EXERCISE-I

Area bounded by region, Volume and surface area of solids of revolution

- 1. If the ordinate x = a divides the area bounded by the curve $y = \left(1 + \frac{8}{x^2}\right)$, x - axis and the ordinates x = 2, x = 4 into two equal parts, then a =
 - (A) 8 (B) $2\sqrt{2}$
 - (C) 2 (D) $\sqrt{2}$
- 2. Area between the curve $y = \cos x$ and x - axis when $0 \le x$ is (A) 2 (B) 4
 - (C) 0 (D) 3
- 3. Area bounded by curve $y = x^3$, x axis and ordinates x = 1 and x = 4, is
 - (A) 64 sq. unit (B) 27 sq. unit (C) $\frac{127}{4}$ sq. unit (D) $\frac{255}{4}$ sq. unit
- 4. Area bounded by curve xy = c, x axis between x = 1 and x = 4, is
 - (A) $c \log 3 sq. unit$ (B) $2 \log c sq. unit$
 - (C) $2c \log 2 sq. unit$ (D) $2c \log 5 sq. unit$
- 5. Area bounded by curve $y = k \sin x$ between $x = \pi$ and $x = 2\pi$, is
 - (A) 2k sq. unit (B) 0 (C) $\frac{k^2}{2}$ sq. unit (D) k sq. unit
- 6. Area bounded by $y = x \sin x$ and x axisbetween x = 0 and $x = 2\pi$, is

(A) 0	(B) 2π sq. unit
(C) π sq. unit	(D) 4π sq. unit

7. Area under the curve $y = \sin 2x + \cos 2x$

between x = 0 and $x = \frac{\pi}{4}$, is (A) 2 sq. unit (B) 1 sq. unit (C) 3 sq. unit (D) 4 sq. unit

- 8. Area under the curve y = √3x + 4 between x = 0 and x = 4, is
 (A) 56/9 sq. unit
 (B) 64/9 sq. unit
 (C) 8 sq. unit
 (D) None of these
 9. If area bounded by the curves y² = 4ax and y = mx is a²/3, then the value of m is
 - (A) 2 (B) -2(C) $\frac{1}{2}$ (D) None of these
- 10. Area bounded by parabola $y^2 = x$ and straight line 2y = x is

(A)
$$\frac{4}{3}$$
 (B) 1
(C) $\frac{2}{3}$ (D) $\frac{1}{3}$

11. For $0 \le x \le \pi$, the area bounded by y = x and $y = x + \sin x$, is

(A) 2 (B) 4
(C)
$$2\pi$$
 (D) 4π

12. The area of the region bounded by the x - axis and the curves defined by $y = \tan x, (-\pi/3 \le x \le \pi/3)$ is

(A)
$$\log \sqrt{2}$$
 (B) $-\log \sqrt{2}$
(C) $2\log 2$ (D) 0

- 13. If a curve $y = a\sqrt{x} + bx$ passes through the point (1, 2) and the area bounded by the curve, line x = 4 and x-axis is 8 sq. unit, then (A) a = 3, b = -1 (B) a = 3, b = 1 (C) a = -3, b = 1 (D) a = -3, b = -1
- 14. If the area above the *x*-axis, bounded by the curves $y = 2^{kx}$ and x = 0 and x = 2 is $\frac{3}{\ln 2}$, then the value of *k* is
 - (A) $\frac{1}{2}$ (B) 1
 - (C) -1 (D) 2

15. The area bounded by the x-axis, the curve y = f(x) and the lines x = 1, x = b is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all b > 1, then f(x) is (A) $\sqrt{x-1}$ (B) $\sqrt{x+1}$ (C) $\sqrt{x^2 + 1}$ (D) $\frac{x}{\sqrt{1+x^2}}$

16. The area bounded by the curve y = f(x), xaxis and ordinates x = 1 and x = b is $\frac{5}{24}\pi$,

then f(x) is

- (A) $3(x-1)\cos(3x+4) + \sin(3x+4)$
- (B) $(b-1)\sin(3x+4) + 3\cos(3x+4)$
- (C) $(b-1)\cos(3x+4) + 3\sin(3x+4)$
- (D) None of these
- 17. The area of the region (in the square unit) bounded by the curve $x^2 = 4y$, line x = 2 and *x*-axis is

(A) 1 (B)
$$\frac{2}{3}$$

(C) $\frac{4}{3}$ (D) $\frac{8}{3}$

18. Area under the curve $y = x^2 - 4x$ within the *x*axis and the line x = 2, is

(A)
$$\frac{16}{3}$$
 sq. unit
(B) $-\frac{16}{3}$ sq. unit
(C) $\frac{4}{7}$ sq. unit

(D) Cannot be calculated

- **19.** Area by bounded the curve xy - 3x - 2y - 10 = 0, x-axis and the lines x = 3, x = 4 is
 - (A) $16 \log 2 13$ (B) $16 \log 2 - 3$
 - (C) $16 \log 2 + 3$ (D) None of these
- **20.** The area bounded by curve $y^2 = x$, line y = 4and *y*-axis is

(A)
$$\frac{16}{3}$$
 (B) $\frac{64}{3}$
(C) $7\sqrt{2}$ (D) None

(D) None of these

21. The area bounded by the circle $x^2 + y^2 = 4$, line $x = \sqrt{3}y$ and x - axis lying in the first quadrant, is

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{4}$
(C) $\frac{\pi}{3}$ (D) π

22. The area of the triangle formed by the tangent to the hyperbola $xy = a^2$ and co-ordinate axes is

(A) a^2	(B) $2a^2$
(C) $3a^2$	(D) $4a^2$

23. The area formed by triangular shaped region bounded by the curves $y = \sin x$, $y = \cos x$ and $\mathbf{x} = 0$ is

(A)
$$\sqrt{2} - 1$$
 (B) 1
(C) $\sqrt{2}$ (D) $1 + \sqrt{2}$

24. The part of straight line y = x + 1 between x = 2 and x = 3 is revolved about x-axis, then the curved surface of the solid thus generated is

(A)
$$37\pi/3$$
 (B) $7\pi\sqrt{2}$
(C) 37π (D) 7π

25. The area bounded by the curve $y = 4x - x^2$ and the x - axis, is

(A)
$$\frac{30}{7}$$
 sq. unit
(B) $\frac{31}{7}$ sq. unit
(C) $\frac{32}{3}$ sq. unit
(D) $\frac{34}{3}$ sq. unit

26. Area of the region bounded by the curve $y = \tan x$, tangent drawn to the curve at

$$x = \frac{\pi}{4}$$
 and the x-axis is

(A)
$$\frac{1}{4}$$
 (B) $\frac{4}{3}$

(C)
$$\log \sqrt{2} - \frac{1}{4}$$
 (D) None of these

27. The area between the curve $y = 4 + 3x - x^2$ and *x*-axis is (A) 125/6 (B) 125/3

(C) 125/2 (D) None of these

- **28.** The area bounded by the curve y = x, *x*-axis and ordinates x = -1 to x = 2 is (A) 0 (B) 1/2
 - (C) 3/2 (D) 5/2
- 29. Area inside the parabola $y^2 = 4ax$, between the lines x = a and x = 4a is equal to (A) $4a^2$ (B) $8a^2$

(C)
$$28\frac{a^2}{3}$$
 (D) $35\frac{a^2}{3}$

30. The area bounded by $y = -x^2 + 2x + 3$ and y = 0 is

(A) 32 (B)
$$\frac{32}{3}$$

(C) $\frac{1}{32}$ (D) $\frac{1}{3}$

- **31.** The area of the region bounded by y = |x 1|and y = 1 is
 - (A) 2 (B) 1 (C) $\frac{1}{2}$ (D) None of these
- **32.** The area between the curve $y^2 = 4ax$, *x*-axis and the ordinates x = 0 and x = a is

(A)
$$\frac{4}{3}a^2$$
 (B) $\frac{8}{3}a^2$
(C) $\frac{2}{3}a^2$ (D) $\frac{5}{3}a^2$

- **33.** The area of the curve $xy^2 = a^2(a x)$ bounded by *y*-axis is
 - (A) πa^2 (B) $2\pi a^2$ (C) $3\pi a^2$ (D) $4\pi a^2$
- 34. The area enclosed by the parabolas $y = x^2 1$ and $y = 1 - x^2$ is
 - (A) 1/3 (B) 2/3 (C) 4/3 (D) 8/3
- **35.** The area of the smaller segment cut off from the circle $x^2 + y^2 = 9$ by x = 1 is
 - (A) $\frac{1}{2}(9 \sec^{-1} 3 \sqrt{8})$ (B) $9 \sec^{-1}(3) \sqrt{8}$ (C) $\sqrt{8} - 9 \sec^{-1}(3)$ (D) None of these

36. The area of the region bounded by the curves y = |x - 2|, x = 1, x = 3 and the x-axis is

(A) 4
(B) 2
(C) 3
(D) 1

37. The area enclosed between the parabolas y² = 4x and x² = 4y is

(A)
$$\frac{14}{3}$$
 sq. unit
(B) $\frac{3}{4}$ sq. unit
(C) $\frac{3}{16}$ sq. unit
(D) $\frac{16}{3}$ sq. unit

38. The area bounded by the curves $y^2 = 8x$ and y = x is

(A)
$$\frac{128}{3}$$
 sq. unit
(B) $\frac{32}{3}$ sq. unit
(C) $\frac{64}{3}$ sq. unit
(D) 32 sq. unit

39. The area bounded by the curves $y = \log_e x$ and $y = (\log_e x)^2$ is (A) 3-e (B) e-3

(C)
$$\frac{1}{2}(3-e)$$
 (D) $\frac{1}{2}(e-3)$

40. The area between the parabola $y^2 = 4ax$ and $x^2 = 8ay$ is

(A)
$$\frac{8}{3}a^2$$
 (B) $\frac{4}{3}a^2$
(C) $\frac{32}{3}a^2$ (D) $\frac{16}{3}a^2$

41. The area of figure bounded by $y = e^x$, $y = e^{-x}$ and the straight line x = 1 is

(A)
$$e + \frac{1}{e}$$
 (B) $e - 3$
(C) $e + \frac{1}{e} - 2$ (D) $e + \frac{1}{e} + 2$

- 42. The volume of the solid formed by rotating the area enclosed between the curve $y = x^2$ and the line y=1 about y=1 is (in cubic units)
 - (A) $9\pi/5$ (B) $4\pi/3$
 - (C) 8π/3 (D) 7π/5

43. The volume of the solid generated by revolving about the *y*-axis the figure bounded by the parabola $y = x^2$ and $x = y^2$ is

(A)
$$\frac{21}{5}\pi$$
 (B) $\frac{24}{5}\pi$
(C) $\frac{2}{15}\pi$ (D) $\frac{5}{24}\pi$

- **44.** A frustum of sphere is made by cutting two parallel planes of any sphere. If radius of sphere is 5 *cm* and distance between the plane is 1 *cm*, then what will be the curved surface of frustum when the distance of first plane from the centre of sphere is 2 *cm*
 - (A) $5\pi \text{cm}^2$ (B) $10\pi \text{cm}^2$ (C) $15\pi \text{cm}^2$ (D) $40\pi \text{cm}^2$
- **45.** The area enclosed by the parabola $y^2 = 4ax$ and the straight line y = 2ax, is

(A)
$$\frac{a^2}{3}$$
 sq. unit
(B) $\frac{1}{3a^2}$ sq. unit
(C) $\frac{1}{3a}$ sq. unit
(D) $\frac{2}{3a}$ sq. unit

46. The part of circle $x^2 + y^2 = 9$ in between y = 0 and y = 2 is revolved about *y*-axis. The volume of generating solid will be

(A)
$$\frac{46}{3}\pi$$
 (B) 12π

(C) 16π (D) 28π

47. Area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2 is

(A)
$$\frac{8}{9}$$
 sq. unit
(B) $\frac{9}{8}$ sq. unit
(C) $\frac{4}{3}$ sq. unit
(D) None of these

48. The area of the region bounded by the curve y = x |x|, *x*-axis and the ordinates x = 1, x = -1 is given by

(A) Zero (B)
$$\frac{1}{3}$$

(C) $\frac{2}{3}$ (D) 1

49. Area included between the two curves
$$y^2 = 4ax$$
 and $x^2 = 4ay$, is

(A)
$$\frac{32}{3}a^2$$
 sq. unit
(B) $\frac{16}{3}$ sq. unit
(C) $\frac{32}{3}$ sq. unit
(D) $\frac{16}{3}a^2$ sq. unit

50. If the area bounded by $y = ax^2$ and $x = ay^2$, a > 0, is 1, then a =

(A) 1 (B)
$$\frac{1}{\sqrt{3}}$$

(C) $\frac{1}{3}$ (D) None of these