QUESTIONS BASED ON MOLES

1. The number of atoms present in 16 g of oxygen is

$$(1) 6.02 \times 10^{11.5}$$

(2)
$$3.01 \times 10^{23}$$

$$(3)\ 3.01\times10^{11.5}$$

$$(4) 6.02 \times 10^{23}$$

2. Number of atoms in 4.25 g of NH_3 is approx :-

$$(1) 1 \times 10^{23}$$

$$(2)\ 1.5\times10^{23}$$

$$(3) 2 \times 10^{23}$$

$$(4) 6 \times 10^{23}$$

3. Which of the following contains maximum number of oxygen atoms?

(2) 1 g of
$$O_2$$

(3) 1 g of
$$O_3$$

(4) All have the same number of atoms

4. The number of atoms present in 0.5 g atom of nitrogen is same as the atoms in-

(2)
$$16 \text{ g of } O_2$$

5. Which of the following contains maximum number of atoms?

$$(1) 4 g of H_2$$

(2)
$$16 \text{ g of } O_2$$

(3) 28 g of
$$N_2$$

6. Number of neutrons present in 1.7 g of ammonia is-

$$(1) N_A$$

(2)
$$N_A/10\times4$$

$$(3) (N_A/10) \times 7$$

$$(4) N_A \times 10 \times 7$$

7. 5.6 L of oxygen at STP contains-

(1)
$$6.02 \times 10^{23}$$
 atoms

(2)
$$3.01 \times 10^{23}$$
 atoms

$$(3) 1.505 \times 10^{23}$$
 atoms

(4)
$$0.7525 \times 10^{23}$$
 atoms

8. Number of oxygen atoms in 8 g of ozone is -

$$(1) 6.02 \times 10^{23}$$

$$(2) \ \frac{6.02 \times 10^{23}}{2}$$

$$(3) \ \frac{6.02 \times 10^{23}}{3}$$

$$(4) \ \frac{6.02 \times 10^{23}}{6}$$

9. The number of atoms in "n" mole of gas can be given by:-

(1) n×Av. No.×atomicity

(2) $\frac{n \times Av.No.}{Atomicity}$

(3) $\frac{\text{Av.No.} \times \text{Atomicity}}{\text{Atomicity}}$

(4) None

10. Sum of number of protons, electrons and neutrons in 12 g of $_6^{12}$ C is:-

- (1) 1.8
- $(2) 12.044 \times 10^{23}$
- $(3) 1.084 \times 10^{25}$
- $(4)\ 10.84 \times 10^{23}$

11. The weight of one atom of Uranium is 238 amu. Its actual weight is.....g.

- $(1) 1.43 \times 10^{26}$
- $(2) 3.94 \times 10^{-22}$
- $(3) 6.99 \times 10^{-23}$
- $(4) 1.53 \times 10^{-22}$

12. The actual weight of a molecule of water is-

(1) 18 g

 $(2) 2.99 \times 10^{-23} g$

	(3) Both (1) & (2) are	e correct	$(4) \ 1.66 \times 10^{-24} \ g$	
13.	What is the mass of a	molecule of CH ₄ :-		
	(1) 16 g	(2) 26.6×10^{22} g	$(3)\ 2.66 \times 10^{-2.5}$	3 g (4) 16 N_{A} g
14.	Which of the following	ng has the highest mass	s?	
	(1) 1 g atom of C		(2) $1/2$ mole of CH ₄	
	(3) 10 mL of water		(4) 3.011×10^{23} atoms	or oxygen
15.		ng contains the least nu		
	$(1) 4.4 \text{ g CO}_2$	$(2) 3.4 g NH_3$	(3) 1.6 g CH_4	$(4) 3.2 g SO_2$
16.		cule in 4.25 g of NH ₃ is	S-	
	$(1) 1.505 \times 10^{23}$	$(2) \ 3.01 \times 10^{23}$	$(3) 6.02 \times 10^{23}$	(4) None of these
17.	Elements A and B for	orm two compounds B	$_{2}A_{3}$ and $B_{2}A$. 0.05 mg	oles of B ₂ A ₃ weight 9.0 g and
	0.70 mole B ₂ A weigh	nt 10g atomic weight of	f A and B are-	
	(1) 20 and 30	(2) 30 and 40	(3) 40 and 30	(4) 30 and 20
18.	5.6 L of oxygen at N'	ΓP us equivalent to -		
	(1) 1 mole	(2) 1/2 mole	(3) 1/4 mole	(4) 1/8 mole
19.	4.4 g of an unknown	gas occupies 2.24 L of	volume at STP. The g	as may be :-
	(1) N_2O	(2) CO	(3) CO ₂	(4) 1 & 3 both
20.	Which contains least	number of molecules:-		
	(1) 1 g CO_2	(2) 1 gN_2	(3) 1 g O_2	(4) 1 g H ₂
21.	If V mL of the vapor	urs of substance at NT	P weight W g. then m	nolecular weight of substance
	is:-			
	(1) (W/V)×22400		(2) $\frac{V}{W} \times 22.4$	
			$W \times 1$	
	$(3) (W-V) \times 22400$		$(4) \frac{W \times 1}{V \times 22400}$	
22	16.2.01, 10.20	1.6		
22.	left are:	es are removed from 9	8 mg of H_2SO_4 , then the	he number of moles of H ₂ SO ₄
	$(1) 0.1 \times 10^{-3}$	$(2) 0.5 \times 10^{-3}$	$(3) 1.66 \times 10^{-3}$	$(4) 9.95 \times 10^2$
23.	A gas is found to hav	te the formula $(Co)_x$. It	's VD is 70 the value o	of x must be :-
	(1) 7	(2) 4	(3) 5	(4) 6
24.	Vanour density of ga	s is 11.2. Volume occu	nied by 2.4 g of this at	STP will be -
47.	(1) 11.2 L	(2) 2.24 L	(3) 22.4 L	(4) 2.4 L
25	The volumes of a sec-	in dischange tyles is 1-1	2×10 ⁻⁷ mI at CTD TI	en the number of molecule of
25.	gas in the tube is-	_	2×10 IIIL at SIP. In	ien die number of molecule of
	$(1) \ 3.01 \times 10^4$	$(2)\ 3.01 \times 10^{15}$	$(3) \ 3.01 \times 10^{12}$	$(4)\ 3.01\times10^{16}$

26.	carbon atoms added	d are (mol. mass of su	gar = 342)	sweeten his tea. The num	iber of
	$(1) \ 3.6 \times 10^{22}$	$(2) 7.2 \times 10^{21}$	(3) 0.05	$(4) 6.6 \times 10^{22}$	
27.	The total number o (1) 6.02×10^{18}	f ions present in 1 mL (2) 6.02×10^{19}	of 0.1 M barium nita (3) 3.0×6.02×10	rate Ba(NO ₃) ₂ solution is - (4) $3.0 \times 6.02 \times 10^{18}$	
28.	The weight of 1 mo (1) 0.1784 g	ole of a gas o density ((2) 1 g	0.1784 gL ⁻¹ at NTP is	s - (4) 4 amu	
29.	Given that one mol (1) 1.25 g L ⁻¹	e of N_2 at NTP occup (2) 0.80 g L^{-1}	ies 22.4 litre the dens (3) 2.5 g L^{-1}	sity of N_2 is- (4) 1.60 g L^{-1}	
30.	The number of gran (1) 10 g molecules	m molecules of oxyge (2) 5 g molecules	n in 6.02×10 ²⁴ CO m (3) 1 g molecules		
	QUESTIONS BAS	SED ON PERCENT	AGE, EMPIRICAL	FORMULA & MOLEC	ULAR
31.		X and Y has equal modular formula of that coular (2) X ₃ Y ₃		ir atomic weights are 30 at $(4) X_3 Y_2$	and 20
32.	An oxide of sulphu (1) SO ₂	er contains 50% of sulp (2) SO ₃	phur in it. Its emperia	l formula is- (4) S ₂ O	
33.	A hydrocarbon con (1) CH ₄	tains 80% of carbon, (2) C ₂ H ₄	then the hydrocarbon (3) C ₂ H ₆	is - (4) C ₂ H ₂	
34.	Empeical formula (1) C ₆ H ₁₂ O ₆	of glucose is- (2) C ₃ H ₆ O ₃	(3) C ₂ H ₄ o ₂	(4) CH ₂ O	
35.	empirical formula	of the oxide		M has atomic mass of 2	4. The
	(1) M2O	(2) M_2O_3	(3) MO	(4) M3O4	
36.	A compound conta (1) CH ₃ NH ₂	ins 38.8 % C,, 16% H (2) CH ₃ CN	and 45.2%N. The fo (3) C ₂ H ₅ CN	rmula of the compound wor (4) CH ₂ (NH) ₂	uld be
37.	element Y(at wt. =	20) is:-	C	ment X (at wt. = 10) and 5	50% of
	(1) XY	$(2) X_2 Y$	$(3) XY_2$	$(4) X_3 Y$	
38.	Which of the follow (1) CH ₃ CHO	wing compounds has s (2) CH ₃ COOH	ame empirical formu (3) CH ₃ OH	ala as that of glucose: $(4) C_2H_6$	

Mob no.: +91-9350679141

39.	A gas is found to contain 2.34 g of Nitrogen and 5.34 g of oxygen. Simplest formula of the compound is:-							
	(1) N_2O	(2) NO	$(3) N_2 O_3$	(4) NO ₂				
40.	2.2 g of a compoun (1) P ₂ S ₃	and of phosphorous and section $(2) P_2S_2$	sulphur has 1.24 g of 'F (3) P_3S_4	"or in it. Its emperial formula is- $(4) p_4S_3$				
41.	On analysis, a certa The formula of the (At mass I = 127, C	compound is :-		l oxygen in the ratio of 254:80.				
	(1) IO	(2) I ₂ O	(3) I_5O_2	(4) I_2O_5				
42.	The number of ator is -	ms of Cr and O are 4.8	$\times 10^{10}$ and 9.6 $\times 10^{10}$ resp	pectively. Its empirical formula				
	$(1) \operatorname{Cr}_2 O_3$	(2) CrO ₂	$(3) \operatorname{Cr}_2 O_4$	(4) CrO ₅				
43.	Insulin contains 3.4 (1) 941.176	4 % sulphur; the minin (2) 944	num molecular weight o	of insulin is : (4) None				
44.	A giant molecule contains 0.25 % of a metal whose atomic weight is 59. Its molecule contain one atom of that metal. Its minimum molecular weight is-							
	(1) 5900	(2) 23600	(3) 11800	$(4) \ \frac{100 \times 59}{0.4}$				
45.		_	contains 28.9% by mas	s of nitrogen Number of atoms				
	of nitrogen in one r (1) 2	(2) 3	(3) 4	(4) 5				
16		QUESTIONS BASED	ON STOICHIOME	ΓRY				
46.	In a gaseous reaction of the type aA + bB → cC + dD, which statement is wrong? (1) a litre of A combines with b litre of B to give C and D (2) a mole of A combines with b moles of B to give C and D							
		nes with b g of B to giv A combines with b mol		nd D				
47.	Assuming that pet complete combusti		and has density 0.8 g	mL^{-1} , 1.425 litre of petrol on				
	(1) 50 mole of O_2	(2) 100 mole of O_2	(3) 125 mole of O_2	(4) 200 mole of O ₂				
48.	9 g of Al will react							
	$2Al + \frac{3}{2}O_2 \rightarrow Al_2$	O_3						
	$(1) 6 g O_2$		(3) 9 g O ₂	$(4) 4 g O_2$				
49.	The equation:							

Mob no.: +91-9350679141

 $2Al_{(s)} + \frac{3}{2}O_2(g) \rightarrow Al_2O_{3(s)}$ shows that :

(1) 2 mole of Al reacts with $\frac{3}{2}$ mole of O₂ to produce $\frac{7}{2}$ mole of Al₂O₃

(2) 2 g of Al reacts with $\frac{3}{2}$ g of O_2 to produce one mole of Al_2O_3

(3) 2 g of Al reacts with $\frac{3}{2}$ litre of O_2 to produce 1 mole of Al_2O_3

(4) 2 mole of Al reacts with $\frac{3}{2}$ mole of O_2 to produce 1 mole of Al_2O_3

50. 1L of CO₂ is passed over hot coke. When the volume of reaction mixture becomes 1.4 L, the composition of reaction mixture is-

(1) 0.6 L CO

 $(2) 0.8 L CO_2$

(3) 0.6 L CO₂ and 0.8 L CO

(4) None

51. 26 cc of CO₂ are passed over red hot coke. The volume of CO evolved is :-

(1) 15 cc

(2) 10 cc

(3) 32 cc

(4) 52 cc

52. If 1/2 moles of oxygen combine with Aluminum to form Al_2O_3 then weight of Aluminum metal used in the reaction is (Al = 27)-

(1) 27 g

(2) 18 g

(3) 54 g

(4) 40.5 g

53. The number of litres of air required to burn 8 litres of C_2H_2 is approximately-

(1)40

(2)60

(3)80

(4) 100

54. If 0.25 mole of BaCl₂ is mixed with 0.2 mole of Na₃PO₄ the maximum number of moles of Ba₃(PO₄)₂ than can be formed is:-

(1) 0.7

(2) 0.5

(3) 0.3

(4) 0.1

55. If 8 mL of uncombined O₂ remain after exploding O₂ with 4 mL of hydrogen, the number f mL of O₂ originally were:-

(1) 12

(2) 2

(3) 10

(4) 4

56. 4 g of hydrogen are ignited with 4g of oxygen. The weight of water formed is-

(1) 0.5 g

(2) 3.5 g

(3) 4.5 g

(4) 2.5 g

57. For the reaction $A + 2B \longrightarrow C$, 5 mole of A and 8 mole of B will produce

(1) 5 mole of C

(2) 4 mole of C

(3) 8 mole of C

(4) 13 mole of C

58. Of 1.6 g of SO_2 and 1.5×10^{22} molecules of H_2S are mixed and allowed to remain in contact in a closed vessel until the reaction

 $2H_2S + SO_2 \longrightarrow 3S + 2H_2O$,

produce to completion. Which of the following statement is true?

(1) Only 'S' and 'H₂O' remain in the reaction vessel.

(2) 'H₂S' will remain in excess

(3) 'SO₂' will remain in excess

Website : www.edubull.com

Edubull (4) None **59.** 12 L of H₂ and 11.2 L of Cl₂ are mixed and exploded. The composition by volume of mixture (1) 24 L of HCl (g) (2) 0.8 L Cl₂ and 20.8 L HCl (g) (3) 0.8 L H₂ and 22.4 L HCl (g) (4) 22.4 L HCl (g) **60.** 10 mL of gaseous hydrocarbon on combustion give 40 mL of CO₂(g) and 50 mL of H₂O (vap.). The hydrocarbon is - $(1) C_4H_5$ $(3) C_4H_8$ $(4) C_4 H_{10}$ $(2) C_8 H_{10}$ 61. 500 mL of a gaseous hydrocarbon when burnt in excess of O₂ gave 2.5 L of CO₂ and 3.0 L of water vapours under same conditions. Molecular formula of the hydrocarbon is - $(1) C_4 H_8$ $(2) C_4 H_{10}$ $(3) C_5 H_{10}$ $(4) C_5 H_{12}$ QUESTIONS BASED ON EQUIVALENT WEIGHT Molecular weight of tribasic acid is W. Its equivalent weight will be: **62.** (1) $\frac{W}{2}$ (2) $\frac{W}{3}$ (4) 3WA, E M and n are the atomic weight, equivalent weight, molecular weight and valency of an **63.** element. The correct relation is :-(2) $A = \frac{M}{F}$ (3) $A = \frac{M}{P}$ (4) $M = A \times n$ (1) $A = E \times n$ **64.** Sulphur forms two chlorides S₂Cl₂ and SCl₂, the equivalent mass of sulphur SCl₂ is 16. The equivalent weight of sulphur in S₂Cl₂ is (1) 8(2) 16(3) 32(4)64**65.** If equivalent weight of S in SO₂ in 8 then equivalent weight of S in SO₃ is-(2) $\frac{8 \times 3}{2}$ $(1) \frac{8\times2}{3}$ $(4) \frac{2\times3}{8}$ $(3) 8 \times 2 \times 3$ 66. Which property of an element is not variable: (1) Valency (2) Atomic weight (3) Equivalent weight (4) None **67.** One g equivalent of a substance is present in-(1) $0.25 \text{ mole } O_2$ (2) $0.5 \text{ mole } O_2$ (3) 1.00 mole O₂ (4) 8.00 mole O₂ **68.** In a compound AxBy (1) Mole of A = mole of B = mole Ax By

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

(3) yx mole of A = yx mole of B = $(x + y) \times mole$ of AxBy

(2) eq of A = eq of B = eq. of Ax By

(4) $y \times mole of A y \times mole of B$

				Edubuli
69.		lecular wt. = 90) w	as exactly neutralized	by 20 mL of 0.5 N NaoH. Basicity
	the acid is- (1) 1	(2) 2	(3) 3	(4) 4
70.	0.5 g of base was base is	completely neutra	lized by 100 mL of 0.	2 N acid. Equivalent weight of the
	(1) 50	(2) 100	(3) 25	(4) 125
71.	0.126 g of an acid weight of the acid i	-	of 0.1 N NaOH for c	complete neutralization. Equivalent
	(1) 45	(2) 53	(3) 40	(4) 63
72.	2 g of a base whose the acid is:	e equivalent weigh	t is 40 reacts with 3g o	of an acid. The equivalent weight of
	(1) 40	(2) 60	(3) 10	(4) 80
73.			l is 2 4. The volume of ess of and acid solution	hydrogen liberated at STP by 12 g is -
	(1) 2.8 litres	(2) 5.6 litres	(3) 11.2 litres	(4) 22.4 litres
74.	0.84 g of metal car the metal carbonate		ctly with 40 mL of N/	2 H ₂ SO ₄ . The equivalent weight of
	(1) 84	(2) 64	(3) 42	(4) 32
75.	1.0 g of a metal cor (at. wt. of Br =80)	mbines with 8.89 g	of Bromine. Equivaler	nt weight of metal is nearly:
	(1) 8	(2) 9	(3) 10	(4) 7
76.			ts salt is NaH ₂ PO ₄ Whonvert is into Na ₃ PO ₄ ?	hat volume of 1 M NaOH solution (at. wt of $P = 31$)
	(1) 100 mL	(2) 200 mL	(3) 80 mL	(4) 300 mL
77.	0.84 g of metal hyd (1) 80	dride contains 0.04 (2) 40	g of hydrogen. The equal (3) 20	uivalent wt. of metals is (4) 60
78.		give A ₂ g of its oxi	ide. The equivalent ma	
	$(1) \frac{A_2 - A_1}{A_1} \times 8$		$(2) \frac{A_2 - A_1}{A_2} \times 8$	
	$(3) \frac{A_1}{A_2 - A_1} \times 8$		$(4) (A_2 - A_1) \times 8$	
79.	When an element f mass of the elemen		hich oxygen is 20% of	f the oxide by mass. The equivalent
	(1) 32	(2) 40	(3) 60	(4) 128
80.	If 1.2 g of a metal be-	displaces 1.12 litre	of hydrogen at NTP,	equivalent mass of the metal would
	(1) 1.2×11.2	(2) 12	(3) 24	(4) 1.2 + 11.2

81.					h 80 g o bron nt weight o f c			um (valency =	= 2)
	(1) 10	((2) 20		(3) 40		(4) 80		
82.		ass of iron			rom a solution at mass of copp (3) 48			e solution. If	the
	, ,		` '		` '				
83.	reduction 3.1 (1) Atomic w	5 g of the reight of the	oxide have yi he metal is 4	elded 1	stream of hyd .05 g of the mo (2) Equivalen (4) Atomic w	etal. We it weight	may conclude tof the meta	de that. 1 is 8	lete
84.	-		-	-	nother metal y then the equ				
	$(1) \ \frac{\mathrm{m_1}}{\mathrm{m_2}} \times \mathrm{E}_2$	($(2) \frac{\mathrm{m}_2}{\mathrm{m}_1} \times \mathrm{E}_2$		$(3) \ \frac{\mathrm{m_1}}{\mathrm{m_2}} \times \mathrm{E}_1$		$(4) \ \frac{\mathrm{m_2}}{\mathrm{m_1}} \times \mathrm{E_1}$		
85.	14 g of element X combines with 16 g of oxygen. On the basis of this information, which of the following is a correct statement:- (1) The element X could have an atomic wt. of 7 and its oxide is XO (2) the element X could have an atomic weight of 14 and its oxide is X ₂ O (3) The element X could have an atomic weight of 7 and its oxide is X ₂ O (4) The element X could have an atomic weight of 14 and its oxide is XO ₂								
86.	If 2.4 g of a weight of me			e hydro	gen at normal	-	•	•	lent
	(1) 12		(2) 24		(3) 1.2×11.2		$(4) 1.2 \div 11$	1.2	
87.	45 g of acid (1) 1		90 neutralised (2) 2	d by 200) mL of 5N ca (3) 3	ustic pot	tash. The bas (4) None	sicity of acid i	s :-
88.	The weights (1) Atomic w (3) Equivaler	eight	ments which o	combine	e with one ano (2) Molecular (4) None			oif their :-	
89.	The oxide of (1) 34		32% oxygen. (2) 32	It's equ	nivalent weigh (3) 17	t would	be:- (4) 16		
90.	_		_		l with and aci weight of Zn		-	• •	
	(1) 10	((2) 20		(3) 40		(4) 5		
91.	74.5 g of a m		oride contains	_	of chlorine. T	he equiv	valent mass o	of the metal is-	-

	QUESTIONS WEIGHTS	BASED ON CALC	CULATION OF ATOMIC	C WEIGHTS AND M	IOLEULAR
92.	The equivalent the element is	_	ent is 4. It's chloride has	a V.D. 59.25. Then th	e valency of
	(1) 4	(2) 3	(3) 2	(4) 1	
93.	Vapour densit will be-	y of metal chloride is	3 77. Equivalent weight o	f metal is 3, then its at	omic weigh
	(1) 3	(2) 6	(3) 9	(4) 12	
94.	Specific heat atomic weight		\circ 0.1 cal g ⁻¹ \circ C and its e	quivalent weight is 31	.8. Its exact
	(1) 31.8	(2) 63.6	(3) 318	(4) 95.4	
95.	The specific h (1) 0.6	eat of and element is (2) 12	0.214 cal g^{-1} °C. The app (3) 30	roximate atomic weigh (4) 65	it is-
96.			is isomorphous with MgS er nitrate solution, then the (3) 65.38		
97.	The carbonate weight o the n (1) 48		phours with $MgCO_3$ and G	contains 6.091% of car	bon. Atomic
98.	_	ne combines with a m H ₂ O. The atomic mass (2) 30	eta giving 111 g of its chl s of the metal is:- (3) 40	oride. The chloride is i	somorphous
99.	The atomic we will be :- (1) MCl	eight of metal (M) is (2) MCl ₂	27 and its equivalent wei	ght is 9, the formula of (4) MCl ₃	f its chloride
100.	The chloride of		% chlorine by weight and	, , -	its is 50, the
	(1) 29	(2) 58	(3) 35.5	(4) 71	
101.	The specific h (1) 25.6	eat of a metal M is 0. (2) 36	25. Its eq.wt. is 12. What (3) 24	is it's correct at wt.:- (4) 12	
102.	The density of (1) 143	f air is 0.001293 g ml (2) 14.3	⁻¹ . It's vapour density is - (3) 1.43	(4) 0.143	
103.	Relative densi	ty of a volatile substa	nce with respect CH ₄ is 4	. Its molecular weight	would be-

(3)64

(4) 128

(1) 8

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com Mob no.: +91-9350679141

(2) 32

F	I
6	
П	
b	
Ш	
ı	г

104.		a gas is 16. The ratio		stant pressure to specific heat at
	(1) 8	(2) 16	(3) 24	(4) 32
105.	The weight of subs (1) Mol. wt.	stance that displace 22 (2) At. wt	2.4 litre air at NTP is: (3) Eq. wt	(4) All
106.	0.39 g of a liquid o (1) 39	on vapourisation gave (2) 18.5	e 112 mL of vapour at S' (3) 78	ΓP. Its molecular weight is-(4) 112
107.	In victor Mayer's at STP. Its molecul		latile compound on vola	atilisation gave 56 mL of vapour
	(1) 40	(2) 60	(3) 80	(4) 120
108.	NTP). The molecu	lar weight of liquid is	S-	rs displaces 67.2 cc of dry ait (at
	(1) 130	(2) 17	(3) 1700	(4) 170
109.	5 litre of gas at ST (1) 1.25	P weights 6.25 g. Wh (2) 14	nat is its gram molecular (3) 28	weight? (4) 56
110.	0.44 g of colourles (1) N ₂ O	s oxide of nitrogen oo (2) NO	ccupies 224 mL at STP. (3) N ₂ O ₄	The compound is- (4) NO ₂
111.	One litre of a certa (1) C ₂ H ₂	in gas weights 1.16 g (2) CO	g at STP. The gas may po (3) O ₂	ossibly be- (4) NH ₃
112.	Equivalent weight (1) 68.2	of bivalent metal is 3 (2) 103.7	32.7. Molecular weight of (3) 136.4	of its chloride is:- (4) 166.3
113.	metal is 9, the mol	element posses the mecular mass of the ox (2) 75	ide will be-	3. If the equivalent mass of the (4) 18
114.	The law of multipl (1) Lavoisier	e proportion was prop (2) Dalton	posed by: (3) Proust	(4) Gaylusac
115.	Which one of the f (1) H ₂ O, Na ₂ O	<u> </u>	npounds illustrate the la (3) Na ₂ O, BaO	w of multiple proportions? (4) SnCl ₂ , SnCl ₄
116.	In the reaction N ₂ illustrates law of -	$+3H_2 \longrightarrow 2NH_3 r$	ratio by volume of N_2 ,	H_2 and NH_3 is $1:3:2$. This
	(1) Difinite propor	tion	(2) Multiple propo	ortion
	(3) Law of conserv		(4) Gaseous volum	
117.	Different proportion	ons of oxvgen in the v	various oxides of nitroge	en prove the law of -
	(1) Equivalent proj		(2) Multiple propo	-
	(3) Constant propo		(4) Conservation of	

				Eaubull				
118.	dioxide. The data illus	trates-		form two sample of carbon				
	(1) Law of conservation(3) Law of gaseous vo		(2) Law of multiple p (4) None of these	proportions				
119.	The law of conservation	on of mass holds good	d for all of the following	ng except-				
	(1) All chemical react		(2) Nuclear reactions					
	(3) Endothermic react	ions	(4) Exothermic react	ions				
120.	Number of molecules	in 100 mL of each of	O ₂ , NH ₃ and CO ₂ at S	TP are -				
	(1) In the order CO_2 <		(2) In the order NH ₃					
	(3) The same		(4) $NH_3 = CO_2 < O_2$					
121.	The empirical formula of an organic compound containing carbon and hydrogen is CH_2 . The mass of one litre of this organic gas is exactly equal to that on one litre of N_2 at same temperature and pressure. Therefore, the molecular formula of the organic gas is- (1) C_2H_4 (2) C_3H_6 (3) C_6H_{12} (4) C_4H_8							
	$(1) C_2 \Pi_4$	$(2) C_3 \Pi_6$	$(3) C_6 \Pi_{12}$	$(4) C_4 \Pi_8$				
122.	same room temperature and pressure. The ratio of total number of atoms of these gases present in the different flasks would be-							
	(1) 1 : 1 : 1 : 1	(2) 1 : 2 : 2 : 3	(3) 2:1:2:3	(4) 2 : 1 : 3 : 2				
123.		_		me of and unknown gas under molecular mass of the gas is - (4) 88				
124.				atm and 298 K. the vessel B				
			-	apour density of X_2 is-				
	(1) 75	(2) 150	(3) 37.5	(4) 45				
125.	When 100 g of ethyler	ne polymerizes to pol	yethylene according to	equation				
	$nCH_2=CH_2\longrightarrow -(-CC)$	$CH_2-CH_2-)_n$ —.the weight	ght of polyethylene pro	duced will be-				
	$(1) \frac{n}{2}g$	(2) 100 g	(3) $\frac{100}{9}$ g	(4) 100 n g				
	$(1) \frac{1}{2}$ g	(2) 100 g	$\frac{(3)}{n}$ g	(4) 100 li g				
126.			_	aCl ₂ on reaction with 9.8 g of				
	H ₂ SO ₄ will produce 7. (1) 11.65 g	(2) 23.3 g	(3) 25.5 g	(4) 30.6 g				
	(1) 11.03 g	(2) 23.3 g	(3) 23.3 g	(1) 30.0 g				
127.	A chemical equation i	s balanced according	to the law of -					
	(1) Multiple proportio	ns	(2) constant proportion					
	(3) Gaseous volume		(4) Conservation of r	nass				
128.	Two flasks A & B of similar condition whice (1) A			nd SO ₂ gas respectively under				
	(3) Both have same m	noles	(4) None					
	• •		• /					

ANSWER KEY

	EXERCISE-I (Conceptual Question)												
1.	(4)	2.	(4)	3.	(4)	4.	(3)	5.	(1)	6.	(3)	7.	(2)
8.	(2)	9.	(1)	10.	(3)	11.	(2)	12.	(2)	13.	(3)	14.	(1)
15.	(4)	16.	(1)	17.	(3)	18.	(3)	19.	(4)	20.	(1)	21.	(1)
22.	(2)	23.	(3)	24.	(4)	25.	(3)	26.	(1)	27.	(3)	28.	(3)
29.	(1)	30.	(2)	31.	(3)	32.	(1)	33.	(3)	34.	(4)	35.	(3)
36.	(1)	37.	(2)	38.	(2)	39.	(4)	40.	(4)	41.	(4)	42.	(2)
43.	(1)	44.	(2)	45.	(3)	46.	(3)	47.	(3)	48.	(2)	49.	(4)
50.	(4)	51.	(4)	52.	(2)	53.	(4)	54.	(4)	55.	(3)	56.	(3)
57.	(2)	58.	(3)	59.	(3)	60.	(4)	61.	(4)	62.	(2)	63.	(1)
64.	(3)	65.	(1)	66.	(2)	67.	(1)	68.	(2)	69.	(2)	70.	(3)
71.	(4)	72.	(2)	73.	(2)	74.	(3)	<i>75</i> .	(2)	76.	(2)	77.	(3)
78.	(3)	79.	(1)	80.	(2)	81.	(2)	82.	(2)	83.	(3)	84.	(3)
85.	(3)	86.	(2)	87.	(2)	88.	(3)	89.	(3)	90.	(2)	91.	(3)
92.	(2)	93.	(4)	94.	(2)	95.	(3)	96.	(3)	97.	(3)	98.	(3)
99.	(4)	100.	(1)	101.	(3)	102.	(2)	103.	(3)	104.	(2)	105.	(1)
106.	(3)	107.	(3)	108.	(4)	109.	(3)	110.	(1)	111.	(1)	112.	(3)
113.	(3)	114.	(2)	115.	(4)	116.	(4)	117.	(2)	118.	(4)	119.	(2)
120.	(3)	121.	(1)	122.	(3)	123.	(2)	124.	(1)	125.	(2)	126.	(2)
127.	(4)	128.	(3)										