{-1}(y/x)}$
 - (C) $c(x^2 v^2) = e^{tan^{-1}(y/x)}$
 - (D) None of these
- 73. The solution of the differential equation $(3xy + y^2)dx + (x^2 + xy)dy = 0$ is
 - (A) $x^2(2xy + y^2) = c^2$
 - (B) $x^2(2xy y^2) = c^2$
 - (C) $x^2(v^2 2xv) = c^2$
 - (D) None of these
- The solution of the differential equation 74. $x dv - v dx = (\sqrt{x^2 + v^2}) dx$ is

(A)
$$y - \sqrt{x^2 + y^2} = cx^2$$

(B)
$$y + \sqrt{x^2 + y^2} = cx^2$$

- (C) $y + \sqrt{x^2 + y^2} + cx^2 = 0$
- (D) None of these
- *75*. The general solution of the differential equation (x + y)dx + xdy = 0 is

 - (A) $x^2 + y^2 = c$ (B) $2x^2 y^2 = c$
 - (C) $x^2 + 2xy = c$ (D) $y^2 + 2xy = c$

- **76.** The solution of the differential equation $x + y \frac{dy}{dx} = 2y$ is
 - (A) $\log(y x) = c + \frac{y x}{x}$
 - (B) $\log(y-x) = c + \frac{x}{y-x}$
 - (C) $y-x = c + log \frac{x}{y-x}$
 - (D) $y x = c + \frac{x}{y x}$
- The solution of the differential equation 77. $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ is
 - (A) $av^2 = e^{x^2/y^2}$
- (B) $av = e^{x/y}$
- (C) $y = e^{x^2} + e^{y^2} + c$ (D) $y = e^{x^2} + y^2 + c$
- The solution of the equation $\frac{dy}{dx} = \frac{x}{2y x}$ is **78.**
 - (A) $(x y)(x + 2y)^2 = c$
 - (B) v = x + c
 - (C) y = (2y x) + c
 - (D) $y = \frac{x}{2y x} + c$
- **79.** of the equation $\frac{dy}{dx} = \frac{y}{x} \left(\log \frac{y}{x} + 1 \right)$ is
 - (A) $\log \left(\frac{y}{x}\right) = cx$ (B) $\frac{y}{x} = \log y + c$
 - (C) $y = \log y + 1$
- (D) y = xy + c
- 80. Solution differential equation $\frac{dy}{dx} = \frac{y - x}{v + x}$ is
 - (A) $\log_e(x^2 + y^2) + 2 \tan^{-1} \frac{y}{x} + c = 0$
 - (B) $\frac{y^2}{2} + xy = xy \frac{x^2}{2} + c$
 - (C) $\left(1 + \frac{x}{y}\right) y = \left(1 \frac{x}{y}\right) x + c$
 - (D) $y = x 2\log_e y + c$

- If $y' = \frac{x y}{x + y}$, then its solution is 81.
 - (A) $v^2 + 2xv x^2 = c$
 - (B) $v^2 + 2xv + x^2 = c$
 - (C) $v^2 2xv x^2 = c$
 - (D) $v^2 2xv + x^2 = c$

Exact differential equations

- The solution of $(x y^3)dx + 3xy^2dy = 0$ is 82.

 - (A) $\log x + \frac{x}{y}$ (B) $\log x + \frac{y^3}{y} = k$
 - (C) $\log x \frac{x}{y^3} = k$ (D) $\log xy y^3 = k$
- 83. The solution of

$$ye^{-x/y}dx - (xe^{-x/y} + y^3)dy = 0$$
 is

- (A) $\frac{y^2}{2} + e^{-x/y} = k$ (B) $\frac{x^2}{2} + e^{-x/y} = k$
- (C) $\frac{x^2}{2} + e^{x/y} = k$ (D) $\frac{y^2}{2} + e^{x/y} = k$
- 84. The solution of the differential equation $x \, dy + y \, dx - \sqrt{1 - x^2 y^2} \, dx = 0$ is
 - (A) $\sin^{-1} xy = c x$
 - (B) $xy = \sin(x + c)$
 - (C) $\log(1 x^2y^2) = x + c$
 - (D) $y = x \sin x + c$
- **85.** Solution of the differential equation, $y dx - x dy + xy^2 dx = 0$ can be

 - (A) $2x + x^2y = \lambda y$ (B) $2y + y^2x = \lambda y$
 - (C) $2y y^2x = \lambda y$ (D) None of these
- If c is any arbitrary constant, then the 86. general solution of the differential equation ydx - xdy = xy dx is given by
 - (A) $y = cx e^{-x}$
- (B) $x = cve^{-x}$
- (C) $y + e^x = cx$
- (D) $ye^x = cx$

Linear differential equations

- The solution of the equation $x \frac{dy}{dx} + 3y = x$ **87.**
 - (A) $x^3y + \frac{x^4}{4} + c = 0$ (B) $x^3y = \frac{x^4}{4} + c$
 - (C) $x^3y + \frac{x^4}{4} = 0$ (D) None of these
- The solution of the differential equation 88. $\frac{dy}{dx} + y = \cos x \text{ is}$
 - (A) $y = \frac{1}{2}(\cos x + \sin x) + ce^{-x}$
 - (B) $y = \frac{1}{2}(\cos x \sin x) + ce^{-x}$
 - (C) $y = \cos x + \sin x + ce^{-x}$
 - (D) None of these
- The solution of the differential equation 89. $\frac{dy}{dx}$ + y cot x = 2 cos x is
 - (A) $y \sin x + \cos 2x = 2c$
 - (B) $2y \sin x + \cos x = c$
 - (C) $y \sin x + \cos x = c$
 - (D) $2y \sin x + \cos 2x = c$
- 90. The solution of equation the $(x + 2y^3) \frac{dy}{dy} - y = 0$ is
 - (A) y(1-xy) = Ax (B) $y^3 x = Ay$
 - (C) x(1-xy) = Ay (D) x(1+xy) = Ay

Where A is any arbitrary constant

- 91. The integrating factor of the differential equation $\frac{dy}{dx} = y \tan x - y^2 \sec x$, is
 - (A) tan x
- (B) sec x
- $(C) \sec x$
- (D) cot x

Integrating factor of differential equation 92.

$$\cos x \frac{dy}{dx} + y \sin x = 1 \text{ is}$$

- $(A) \cos x$
- (B) tan x
- (C) sec x
- (D) sin x
- 93. Solution of differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \mathrm{a}y = \mathrm{e}^{\mathrm{m}x} \text{ is}$$

- (A) $(a + m) y = e^{mx} + c$
- (B) $ye^{ax} = me^{mx} + c$
- (C) $v = e^{mx} + ce^{-ax}$
- (D) $(a + m)y = e^{mx} + ce^{-ax}(a + m)$
- 94. The integrating factor of the differential equation $(x \log x) \frac{dy}{dx} + y = 2 \log x$ is
 - $(A) \log x$
- (B) log(log x)
- (C) e^x
- (D) x
- Integrating factor of the differential 95. equation $\frac{dy}{dx} + y \tan x - \sec x = 0$ is
 - (A) $e^{\sin x}$
- (B) $\frac{1}{\sin x}$
- (C) $\frac{1}{\cos x}$
- 96. The solution of the differential equation $x \log x \frac{dy}{dx} + y = 2 \log x$ is
 - (A) $y = \log x + c$
 - (B) $v = \log x^2 + c$
 - (C) $v \log x = (\log x)^2 + c$
 - (D) $y = x \log x + c$
- 97. Solution of the differential equation $\frac{dy}{dx} + y \sec^2 x = \tan x \sec^2 x$ is
 - (A) $y = \tan x 1 + ce^{-\tan x}$
 - (B) $y^2 = \tan x 1 + ce^{\tan x}$
 - (C) $ye^{\tan x} = \tan x 1 + c$
 - (D) $ye^{-\tan x} = \tan x 1 + c$

- An integrating factor of the differential 98. equation $(1-x^2)\frac{dy}{dx} - xy = 1$, is

 - (A) -x (B) $-\frac{x}{(1-x^2)}$

 - (C) $\sqrt{(1-x^2)}$ (D) $\frac{1}{2}\log(1-x^2)$
- factor of 99. Integrating equation $(x^2 + 1)\frac{dy}{dx} + 2xy = x^2 - 1$ is

 - (A) $x^2 + 1$ (B) $\frac{2x}{x^2 + 1}$
 - (C) $\frac{x^2-1}{x^2+1}$
- (D) None of these
- The solution of $\frac{dy}{dx} + \frac{y}{3} = 1$ is 100.
 - (A) $y = 3 + ce^{x/3}$ (B) $y = 3 + ce^{-x/3}$

 - (C) $3y = c + e^{x/3}$ (D) $3y = c + e^{-x/3}$
- 101. $y + x^2 = \frac{dy}{dx}$ has the solution
 - (A) $v + x^2 + 2x + 2 = ce^x$
 - (B) $y + x + x^2 + 2 = ce^{2x}$
 - (C) $v + x + 2x^2 + 2 = ce^x$
 - (D) $v^2 + x + x^2 + 2 = ce^x$
- The solution of $\frac{dy}{dx} + p(x)y = 0$ is 102.
 - (A) $y = ce^{\int p dx}$ (B) $x = ce^{-\int p dy}$
 - (C) $v = ce^{-\int P dx}$ (D) $x = ce^{\int p dy}$
- **103.** The solution of $\frac{dy}{dx} + y = e^{-x}$, y(0) = 0, is
 - (A) $v = e^{-x}(x-1)$ (B) $v = xe^{x}$
- - (C) $v = xe^{-x} + 1$ (D) $v = xe^{-x}$

- 104. Integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is
 - (A) $\int P dx$
- (B) $\int Q dx$
- (C) $e^{\int P dx}$ (D) $e^{\int Q dx}$
- To reduce the differential equation 105. $\frac{dy}{dx} + P(x)y = Q(x).y^n$ to the linear form, the substitution is

 - (A) $v = \frac{1}{v^n}$ (B) $v = \frac{1}{v^{n-1}}$
 - (C) $v = y^n$
- (D) $v = v^{n-1}$
- The solution of differential equation 106. $\frac{dy}{dx} + y = 1$ is
 - (A) $y = 1 + ce^{-x}$ (B) $y = 1 ce^{-x}$
 - (C) $v = x + ce^{-x}$ (D) $v = x ce^{-x}$

Application of differential equations

- **107.** Equation of curve through point (1,0) which satisfies the differential equation $(1 + y^2)dx - xydy = 0$, is

 - (A) $x^2 + y^2 = 1$ (B) $x^2 y^2 = 1$
 - (C) $2x^2 + y^2 = 2$ (D) None of these
- Equation of curve passing through (3, 9) 108. which satisfies the differential equation

$$\frac{dy}{dx} = x + \frac{1}{x^2}$$
, is

- (A) $6xy = 3x^2 6x + 29$
- (B) $6xy = 3x^3 29x + 6$
- (C) $6xy = 3x^3 + 29x 6$
- (D) None of these

The differential equation $y \frac{dy}{dx} + x = a (a \text{ is})$ 109.

any constant) represents

- (A) A set of circles having centre on the yaxis
- (B) A set of circles centre on the x-axis
- (C) A set of ellipses
- (D) None of these
- The equation of a curve passing through 110. $\left(2,\frac{7}{2}\right)$ and having gradient $1-\frac{1}{x^2}$ at(x, y) is
 - (A) $v = x^2 + x + 1$ (B) $xv = x^2 + x + 1$
 - (C) xy = x + 1
- (D) None of these
- 111. The equation of the curve through the point
 - (1,0) and whose slope is $\frac{y-1}{y^2+y}$ is
 - (A) (y-1)(x+1) + 2x = 0
 - (B) 2x(y-1) + x + 1 = 0
 - (C) x(y-1)(x+1) + 2 = 0
 - (D) None of these
- The slope of a curve at any point is the 112. reciprocal of twice the ordinate at the point and it passes though the point (4, 3). The equation of the curve is

 - (A) $x^2 = y + 5$ (B) $y^2 = x 5$
 - (C) $v^2 = x + 5$ (D) $x^2 = v 5$
- A particle moves in a straight line with a 113. velocity given by $\frac{dx}{dt} = x + 1(x \text{ is the})$ distance described). The time taken by a particle to traverse a distance of 99 metre is
 - (A) $\log_{10} e$
- (B) 2log₂10
- (C) $2\log_{10} e$ (D) $\frac{1}{2}\log_{10} e$
- differential 114. Solution of equation x dy - y dx = 0 represents
 - (A) Rectangular hyperbola
 - (B) Straight line passing through origin
 - (C) Parabola whose vertex is at origin
 - (D) Circle whose centre is at origin

115. Integral curve satisfying

$$y' = \frac{x^2 + y^2}{x^2 - y^2}$$
, $y(1) = 2$ has the slope at the

point (1, 0) of the curve, equal to

- (A) 5/3
- (B) 1

(C) 1

- (D) 5/3
- A particle starts at the origin and moves 116. along the x-axis in such a way that its velocity at the point (x, 0) is given by the

formula $\frac{dx}{dt} = \cos^2 \pi x$. Then the particle never reaches the point on

- (A) $x = \frac{1}{4}$ (B) $x = \frac{3}{4}$
- (C) $x = \frac{1}{2}$ (D) x = 1

Miscellaneous differential equations

117. The solution of the differential equation

$$\frac{d^2y}{dx^2} = -\frac{1}{x^2}$$
 is

- (A) $y = \log x + c_1 x + c_2$
- (B) $y = -\log x + c_1 x + c_2$

(C)
$$y = -\frac{1}{x} + c_1 x + c_2$$

- (D) None of these
- The solution of $\frac{d^2y}{dx^2} = \sec^2 x + xe^x$ is 118.
 - (A) $y = \log(\sec x) + (x 2)e^x + c_1x + c_2$
 - (B) $y = \log(\sec x) + (x + 2)e^x + c_1x + c_2$
 - (C) $y = \log(\sec x) (x+2)e^x + c_1x + c_2$
 - (D) None of these
- 119. If $\frac{d^2y}{dx^2} = 0$, then

 - (A) y = ax + b (B) $y^2 = ax + b$

 - (C) $y = \log x$ (D) $y = e^x + c$
- If $\frac{d^2y}{dx^2} + \sin x = 0$, then solution of the **120.** differential equation is.
 - (A) $\sin x + c_1 x + c_2$ (B) $\cos x + c_1 x + c_2$
 - (C) $\tan x + c_1 x + c_2$ (D) $\log \sin x + c_1 x + c_2$