EXERCISE-I

7.

8.

9.

Application in mechanics and rate measurer

1. If the law of motion in a straight line is $s = \frac{1}{2}vt$, then acceleration is

(A) Constant (B) Proportional to t

- (C) Proportional to v (D) Proportional to s
- 2. A point moves in a straight line during the time t = 0 to t = 3 according to the law $s = 15t 2t^2$. The average velocity is
 - (A) 3 (B) 9
 - (C) 15 (D) 27
- 3. The distance in seconds, described by a particle in *t* seconds is given by $s = ae^{t} + \frac{b}{e^{t}}$. Then acceleration of the particle at time *t* is

(A) Proportional to t(B) Proportional to s(C) s(D) Constant

- 4. The equation of motion of a stone, thrown vertically upwards is $s = ut 6.3t^2$, where the units of *s* and *t* are *cm* and *sec*. If the stone reaches at maximum height in 3 *sec*, then u =
 - (A) 18.9 cm / sec
 (B) 12.6 cm / sec
 (C) 37.8 cm / sec
 (D) None of these
- 5. A particle moves in a straight line so that its velocity at any point is given by $v^2 = a + bx$, where $a, b \neq 0$ are constants. The acceleration is

(C) Non-uniform (D) Indeterminate

6. The volume V and depth x of water in a vessel are connected by the relation $V = 5x - \frac{x^2}{6}$ and the volume of water is increasing at the rate of $5\text{cm}^3/\text{sec}$, when x = 2cm. The rate at which the depth of water is increasing, is

(A)
$$\frac{5}{18}$$
 cm / sec
(B) $\frac{1}{4}$ cm / sec
(C) $\frac{5}{16}$ cm / sec
(D) None of these

The equation of motion of a stone thrown vertically upward from the surface of a planet is given by $s = 10 t - 3t^2$, and the units of *s* and *t* are *cm* and *sec* respectively. The stone will return to the surface of the planet after

(A)
$$\frac{10}{3}$$
 sec
(B) $\frac{5}{3}$ sec
(C) $\frac{20}{3}$ sec
(D) $\frac{5}{6}$ sec

A body moves according to the formula $v = 1 + t^2$, where *v* is the velocity at time *t*. The acceleration after 3 *sec* will be

(v in cm/sec)

- (A) $24 \text{ cm} / \text{sec}^2$ (B) $12 \text{ cm} / \text{sec}^2$
- (C) $6 \text{ cm} / \text{sec}^2$ (D) None of these
- The length of the side of a square sheet of metal is increasing at the rate of 4cm / sec.
 The rate at which the area of the sheet is increasing when the length of its side is 2 cm, is
 - (A) $16 \text{ cm}^2 / \text{sec}$ (B) $8 \text{ cm}^2 / \text{sec}$ (C) $32 \text{ cm}^2 / \text{sec}$ (D) None of these

10. The equations of motion of two stones thrown vertically upwards simultaneously are $s = 19.6t - 4.9t^2$ and $s = 9.8t - 4.9t^2$ respectively and the maximum height attained by the first one is *h*. When the height of the first stone is maximum, the height of the second stone will be

(A) h/3 (B) 2h(C) h (D) 0

- 11. A ball thrown vertically upwards falls back on the ground after 6 *second*. Assuming that the equation of motion is of the form $s = ut - 4.9t^2$, where *s* is in *metre* and *t* is in *second*, find the velocity at t = 0
 - (A) 0 m / s (B) 1 m/s

(C) 29.4
$$m/s$$
 (D) None of these

- 12. Radius of a circle is increasing uniformly at the rate of 3cm / sec. The rate of increasing of area when radius is 10cm, will be
 - (A) $\pi \text{ cm}^2 / \text{ s}$ (B) $2\pi \text{ cm}^2 / \text{ s}$

(C) $10\pi \text{ cm}^2/\text{s}$ (D) None of these

13. The motion of stone thrown up vertically is given by $s = 13.8t - 4.9t^2$, where s is in *metre* and t is in *seconds*. Then its velocity at t = 1 second is

(A) 3 m/s (B) 5 m/s

(C) 4 m/s (D) None of these

- 14. A particle is moving in a straight line. Its displacement at time t is given by $s = -4t^2 + 2t$, then its velocity and acceleration at time $t = \frac{1}{2}$ second are (A) - 2, -8 (B) 2, 6 (C) - 2, 8 (D) 2, 8
- 15. If the distance travelled by a point in time *t* is $s = 180t 16t^2$, then the rate of change in velocity is
 - (A) 16 t unit (B) 48 unit (C) - 32 unit (D) None of these

16. A man 2metre high walks at a uniform speed 5 metre/hour away from a lamp post 6 metre high. The rate at which the length of his shadow increases is

(A) 5 m/h (B)
$$\frac{5}{2}$$
 m/h
(C) $\frac{5}{3}$ m/h (D) $\frac{5}{4}$ m/h

17. A ladder 5 *m* in length is resting against vertical wall. The bottom of the ladder is pulled along the ground away from the wall at the rate of 1.5 m/sec. The length of the highest point of the ladder when the foot of the ladder 4.0 m away from the wall decreases at the rate of (A) 2 m/sec

(A)
$$2 \text{ m/sec}$$
 (B) 3 m/sec
(C) 2.5 m/sec (D) 1.5 m/sec

18. If by dropping a stone in a quiet lake a wave moves in circle at a speed of 3.5 cm/sec, then the rate of increase of the enclosed circular region when the radius of

the circular wave is 10 cm, is $(\pi =$

$$\left(\pi = \frac{22}{7}\right)$$

(A) 220 sq. cm/sec
(B) 110 sq. cm/sec
(C) 35 sq. cm/sec
(D) 350 sq. cm/sec

19. A ladder is resting with the wall at an angle of 30° . A man is ascending the ladder at the rate of 3 *ft/sec*. His rate of approaching the wall is

(A)
$$3 ft/sec$$
 (B) $\frac{3}{2} ft/sec$
(C) $\frac{3}{4} ft/sec$ (D) $\frac{3}{\sqrt{2}} ft/sec$

20. If the edge of a cube increases at the rate of 60 *cm per second*, at what rate the volume is increasing when the edge is 90 *cm*(A) 486000 *cu cm per sec*

- (B) 1458000 *cu cm per sec*
- (C) 43740000 *cu cm per sec*
- (D) None of these

- 21. A particle is moving along the curve $x = at^2 + bt + c$. If $ac = b^2$, then the particle would be moving with uniform (A) Rotation (B) Velocity (C) Acceleration (D) Retardation
- 22. The sides of an equilateral triangle are increasing at the rate of 2 *cm/sec*. The rate at which the area increases, when the side is 10 *cm* is

(A)
$$\sqrt{3}$$
 sq. unit/sec (B) 10 sq. unit/sec
(C) $10\sqrt{3}$ sq. unit/sec (D) $\frac{10}{\sqrt{3}}$ sq. unit/sec

23. The rate of change of the surface area of a sphere of radius r when the radius is increasing at the rate of 2 *cm/sec* is proportional to

(A)
$$\frac{1}{r}$$
 (B) $\frac{1}{r^2}$
(C) r (D) r^2

24. Moving along the *x*-axis are two points with x = 10 + 6t; $x = 3 + t^2$. The speed with which they are reaching from each other at the time of encounter is (*x* is in *cm* and *t* is in *seconds*)

(A) 16 <i>cm/sec</i>	(B) 20 <i>cm/sec</i>
(C) 8 <i>cm/sec</i>	(D) 12 <i>cm/sec</i>

25. The position of a point in time 't' is given by $x = a + bt - ct^2$, $y = at + bt^2$.

Its acceleration at time 't' is

$$(A) b-c \qquad (B) b+c$$

(C)
$$2b - 2c$$
 (D) $2\sqrt{b^2 + c^2}$

26. Gas is being pumped into a spherical balloon at the rate of 30 ft³/min. Then the rate at which the radius increases when it reaches the value 15 ft is

(A)
$$\frac{1}{30\pi}$$
 ft / min. (B) $\frac{1}{15\pi}$ ft / min.
(C) $\frac{1}{20}$ ft / min. (D) $\frac{1}{25}$ ft / min.

27. If the distance 's' metre traversed by a particle in t seconds is given by $s = t^3 - 3t^2$, then the velocity of the particle when the acceleration is zero, in metre/sec is

(A) 3 (B)
$$- 2$$

(C) $- 3$ (D) 2

28. A particle moves in a straight line so that $s = \sqrt{t}$, then its acceleration is proportional to

(A) Velocity (B)
$$(Velocity)^{3/2}$$

(C) $(Velocity)^3$ (D) $(Velocity)^2$

29. A point on the parabola $y^2 = 18x$ at which the ordinate increases at twice the rate of the abscissa is

(A)
$$\left(\frac{9}{8}, \frac{9}{2}\right)$$
 (B) $(2, -4)$
(C) $\left(\frac{-9}{8}, \frac{9}{2}\right)$ (D) $(2, 4)$

30. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness that melts at a rate of $50 \ cm^3/min$. When the thickness of ice is 5 cm, then the rate at which the thickness of ice decreases, is

(A)
$$\frac{1}{54\pi}$$
 cm/min
(B) $\frac{5}{6\pi}$ cm/min
(C) $\frac{1}{36\pi}$ cm/min
(D) $\frac{1}{18\pi}$ cm/min

Increasing and Decreasing function

31. For which interval the given function f(x) = -2x³ - 9x² - 12x + 1 is decreasing (A) (-2,∞)
(B) (-2,-1)
(C) (-∞, -1)
(D) (-∞, -2) and (-1,∞)

- 32. $f(x) = x^3 27x + 5$ is an increasing function, when (A) x < -3 (B) |x| > 3(C) $x \le -3$ (D) |x| < 3
- **33.** The function $f(x) = x^2$ is increasing in the interval
 - (A) (-1,1) (B) $(-\infty,\infty)$
 - (C) $(0,\infty)$ (D) $(-\infty,0)$
- 34. Function $f(x) = x^4 \frac{x^3}{3}$ is
 - (A) Increasing for $x > \frac{1}{4}$ and decreasing
 - for $x < \frac{1}{4}$
 - (B) Increasing for every value of x
 - (C) Decreasing for every value of x
 - (D) None of these

35. For every value of x function $f(x) = e^x$ is

- (A) Decreasing
- (B) Increasing
- (C) Neither increasing nor decreasing
- (D) None of these
- **36.** If f'(x) is zero in the interval (a, b) then in this interval it is
 - (A) Increasing function
 - (B) Decreasing function
 - (C) Only for a > 0 and b>0 is increasing function
 - (D) None of these
- 37. For the every value of x the function $f(x) = \frac{1}{x}$ is

$$f(x) = \frac{1}{5^x}$$

- (A) Decreasing
- (B) Increasing
- (C) Neither increasing nor decreasing
- (D) Increasing for x > 0 and decreasing for x < 0

f(x) = $2x^3 - 3x^2 - 36x + 7$ is decreasing, is (A) (-2, 3) (B) (2, 3) (C) (2,-3) (D) None of these If f(x) = $\sin x - \frac{x}{2}$ is increasing function,

The interval for which the given function

then

38.

39.

(A)
$$0 < x < \frac{\pi}{3}$$
 (B) $-\frac{\pi}{3} < x < 0$
(C) $-\frac{\pi}{3} < x < \frac{\pi}{3}$ (D) $x = \frac{\pi}{2}$

40. If x tends 0 to π , then the given function

- $f(x) = x \sin x + \cos x + \cos^2 x \text{ is}$
- (A) Increasing
- (B) Decreasing
- (C) Neither increasing nor decreasing
- (D) None of these

41. The interval of the decreasing function

$$f(x) = x^{3} - x^{2} - x - 4 is$$
(A) $\left(\frac{1}{3}, 1\right)$
(B) $\left(-\frac{1}{3}, 1\right)$
(C) $\left(-\frac{1}{3}, \frac{1}{3}\right)$
(D) $\left(-1, -\frac{1}{3}\right)$

- 42. The function $f(x) = x^3 3x^2 24x + 5$ is an increasing function in the interval given below
 - (A) $(-\infty, -2) \cup (4, \infty)$
 - (B) (−2,∞)
 - (C) (-2, 4)
 - (D) (-∞,4)

43. Which one is the correct statement about the function $f(x) = \sin 2x$

(A)
$$f(x)$$
 is increasing in $\left(0,\frac{\pi}{2}\right)$ and

decreasing in $\left(\frac{\pi}{2},\pi\right)$

(B) f(x) is decreasing in $\left(0, \frac{\pi}{2}\right)$ and increasing in $\left(\frac{\pi}{2}, \pi\right)$

(C)
$$f(x)$$
 is increasing in $\left(0,\frac{\pi}{4}\right)$ and

decreasing in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

(D) The statements (A), (B) and (C) are all correct

- 44. The function f defined by $f(x) = (x + 2)e^{-x}$ is
 - (A) Decreasing for all x
 - (B) Decreasing in $(-\infty, -1)$ and increasing in $(-1, \infty)$
 - (C) Increasing for all x
 - (D) Decreasing in $(-1,\infty)$ and increasing in $(-\infty, -1)$
- 45. If $f(x) = x^3 10x^2 + 200x 10$, then (A) f(x) is decreasing in $]-\infty,10]$ and increasing in $[10,\infty]$
 - (B) f(x) is increasing in $]-\infty,10]$ and decreasing in $[10,\infty[$
 - (C) f(x) is increasing throughout real line
 - (D) f(x) is decreasing throughout real line
- If $f(x) = \frac{x}{\sin x}$ and $g(x) = \frac{x}{\tan x}$, where 46. $0 < x \le 1$, then in this interval (A) Both f(x) and g(x) are increasing functions (B) Both f(x) and g(x) are decreasing functions (C) f(x) is an increasing function (D) g(x) is an increasing function Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ **47**. is monotonically decreasing, when (A) x < 2(B) x > 2(D) $1 \le x \le 2$ (C) x > 1 $2x^{3} + 18x^{2} - 96x + 45 = 0$ is an increasing **48**. function when (A) $x \le -8, x \ge 2$ (B) $x < -2, x \ge 8$ (C) $x \le -2, x \ge 8$ (D) $0 \le x \le -2$ $a \sin x + b \cos x$ 49. The function is $c \sin x + d \cos x$ decreasing, if (A) ad - bc > 0(B) ad - bc < 0(C) ab - cd > 0(D) ab - cd < 0The function $f(x) = 1 - e^{-x^2/2}$ is 50. (A) Decreasing for all x(B) Increasing for all x(C) Decreasing for x < 0 and increasing for x > 0(D) Increasing for x < 0 and decreasing for x > 0The function $f(x) = x^{1/x}$ is 51. (A) Increasing in $(1, \infty)$ (B) Decreasing in $(1, \infty)$ (C) Increasing in (1,e), decreasing in (e,∞) (D) Decreasing in (1, e), increasing in
 - (e,∞)

Application of Derivative

- $f(x) = 1 x^3 x^5$ 52. function is The **60**. decreasing for (A) $1 \le x \le 5$ (B) $x \leq 1$ the interval (C) $x \ge 1$ (D) All values of x(A) $(0,\pi)$ The function x^{x} is increasing, when 53. (C) $(0, \pi / 4)$ (A) $x > \frac{1}{2}$ (B) $x < \frac{1}{2}$ (C) x < 0(D) For all real x $2x^3 - 6x + 5$ is an increasing function if 54. If $x = t^2$ and y = 2t, then equation of the 61. (A) 0 < x < 1(B) -1 < x < 1normal at t = 1 is (C) x < -1 or x > 1 (D) -1 < x < -1/2(A) x + y - 3 = 0The length of the longest interval, in which 55. the function $3\sin x - 4\sin x$ is increasing, 62. is (B) $\frac{\pi}{2}$ (A) $\frac{\pi}{3}$ $y = \sin \frac{\pi x}{2}$ at (1, 1) is (A) y = 1(C) $\frac{3\pi}{2}$ (D) π (C) y = x $f(x) = x^3 + bx^2 + cx + d, 0 < b^2 < c$. Let 56. Then *f* 63. (A) Is bounded $y = 2\cos x$ at $x = \frac{\pi}{4}$ is (B) Has a local maxima (C) Has a local minima (A) $y - \sqrt{2} = 2\sqrt{2} \left(x - \frac{\pi}{4} \right)$ (D) Is strictly increasing If $f(x) = x, -1 \le x \le 1$, then function f(x)57. (B) $y + \sqrt{2} = \sqrt{2} \left(x + \frac{\pi}{4} \right)$ is (A) Increasing (B) Decreasing (C) $y - \sqrt{2} = -\sqrt{2} \left(x - \frac{\pi}{4} \right)$ (C) Stationary (D) Discontinuous **58**. For all $x \in (0,1)$ (D) $y - \sqrt{2} = \sqrt{2} \left(x - \frac{\pi}{4} \right)$ (A) $e^x < 1 + x$ (B) $\log_{a}(1+x) < x$ (C) $\sin x > x$ (D) $\log_a x > x$ **64**. The function $f(x) = 2x^3 - 3x^2 + 90x + 174$ 59. is increasing in the interval the curve $y = be^{-x/a}$ (A) $\frac{1}{2} < x < 1$ (B) $\frac{1}{2} < x < 2$ (A)(0,0)(C)(0, b)(D)(b, 0)(C) $3 < x < \frac{59}{4}$ (D) $-\infty < x < \infty$
 - The function $f(x) = \tan^{-1}(\sin x + \cos x)$, x > 0 is always an increasing function on (B) $(0, \pi/2)$ (D) $(0, 3\pi/4)$

Tangent and Normal

- (B) x + v 1 = 0(C) x + y + 1 = 0 (D) x + y + 3 = 0The equation of the normal to the curve
 - (B) x = 1(D) y - 1 = $\frac{-2}{\pi}(x-1)$

The equation of tangent to the curve

At which point the line $\frac{x}{a} + \frac{y}{b} = 1$, touches

(B)(0,a)

65.	The angle between	curves $y^2 = 4x$ and	72.	If the curve $y = a^x$	and $y = b^x$ intersect at
	$x^2 + y^2 = 5$ at (1, 2)	is		angle α then, tan α =	=
	(A) $\tan^{-1}(3)$	(B) $\tan^{-1}(2)$		(A) $\frac{a-b}{a-b}$	(B) $\frac{\log a - \log b}{\log a - \log b}$
	(C) π	$(D) \pi$		l+ab	$1 + \log a \log b$
"	(c) $\frac{1}{2}$	(D) $\frac{1}{4}$		(C) $\frac{a+b}{1-ab}$	(D) $\frac{\log a + \log b}{1 - \log a \log b}$
00.	For the curve by $= (x + a)$ the square of subtangent is proportional to		73.	The equation of tang	gent at $(-4, -4)$ on the
	(A) (Subnormal) ^{$1/2$}	(B) Subnormal		curve $x^2 = -4y$ is	
	(Γ) (Subnormal) ^{3/2}	(D) None of these		(A) $2x + y + 4 = 0$	(B) $2x - y - 12 = 0$
(7	(C) (Subnormal)	(D) None of these a_{1}^{2} , by at		(C) $2x + y - 4 = 0$	(D) $2x - y + 4 = 0$
0/.	The tangent to the $(2 - 8)$ is percelled to	curve $y = ax + bx$ at	74.	The point at which t	he tangent to the curve
	(2, -8) is parallel to (A) $a = 2 b = -2$	$(\mathbf{P}) = 2 \mathbf{b} = 4$		$y = 2x^2 - x + 1$	is parallel to
	(A) $a = 2, b = -2$ (C) $a = 2, b = -8$	(B) $a = 2, b = -4$ (D) $a = 4, b = -4$		y = 3x + 9 will be	
68	(C) $a = 2$ $0 = -8$ The sum of intercer	(D) $a = 4, 0 = -4$		(A) (2, 1)	(B) (1, 2)
00.	made by tange	ent to the curve		(C)(3,9)	(D) (-2, 1)
	$\sqrt{x} + \sqrt{y} = \sqrt{a}$ is		75.	At what point on th	e curve $x^3 - 8a^2y = 0$,
	(A) a	(B) 2a		the slope of the norm	nal is $\frac{-2}{3}$
	(C) $2\sqrt{a}$	(D) None of these		(A) (a, a)	(B) $(2a, -a)$
69.	Co-ordinates of a	point on the curve		(C) (2a,a)	(D) None of these
	$y = x \log x$ at which	h the normal is parallel	76.	The length of the no	ormal at point 't' of the
	to the line $2x - 2y = 3$ are			curve $x = a(t + \sin t)$), $y = a(1 - \cos t)$ is
	(A)(0,0)	(B) (e, e)		(A) a sin t	
	(C) $(e^2, 2e^2)$	(D) $(e^{-2} - 2e^{-2})$		(B) $2a\sin^3(t/2)\sec^3(t/2)$	(t / 2)
70.	If normal to the curve $y = f(x)$ is parallel			(C) $2a\sin(t/2) \tan(t/2)$	(t / 2)
	to x-axis, then correct statement is			(D) $2a\sin(t/2)$	
	(A) $\frac{dy}{dx} = 0$	(B) $\frac{dy}{dx} = 1$	77.	The tangent drawn a 2^{2x}	t the point $(0, 1)$ on the
	(C) dx	(D) Name of these		curve $y = e$ meets	x-axis at the point $(D) (-1/2, 0)$
	(C) $\frac{dy}{dy} = 0$	(D) None of these		(A) $(1/2,0)$	(B) $(-1/2, 0)$
71.	The abscissae of the points, where the tangent to curve $y = x^3 - 3x^2 - 9x + 5$ is		78	(C)(2,0) The equation of the	(D) (V, V)
			70.	$(1 + x^2)y = 2 - x$	where it crosses the r_{-}
	parallel to x-axis, are			(1 + A)y = 2 A, w	$\frac{1}{1000} = \frac{1}{10000000000000000000000000000000000$
	(A) 0 and 0 $(C) = 1 + 2$	(B) $x = 1$ and -1		(A) $x + 5v = 2$	(B) $x - 5y = 2$
	(C) $x = 1$ and -3	(D) $x = -1$ and 3		()	()

96

(C) 5x - y = 2 (D) 5x + y - 2 = 0

97

Application of Derivative

79. The equation of the tangent to curve 85. The necessary condition to be maximum or minimum for the function is $v = be^{-x/a}$ at the point where it crosses v-(A) f'(x) = 0 and it is sufficient axis is (B) f''(x) = 0 and it is sufficient (B) ax - by = 1(A) ax + by = 1(C) f'(x) = 0 but it is not sufficient (C) $\frac{x}{a} - \frac{y}{b} = 1$ (D) $\frac{x}{a} + \frac{y}{b} = 1$ (D) f'(x) = 0 and f''(x) = -veThe area of a rectangle will be maximum 86. 80. The angle of intersection of curves $y = x^2$, for the given perimeter, when rectangle is a $6y = 7 - x^3$ at (1, 1) is (A) Parallelogram (B) Trapezium (A) $\pi / 4$ (B) $\pi/3$ (C) Square (D) None of these (C) $\pi / 2$ (D) π 87. Of the given perimeter, the triangle having maximum area is **Maxima and Minima** (A) Isosceles triangle (B) Right angled triangle The function $x\sqrt{1-x^2}$, (x > 0) has (C) Equilateral 81. (D) None of these (A) A local maxima 88. The sufficient conditions for the function (B) A local minima $f: R \rightarrow R$ is to be maximum at x = a, will (C) Neither a local maxima nor a local be minima (A) f'(a) > 0 and f''(a) > 0(D) None of these (B) f'(a) = 0 and f''(a) = 0If two sides of a triangle be given, then the 82. (C) f'(a) = 0 and f''(a) < 0area of the triangle will be maximum if the (D) f'(a) > 0 and f''(a) < 0angle between the given sides be 89. 36 factorize into two factors in such a way (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ that sum of factors is minimum, then the factors are (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{2}$ (A) 2, 18 (B) 9, 4 (D) None of these (C) 3, 12 The function $x^5 - 5x^4 + 5x^3 - 1$ is 83. $f(x) = 2x^3 - 3x^2 - 12x + 5$ If 90. and (A) Maximum at x = 3 and minimum at $x \in [-2, 4]$, then the maximum value of x = 1function is at the following value of x (B) Minimum at x = 1(A) 2 (B) - 1(C) Neither maximum nor minimum at (C) - 2(D) 4 $\mathbf{x} = \mathbf{0}$ 91. The value of a so that the sum of the (D) Maximum at x = 0squares of the roots of the equation The adjacent sides of a rectangle with 84. $x^2 - (a-2)x - a + 1 = 0$ assume the least given perimeter as 100 cm and enclosing value, is maximum area are (A) 2 **(B)** 1 (A) 10 cm and 40 cm (B) 20 cm and 30 cm (C) 3 (D) 0(C) 25 cm and 25 cm (D) 15 cm and 35 cm

92.	The largest term in the sequence	100.	The minimum value of the expression
	n ² is since here		$7 - 20x + 11x^2$ is
	$a_n = \frac{1}{n^3 + 200}$ is given by		(A) $\frac{177}{(B)} = \frac{177}{(B)}$
	(A) 529 (B) 8		(A) $\frac{11}{11}$ (B) $-\frac{11}{11}$
	$(A) {49} \qquad (B) {89}$		$(C) = \frac{23}{23}$ (D) $\frac{23}{23}$
	(\mathbf{D}) 49 (D) Name of these		$\begin{array}{c} (b) \\ 11 \end{array} \qquad 11 \end{array}$
	(C) $\frac{1}{543}$ (D) None of these	101.	The minimum value of $e^{(2x^2-2x+1)\sin^2 x}$ is
93.	The maximum value of xy subject to		(A) <i>e</i> (B) 1/ <i>e</i>
	x + y = 8, is		(C) 1 (D) 0
	(A) 8 (B) 16	102.	x and y be two variables such that $x > 0$
	(C) 20 (D) 24		and $xy = 1$. Then the minimum value of
94	A minimum value of $\int_{0}^{x} t e^{-t^{2}} dt$ is		x + y is
<i>></i> I	$\int_{0}^{\infty} dx = \int_{0}^{\infty} dx = \int_{0$		(A) 2 (B) 3
	(A) 1 (B) 2		(C) 4 (D) 0
	(C) 3 (D) 0	103.	What are the minimum and maximum
95.	It sum of two numbers is 3, then maximum		values of the function $x^5 - 5x^4 + 5x^3 - 10$
	value of the product of first and the square		(A) - 37, -9
	(A) A (B) 2		(B) 10, 0
	(A) 4 (B) 3 (C) 2 (D) 1		(C) It has 2 min. and 1 max. values (D) It has 2 may and 1 min. values
06	(C) 2 (D) I The minimum value of the function	104	(D) it has 2 max, and 1 mm, values
90.	$2\cos 2x - \cos 4x$ in $0 \le x \le \pi$ is	104.	product of one part and the cube of the
	(A) 0 (B) 1		other is maximum. The two parts are
	3		(A) (10, 10) (B) (5, 15)
	(C) $\frac{3}{2}$ (D) - 3		(C) (13, 7) (D) None of these
97	If $f(x) = 2x^3 = 21x^2 + 36x = 30$	105.	The maximum and minimum values of
11.	then which one of the following is correct		$x^{3} - 18x^{2} + 96x$ in interval (0, 9) are
	(A) $f(x)$ has minimum at $x = 1$		(A) 160, 0 (B) 60, 0
	(A) $f(x)$ has minimum at $x = 1$		(C) 160, 128 (D) 120, 28
	(B) $\Gamma(x)$ has maximum at $x = 0$	106.	A cone of maximum volume is inscribed in
	(C) $f(x)$ has maximum at $x = 1$		a given sphere, then ratio of the height of
	(D) $f(x)$ has no maxima or minima		the cone to diameter of the sphere is $(A) 2/2$ (D) $2/4$
98.	The maximum value of $2x^3 - 24x + 107$ in		$\begin{array}{cccc} (A) & 2/5 & (B) & 5/4 \\ (C) & 1/3 & (D) & 1/4 \end{array}$
	the interval $[-3, 3]$ is	107	The ratio of height of cone of maximum
	(A) 75 (B) 89	107.	volume inscribed in a sphere to its radius is
	(C) 125 (D) 139		3 p 4
99.	If the function $f(x) = x^4 - 62x^2 + ax + 9$ is		(A) $\frac{-}{4}$ (B) $\frac{-}{3}$
	maximum at $x = 1$, then the value of <i>a</i> is		$(0)^{1}$ (D) ²
	(A) 120 (B) –120		(C) $\frac{1}{2}$ (D) $\frac{1}{3}$
	(C) 52 (D) 128		

Application of Derivative

108.	The function $f(x) = x + \sin x$ has	116.	The minimum value of $x^2 + \frac{1}{1+x^2}$ is at
	(A) A maximum but no minimum		(A) $x = 0$ (B) $x = 1$
	(C) Neither maximum nor minimum		(C) $x = 4$ (D) $x = 3$
	(D) Both maximum and minimum	117.	If $x - 2y = 4$, the minimum value of xy is
100	The function $f(x) = b$ is $b = 0$		(A) - 2 (B) 2
109.	The function $f(x) = ax + -; a, b, x > 0$ x		(C) 0 (D) -3
	takes on the least value at x equal to	118.	The minimum value of $2x + 3y$, when
	(A) b (B) \sqrt{a}		xy = 6, is
	(C) \sqrt{b} (D) $\sqrt{b/a}$		(A) 12 (B) 9
110.	If $xy = c^2$, then minimum value of		(C) 8 (D) 6
	ax + by is	119.	The function $f(x) = px - q + r x $,
	(A) $c\sqrt{ab}$ (B) $2c\sqrt{ab}$		$x \in (-\infty, \infty)$ where $p > 0, q > 0, r > 0$
	(C) $-c\sqrt{ab}$ (D) $-2c\sqrt{ab}$		assumes its minimum value only at one point if
111.	The function $f(x) = x^{-x}$ ($x \in \mathbb{R}$) attains a		(A) $p \neq q$ (B) $q \neq r$
	maximum value at $x =$		$(n) p \neq q \qquad (b) q \neq 1$ $(c) r \neq p \qquad (b) n = q = r$
	(A) 2 (B) 3	120	$(C) I \neq p \qquad (D) p = q = I$ The minimum value of function
	(C) $1/e$ (D) 1	120.	$f(z_{1}) = 2z_{1}^{4} + 8z_{2}^{3} + 12z_{2}^{2} + 48z_{1} + 25z_{2}^{2} = [0, 2]$
112.	If $ab = 2a + 3b, a > 0, b > 0$ then the		I(x) = 3x - 8x + 12x - 48x + 250I[0, 5]
	minimum value of <i>ab</i> is		is equal to $(A) 25$ (B) 20
	(A) 12 (B) 24		(A) 25 (B) -39 (C) -25 (D) 39
	(C) $\frac{1}{2}$ (D) None of these		
	4		Rolle's theorem,
113.	If PQ and PR are the two sides of a		Lagrange's mean value theorem
	triangle, then the angle between them		
	which gives maximum area of the triangle	121.	The function $f(x) = x(x+3)e^{-(1/2)x}$ satisfies
	(A) π (B) $\pi/3$		all the conditions of Rolle's theorem in
	(C) $\pi/4$ (D) $\pi/2$		[-3, 0]. The value of <i>c</i> is
114.	The function $y = a(1 - \cos x)$ is maximum		(A) 0 (B) -1
	when x =	100	(C) - 2 $(D) - 3$
	(A) π (B) $\pi / 2$	122.	Rolle's theorem is true for the function $S(z) = \frac{2}{2}$
	(C) $-\pi/2$ (D) $-\pi/6$		$f(x) = x^2 - 4$ in the interval
115.	The minimum value of $\left(x^2 + \frac{250}{x}\right)$ is		(A) $[-2, 0]$ (B) $[-2, 2]$ (C) $\left[0, \frac{1}{2}\right]$ (D) $[0, 2]$
	(A) 75 (B) 50		
	(C) 25 (D) 55		

- For the function $x + \frac{1}{x}$, $x \in [1,3]$, the value 123. of c for the mean value theorem is (B) $\sqrt{3}$ (A) 1 (C) 2 (D) None of these 124. If from mean value theorem. $f'(x_1) = \frac{f(b) - f(a)}{b - a}$, then (A) $a < x_1 \le b$ (B) $a \le x_1 < b$ (C) $a < x_1 < b$ (D) $a \le x_1 \le b$ 125. Let f(x) satisfy all the conditions of mean value theorem in [0, 2]. If f(0) = 0 and $|f'(x)| \le \frac{1}{2}$ for all x, in [0, 2] then (A) $f(x) \le 2$ (B) $| f(x) | \le 1$ (C) f(x) = 2x(D) f(x) = 3 for at least one x in [0, 2] $f(x) = x^3 - 6x^2 + ax + b$ function 126. The satisfy the conditions of Rolle's theorem in
 - [1, 3]. The values of a and b are (A) 11, -6 (B) - 6, 11 (C) -11, 6 (D) 6, -11

Consider the function $f(x) = e^{-2x} \sin 2x$ 127. over the interval $\left(0,\frac{\pi}{2}\right)$. A real number $c \in \left(0, \frac{\pi}{2}\right)$, as guaranteed by Rolle's theorem, such that f'(c) = 0 is (A) $\pi / 8$ (B) $\pi / 6$ (C) $\pi / 4$ (D) $\pi / 3$ Let $f(x) = \sqrt{x-1} + \sqrt{x+24-10\sqrt{x-1}};$ 128. 1 < x < 26 be real valued function. Then f'(x) for 1 < x < 26 is (B) $\frac{1}{\sqrt{x-1}}$ (A) 0 (D) None of these (C) $2\sqrt{x-1}-5$ 129. If f(x) satisfies the conditions of Rolle's theorem in [1,2] and f(x) is continuous in [1,2] then $\int_{1}^{2} f'(x) dx$ is equal to (A) 3 **(B)** 0 (D) 2 (C) 1 If the function $f(x) = x^3 - 6x^2 + ax + b$ 130. satisfies Rolle's theorem in the interval

[1,3] and
$$f'\left(\frac{2\sqrt{3}+1}{\sqrt{3}}\right) = 0$$
, then
(A) $a = -11$ (B) $a = -6$
(C) $a = 6$ (D) $a = 11$

100