Quadratic Equation Questions for IBPS Clerk Pre, SBI Clerk Pre and IBPS RRB.

Directions: In each of these questions, two equations (I) and (II) are given. You have to solve both the equations and give answer.

1. I.
$$x^3 - 4913 = 0$$

II.
$$y^2 - 361 = 0$$

A. if x < y

B. if $x \le y$

C. if x > y D. if $x \ge y$

E. if x = y or relationship between x and y can't be established

2. I.
$$x^2 = 361$$

II.
$$y^3 = 7269 + 731$$

A. if x < y

B. if x > y

C. if $x \ge y$

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

3. I.
$$15x^2 + x - 6 = 0$$

II.
$$5y^2 - 23y + 12 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

4. I.
$$x^3 - 2744 = 0$$

II.
$$y^2 - 256 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

5. I.
$$x^2 - 8x - 20 = 0$$

II.
$$3v^2 - 60v + 297 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

6. I.
$$2x^2 + 9x + 7 = 0$$

II.
$$v^2 + 4v + 4 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

7. I.
$$x^2 - 7x + 12 = 0$$

II.
$$3y^2 - 11y + 10 = 0$$

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

8. I.
$$2x^2 + 15x + 28 = 0$$

I.
$$2x^2 + 15x + 28 = 0$$
 II. $2y^2 + 13y + 21 = 0$

A. if x > v

B. if $x \ge y$

C. if x < y

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

9. I.
$$x^2 - 8x + 15 = 0$$

II.
$$y^2 - 12y + 36 = 0$$

A. if x > y

B. if $x \ge y$

C. if x < y

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

10. I.
$$x^2 + 9x + 20 = 0$$

II.
$$y^2 = 16$$

A. if x > y

B. if $x \ge v$

C. if x < y

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

11. I.
$$x^2 + (343)^{1/3} = 56$$

II.
$$(v)^{4/3} \times (v)^{5/3} - 295 = 217$$

A. if x > v

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

12. I.
$$5x + 4y = 8$$

II.
$$3x + 2y = 4$$

A. if x > y

B. if $x \le y$

C. if $x \ge v$

D. if x < y

E. if x = y or relationship between x and y can't be established

13. I.
$$x^2 + 8 = 6x$$

II.
$$y^2 + 15 = 8y$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

14. I.
$$\sqrt{49} + \sqrt{x + 15} = \sqrt{169}$$
 II. $y^2 - 212 = 364$

II.
$$y^2 - 212 = 364$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

15. I.
$$x^2 - \frac{(10)^{5/2}}{\sqrt{x}} = 0$$

$$II. \frac{18}{\sqrt{y}} - \sqrt{y} = \frac{7}{\sqrt{y}}$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

16. I.
$$2x^2 + 7x + 5 = 0$$

II.
$$3y^2 + 5y + 2 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

17. I.
$$2x^2 - 13x + 21 = 0$$
 II. $3y^2 - 14y + 15 = 0$

II.
$$3y^2 - 14y + 15 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if $x \le y$ or no relationship can be established between x and y.

18. I.
$$2x^2 - 13x + 18 = 0$$

II.
$$y^2 - 7y + 12 = 0$$

A. if x > v

B. if $x \le v$

C. if $x \ge v$

D. if x < v

E. if x = y or relationship between x and y can't be established

19. I.
$$x^2 + 6x + 9 = 0$$

II.
$$y^2 - y - 20 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

20. I.
$$3x^2 - 10x + 8 = 0$$

II.
$$2v^2 - 19v + 35 = 0$$

A. if x > v

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

21. I.
$$x^2 - 3 = 2x$$

II.
$$y^2 + 5y + 6 = 0$$

A. if x > y

B. if x < y

C. if $x \ge y$

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

22. I.
$$x^2 - 25x + 114 = 0$$

II.
$$y^2 - 10y + 24 = 0$$

A. if x > y

B. if x < y

C. if $x \ge y$

D. if $x \le y$

E. if x = y or relationship between x and y can't be established

23. I.
$$\frac{4}{\sqrt{x}} + \frac{6}{\sqrt{x}} = 5\sqrt{x}$$

II.
$$y^2 + \sqrt{256} = \sqrt{625}$$

B. if x < y

C. if $x \le v$

D. if x = y or relationship between x and y can't be established

24. I.
$$x^2 - 7\sqrt{3}x + 36 = 0$$
 II. $y^2 - 11\sqrt{3}y + 84 = 0$

II.
$$y^2 - 11 \sqrt{3} y + 84 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge v$

D. if x < y

E. if x = y or relationship between x and y can't be established

25. I.
$$x^2 = 361$$

II.
$$y^3 = 7269 + 731$$

A. if x > y

B. if $x \le y$

C. if x < y

D. if $x \ge y$

E. if x = y or relationship between x and y can't be established

26. I.
$$x^2 + 5x + 6 = 0$$

II.
$$y^2 - 4y - 12 = 0$$

A. if x > v

B. if $x \le y$

C. if $x \ge y$

D. if x = y or relationship between x and y can't be established

E. if x < y

27. I.
$$25x^2 - 90x + 72 = 0$$

II.
$$y^2 + 26y + 168 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

28. I.
$$3x^2 - 8x - 16 = 0$$

II.
$$3y^2 - 19y + 28 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

29. I.
$$12x^2 - 4x - 5 = 0$$

II.
$$8y^2 - 4y - 4 = 0$$

A. if x > y

B. if x < y

C. if x = y

D. if $x \ge y$

E. if $x \le y$ or no relationship can be established between x and y.

30. I.
$$6x^2 - 13x - 44 = 0$$

II.
$$4y^2 - 17y - 42 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

31. I.
$$3x + 5y = 34.5$$

II.
$$4x - 9y = -1$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

32. I.
$$35x^2 + 4x - 63 = 0$$

II.
$$7y^2 - 4y - 20 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

33. I.
$$x^2 - 1089 = 0$$

II.
$$3y^2 - 363 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

34. I.
$$x^2 - 4\sqrt{7}x + 21 = 0$$

II.
$$2v^2 - 8\sqrt{5}v - 50 = 0$$

A. if x > y

B. if $x \le y$

C. if $x \ge y$

D. if x < y

E. if x = y or relationship between x and y can't be established

CORRECT OPTIONS:

1	2	3	4	5	6	7	8	9	10
Е	Α	В	E	Е	E	Α	D	С	D
11	12	13	14	15	16	17	18	19	20
D	D	Е	Е	D	В	С	Е	Е	D
21	22	23	24	25	26	27	28	29	30
Α	С	D	В	Α	В	Α	Е	Е	E
31	32	33	34						
Α	E	Е	E						

EXPLANATIONS:

1. i.
$$x^3 - 4913 = 0$$

or, $x^3 = 4913$
 $x = 17$

II.
$$y^2 = 361$$

or, $y = \pm 19$

While comparing the values of x and y, one root value of y lies between the root values of x Hence, option E is correct.

2. I.
$$x^2 = 361$$

 $x = \pm 19$

II.
$$y^3 = 7269 + 731$$

 $y^3 = 8000$
 $y = 20$

Hence, option A is correct.

3. I.
$$15x^2 + x - 6 = 0$$

 $15x^2 + 10x - 9x - 6 = 0$
 $5x (3x + 2) - 3 (3x + 2) = 0$
 $(5x - 3) (3x + 2) = 0$
 $x = \frac{3}{5}, -\frac{2}{3}$

II.
$$5y^2 - 23y + 12 = 0$$

 $5y^2 - 20y - 3y + 12 = 0$
 $5y (y - 4) - 3 (y - 4) = 0$
 $(y - 4) (5y - 3) = 0$
 $y = 4, \frac{3}{5}$

$$x \le y$$

Hence, option B is correct.

4. I.
$$x^3 - 2744 = 0$$

 $x^3 = 2744$

$$x = 14$$

II.
$$y^2 - 256 = 0$$

$$y^2 = 256$$

$$y = \pm 16$$

While comparing the values of x and y, one root value of x lies between the root values of y.

Hence, option E is correct.

5. I.
$$x^2 - 8x - 20 = 0$$

$$\Rightarrow x^2 - 10x + 2x - 20 = 0$$

$$\Rightarrow$$
 x (x - 10) + 2 (x - 10) = 0

$$\Rightarrow$$
 (x - 10) (x + 2) = 0

Then, x = +10 or x = -2

II.
$$3y^2 - 60y + 297 = 0$$

$$\Rightarrow$$
 y² – 20y + 99 = 0 [Dividing both sides by 3]

$$\Rightarrow$$
 y² - 11y - 9y + 99 = 0

$$\Rightarrow$$
 y (y - 11) - 9 (y - 11) = 0

$$\Rightarrow$$
 (y - 11) (y - 9) = 0

Then, y = + 11 or y = + 9

So, when
$$x = +10$$
, $x < y$ for $y = +11$ and $x > y$ for $y = +9$

And when
$$x = -2$$
, $x < y$ for $y = +11$ and $x < y$ for $y = +9$

 \therefore So, we can observe that one root value of x lies between the root values of y. Therefore, the relation between x and y can't be determined.

Hence, option (E) is correct.

6. I.
$$2x^2 + 9x + 7 = 0$$

or,
$$2x^2 + 2x + 7x + 7 = 0$$

or,
$$2x(x + 1) + 7(x + 1) = 0$$

or,
$$(2x + 7)(x + 1) = 0$$

$$\therefore x = -1, -\frac{7}{2}$$

II.
$$y^2 + 4y + 4 = 0$$

or,
$$y^2 + 2y + 2y + 4 = 0$$

or,
$$y(y + 2) + 2(y + 2) = 0$$

or,
$$(y + 2)(y + 2) = 0$$

∴
$$y = -2, -2$$

Hence, relationship can't be established between x and y.

Therefore, Option E is correct.

7. I.
$$x^2 - 7x + 12 = 0$$

or,
$$x^2 - 4x - 3x + 12 = 0$$

or,
$$x(x-4)-3(x-4)=0$$

or,
$$x(x-4)-3(x-4)=0$$

or,
$$(x-4)(x-3)=0$$

$$x = 3, 4$$

II.
$$3y^2 - 11y + 10 = 0$$

or,
$$3y^2 - 6y - 5y + 10 = 0$$

or,
$$3y(y-2) - 5(y-2) = 0$$

or,
$$(3y-5)(y-2)=0$$

∴
$$y = 2, \frac{5}{3}$$

Hence, x > y

Hence, option A is correct.

8. I.
$$2x^2 + 15x + 28 = 0$$

or, $2x^2 + 8x + 7x + 28 = 0$
or, $2x(x + 4) + 7(x + 4) = 0$
or, $(2x + 7)(x + 4) = 0$
 $\therefore x = -4, -\frac{7}{2}$

II.
$$2y^2 + 13y + 21 = 0$$

or, $2y^2 + 6y + 7y + 21 = 0$
or, $2y (y + 3) + 7 (y + 3) = 0$
or, $(2y + 7) (y + 3) = 0$
 $\therefore y = -3, -\frac{7}{2}$

Hence, $x \le y$.

Therefore, Option D is the correct answer.

9. I.
$$x^2 - 8x + 15 = 0$$

or, $x^2 - 5x - 3x + 15 = 0$
or, $x(x-5) - 3(x-5) = 0$
or, $(x-5)(x-3) = 0$
 $x = 5, 3$

II.
$$y^2 - 12y + 36 = 0$$

or, $y^2 - 6y - 6y + 36 = 0$
or, $y(y - 6) - 6(y - 6) = 0$
or, $(y - 6)(y - 6) = 0$
 $\therefore y = 6, 6$

Hence, x < y.

Hence, option C is correct.

10. I.
$$x^2 + 9x + 20 = 0$$

or, $x^2 + 4x + 5x + 20 = 0$
or, $x(x + 4) + 5(x + 4) = 0$
or, $(x + 4)(x + 5) = 0$
 $x = -4, -5$

II.
$$y^2 = 16$$

 $y = \sqrt{16} = \pm 4$

While comparing the x and y values, we got one value of x is equal to y and other values is less than the root values of y.

Hence, $x \le y$.

Hence, option D is correct.

11. I.
$$x^2 + (343)^{1/3} = 56$$

$$x^2 + 7 = 56$$

$$x^2 = 49$$

∴
$$x = \sqrt{49} = \pm 7$$

II.
$$(y)^{4/3} \times (y)^{5/3} - 295 = 217$$

$$(y)^3 = 217 + 295$$

$$(y)^3 = 512 = (8)^3$$

or,
$$y = 8$$

Here,
$$x < y$$

Hence, option D is correct.

12.
$$5x + 4y = 8$$
(i) × 3

$$3x + 2y = 4$$
(ii) × 5

$$15x + 10y = 20$$
(iv)

Putting the value of y in (i), we get

$$5x + 8 = 8$$

$$5x = 0$$

$$\therefore x = 0$$

Hence, option D is correct.

13. I.
$$x^2 + 8 = 6x$$

$$x^2 - 6x + 8 = 0$$

$$x^2 - 4x - 2x + 8 = 0$$

$$x(x-4)-2(x-4)=0$$

$$(x-2)(x-4)=0$$

$$\therefore x = 2, 4$$

II.
$$y^2 - 8y + 15 = 0$$

$$y^2 - 5y - 3y + 15 = 0$$

$$y(y-5)-3(y-5)=0$$

$$(y-3)(y-5)=0$$

$$y = 3, 5$$

Here, while comparing the root values of x and y, we find that one root value of y lies between the value of x. Therefore, no relationship between x and y can be established

Hence, option E is correct.

14. I.
$$\sqrt{49} + \sqrt{x+15} = \sqrt{169}$$

$$7 + \sqrt{x + 15} = 13$$

$$(\sqrt{x+15})^2 = (6)^2$$

$$x + 15 = 36$$

$$x = 36 - 15 = 21$$

II.
$$y^2 - 212 = 364$$

$$y^2 = 364 + 212$$

$$y^2 = 576$$

$$y = \pm 24$$

Here, relationship between x and y cannot be established

Hence, option E is correct.

1.
$$x^2 - \frac{(10)^{5/2}}{\sqrt{x}} = 0$$

$$x^{2+1/2} - (10)^{5/2} = 0$$

$$(x)^{5/2} = (10)^{5/2}$$

II.
$$\frac{18}{\sqrt{y}} - \sqrt{y} = \frac{7}{\sqrt{y}}$$

$$18 - y = 7$$

Here,
$$x < y$$

Hence, option D is correct.

16. I.
$$2x^2 + 7x + 5 = 0$$

$$\Rightarrow 2x^2 + 2x + 5x + 5 = 0$$

$$\Rightarrow$$
 2x (x + 1) + 5 (x + 1) = 0

$$\Rightarrow (2x+5)(x+1)=0$$

$$x = -2.5, -1$$

II.
$$3y^2 + 5y + 2 = 0$$

$$\Rightarrow 3y^2 + 3y + 2y + 2 = 0$$

$$\Rightarrow$$
 3y (y + 1) + 2 (y + 1) = 0

$$\Rightarrow (3y + 2) (y + 1) = 0$$

$$y = -0.66, -1$$

For
$$x = -2.5$$
 and $y = -0.66, -1$ $x < y$

For
$$x = -1$$
 and $y = -0.66, -1$ $x \le y$

Hence x is either less than or equal to y.

Hence, option B is correct.

17. I.
$$x^2 + 6x - 112 = 0$$

 $x^2 + 14x - 8x - 112 = 0$
 $x(x + 14) - 8(x + 14) = 0$
 $(x + 14)(x - 8) = 0$
 $x = 8, -14$

II.
$$y^2 + 22y + 112 = 0$$

 $y^2 + 8y + 14y + 112 = 0$
 $y(y + 8) + 14(y + 8) = 0$
 $(y + 8)(y + 14) = 0$
 $y = -8, -14$

For,
$$x = -14$$
 and $y = -8$ $x < y$

For,
$$x = -14$$
 and $y = -14$
 $x = y$

But for
$$x = 8$$
 and $y = -8$ and -14 $x > y$

Therefore, relationship can't be established

Hence, option E is correct.

18. i.
$$2x^2 - 13x + 18 = 0$$

 $\Rightarrow 2x^2 - 4x - 9x + 18 = 0$
 $\Rightarrow 2x (x - 2) - 9 (x - 2) = 0$
 $\Rightarrow (2x - 9) (x - 2) = 0$
 $x = 4.5, 2$

II.
$$y^2 - 7y + 12 = 0$$

 $\Rightarrow y^2 - 4y - 3y + 12 = 0$
 $\Rightarrow y (y - 4) - 3 (y - 4) = 0$
 $\Rightarrow (y - 3) (y - 4) = 0$
 $y = 4, 3$
For $x = 4.5$ and $y = 4, 3$ $x > y$

For
$$x = 2$$
 and $y = 4, 3$ $x < y$

Hence, no relationship can be established

Hence, option E is correct.

19. I.
$$x^2 + 6x + 9 = 0$$

 $\Rightarrow x^2 + 3x + 3x + 9 = 0$
 $\Rightarrow x (x + 3) + 3 (x + 3) = 0$
 $\Rightarrow (x + 3) (x + 3) = 0$
 $x = -3, -3$

II.
$$y^2 - y - 20 = 0$$

 $\Rightarrow y^2 - 5y + 4y - 20 = 0$
 $\Rightarrow y (y - 5) + 4 (y - 5) = 0$
 $\Rightarrow (y + 4) (y - 5) = 0$
 $y = -4, 5$

For
$$x = -3$$
 and $y = -4$, $x > y$
For $x = -3$ and $y = 5$, $x < y$

Hence, no relationship can be established Hence, option E is correct.

20. I.
$$3x^2 - 10x + 8 = 0$$

 $\Rightarrow 3x^2 - 6x - 4x + 8 = 0$
 $\Rightarrow 3x (x - 2) - 4 (x - 2) = 0$
 $\Rightarrow (3x - 4) (x - 2) = 0$
 $x = 4/3, 2$

II.
$$2y^2 - 19y + 35 = 0$$

$$\Rightarrow 2y^2 - 14y - 5y + 35 = 0$$

$$\Rightarrow 2y (y - 7) - 5 (y - 7) = 0$$

$$\Rightarrow (2y - 5) (y - 7) = 0$$

$$y = 2.5, 7$$

Hence, x < y Hence, option D is correct.

21. I.
$$x^2 - 3 = 2x$$

$$x^2 - 2x - 3 = 0$$

$$x^2 - 3x + x - 3 = 0$$

∴
$$(x + 1)(x - 3) = 0$$

$$\therefore$$
 x = 3 or x = -1

II.
$$y^2 + 5y + 6 = 0$$

$$y^2 + 3y + 2y + 6 = 0$$

$$(y + 3) (y + 2) = 0$$

$$\therefore$$
 y = -3 or y = -2

For both values of x, x > y

Hence, option A is correct

22. I.
$$x^2 - 25x + 114 = 0$$

$$x^2 - 19x - 6x + 114 = 0$$

$$(x-6)(x-19)=0$$

$$\therefore$$
 x = 19 or x = 6

II.
$$y^2 - 10y + 24 = 0$$

$$y^2 - 6y - 4y + 24 = 0$$

$$\therefore (y-4)(y-6)=0$$

$$\therefore$$
 y = 6 or y = 4

When
$$x = 19$$
, $x > y$

When
$$x = 6$$
, $x \ge y$

Hence,
$$x \ge y$$

Hence, option C is correct.

23. I.
$$\frac{4}{\sqrt{x}} + \frac{6}{\sqrt{x}} = 5\sqrt{x}$$
or, $\frac{4+6}{\sqrt{x}} = 5\sqrt{x}$

$$10 = 5x$$

$$x = 2$$

II.
$$y^2 + \sqrt{256} = \sqrt{625}$$

 $y^2 + 16 = 25$
 $y^2 = 25 - 16$
 $y^2 = 9$
 $y = \pm 3$

While comparing the values of x and y, one root value of y lies between the two root values of x Hence, option D is correct.

24. I.
$$x^2 - 7 \sqrt{3} x + 36 = 0$$

 $\Rightarrow x^2 - 4 \sqrt{3} x - 3 \sqrt{3} x + 36 = 0$
 $\Rightarrow x (x - 4 \sqrt{3}) - 3\sqrt{3} (x - 4\sqrt{3}) = 0$
 $\Rightarrow (x - 3\sqrt{3}) (x - 4\sqrt{3}) = 0$
 $\therefore x = 3\sqrt{3}, 4\sqrt{3}$

II.
$$y^2 - 11\sqrt{3} y + 84 = 0$$

 $\Rightarrow y^2 - 4\sqrt{3} y - 7\sqrt{3} y + 84 = 0$
 $\Rightarrow y (y - 4\sqrt{3}) - 7\sqrt{3} (y - 4\sqrt{3}) = 0$
 $\Rightarrow (y - 7\sqrt{3}) (y - 4\sqrt{3}) = 0$
 $\therefore y = 7\sqrt{3}, 4\sqrt{3}$

Now, While comparing the root values of \boldsymbol{x} and \boldsymbol{y}

$$x$$
 y
 $3\sqrt{3}$ < $4\sqrt{3}$
 $3\sqrt{3}$ < $7\sqrt{3}$
 $4\sqrt{3}$ = $4\sqrt{3}$
 $4\sqrt{3}$ < $7\sqrt{3}$

Here, $x \le y$

Hence, option (B) is correct.

25. I.
$$x^2 = 361$$

$$x = \pm 19$$

II.
$$y^3 = 7269 + 731$$

$$y^3 = 8000$$

$$y = 20$$

Hence, option A is correct.

26. I.
$$x^2 + 5x + 6 = 0$$

$$\Rightarrow x^2 + 3x + 2x + 6 = 0$$

$$\Rightarrow$$
 x (x + 3) + 2 (x + 3) = 0

$$\Rightarrow$$
 (x + 2) (x + 3) = 0

$$\therefore x = -2, -3$$

II.
$$y^2 - 4y - 12 = 0$$

$$\Rightarrow y^2 - 6y + 2y - 12 = 0$$

$$\Rightarrow$$
 y (y - 6) + 2 (y - 6) = 0

$$\Rightarrow$$
 (y + 2) (y - 6) = 0

∴
$$y = -2, +6$$

Now, While comparing the root values of x and y

$$-2 = -2$$

$$-2 < +6$$

$$-3 < -2$$

$$-3 < +6$$

Here, $x \le y$

Hence, option (B) is correct.

27. I.
$$25x^2 - 90x + 72 = 0$$

 $\Rightarrow (5x - 6)(5y - 12) = 0$
 $\Rightarrow x = \frac{6}{5}, \frac{12}{5}$

II.
$$y^2 + 26y + 168 = 0$$

 $\Rightarrow (y + 12)(y + 14) = 0$
 $\Rightarrow y = -12, -14$

Hence, x > Y

Hence, option A is correct.

28. I.
$$3x^2 - 8x - 16 = 0$$

 $\Rightarrow (3x + 4)(x - 4) = 0$
 $\Rightarrow x = -\frac{4}{3}$, 4

II.
$$3y^2 - 19y + 28 = 0$$

 $\Rightarrow (3y - 7)(y - 4) = 0$
 $\Rightarrow y = \frac{7}{3}$, 4

Hence, relationship between x and y cannot be determined.

Hence, option E is correct.

29. I.
$$12x^2 - 4x - 5 = 0$$

$$\Rightarrow 12x^2 - 10x + 6x - 5 = 0$$

$$\Rightarrow 6x (2x + 1) - 5(2x + 1) = 0$$

$$\Rightarrow (6x - 5)(2x + 1) = 0$$

$$\therefore x = \frac{5}{6} \text{ or } \frac{-1}{2}$$

II.
$$8y^2 - 4y - 4 = 0$$

 $\Rightarrow 8y^2 - 8y + 4y - 4 = 0$
 $\Rightarrow 8y (y - 1) + 4(y - 1) = 0$
 $\Rightarrow (8y + 4) (y - 1) = 0$
 $\therefore y = \frac{-1}{2} \text{ or } y = 1$

So, here we can't say anything. Hence, option E is correct.

30. I.
$$6x^2 - 13x - 44 = 0$$

$$6x^2 - 24x + 11x - 44 = 0$$

$$6x(x-4) + 11(x-4) = 0$$

$$(6x + 11)(x - 4) = 0$$

$$x = 4, -\frac{11}{6}$$

II.
$$4y^2 - 17y - 42 = 0$$

$$4y^2 - 24y + 7y - 42 = 0$$

$$4y(y-6) + 7(y-6) = 0$$

$$(4y + 7) (y - 6) = 0$$

$$y = 6, -\frac{7}{4}$$

Hence Relationship cannot be established.

Therefore, option E is correct.

31. Multiplying equation (I) by 4 and equation (II) by 3 we get,

$$12x + 20y = 138$$

$$12x - 27y = -3$$

Subtracting both equations:

$$4x - 9y = -1$$

$$4x - 9(3) = -1$$

$$4x - 27 = -1$$

$$4x = 27 - 1$$

$$4x = 26$$

$$x = \frac{26}{4} = \frac{13}{2}$$

Hence, option A is correct.

32. I.
$$35x^2 + 4x - 63 = 0$$

 $35x^2 + 49x - 45x - 63 = 0$
 $7x (5x + 7) - 9(5x + 7) = 0$
 $(7x - 9)(5x + 7) = 0$

$$x = \frac{9}{7}, -\frac{7}{5}$$

II.
$$7y^2 - 4y - 20 = 0$$

 $7y^2 - 14y + 10y - 20 = 0$
 $7y(y - 2) + 10(y - 2) = 0$
 $(y - 2)(7y + 10) = 0$

$$y = 2, -\frac{10}{7}$$

Therefore, relationship can't be established

Hence, option E is correct.

33. I.
$$x^2 - 1089 = 0$$
, $x = \pm 33$

II.
$$3y^2 - 363 = 0$$
,
 $3y^2 = 363$,
 $y^2 = 121$
 $y = \pm 11$

Therefore, relationship cannot be established

Hence, option E is correct.

34. I.
$$x^2 - 4\sqrt{7}x + 21 = 0$$

$$\Rightarrow x^2 - \sqrt{7}x - 3\sqrt{7}x + 21 = 0$$

$$\Rightarrow$$
 x (x - $\sqrt{7}$) - 3 $\sqrt{7}$ (x - $\sqrt{7}$) = 0

$$\Rightarrow$$
 (x - $\sqrt{7}$)(x - $3\sqrt{7}$) = 0

$$\Rightarrow$$
 x = $\sqrt{7}$, $3\sqrt{7}$

II.
$$2y^2 - 8\sqrt{5}y - 50 = 0$$

$$\Rightarrow 2y^2 - 8\sqrt{5}y - 50 = 0$$

Taking 2 as a common term, we get

$$\Rightarrow$$
 y² - 4 $\sqrt{5}$ y - 25 = 0

$$\Rightarrow y^2 + \sqrt{5}y - 5\sqrt{5}y - 25 = 0$$

$$\Rightarrow$$
 y(y + $\sqrt{5}$) - $5\sqrt{5}$ (y + $\sqrt{5}$) = 0

$$\Rightarrow$$
 (y + $\sqrt{5}$) (y - $5\sqrt{5}$) = 0

$$\Rightarrow$$
 y = $-\sqrt{5}$, $5\sqrt{5}$

While comparing the root values of x and y, we find that root values of y lies between the x's root values.

Therefore, relationship between x and y can't be determined. Hence, option E is correct.