Exercise–1 (Conceptual Questions)

Magnetic Field & Biot–Savart Law

- **1.** A stationary magnet does not interact with :-
 - (1) iron rod (2) moving charge (3) moving magnet (4) stationary charge
- Ans. (4)
- 2. Following is square shape loop, whose one arm BC produces magnetic field B at the centre of coil. The resultant magnetic field due to all the arms will be :-

(4) 2B

Ans. (2)

(1) 4B

3. A wire is parallel to one arm of a square current carrying loop, which also carries current. Now, at any point A within the coil the magnetic field will be :-

(1) less than the magnetic field produced due to loop only.

(2) B/2

- (2) more than the magnetic field produced due to loop only.
- (3) equal to the earlier.
- (4) zero

Ans. (2)

- 4. A current of 10 A is established in a long wire along positive z-direction. The magnetic field B at the point (1m 0, 0) is :-
 - (1) 1 μ T along the –y direction
 - (3) 1μ T along the -x direction
- (2) $2\mu T$ along the +y direction
- (4) $2\mu T$ along the +x direction

Ans. (2)

5. Radius of current carrying coil is 'R'. Then ratio of magnetic fields at the centre of the coil to the axial point, which is $R\sqrt{3}$ distance away from the centre of the coil :- (1) 1 : 1 (2) 1 : 2 (3) 1 : 4 (4) 8 : 1

Ans. (4)

6. A coil of one loop is made by a wire of length L and there after a coil of two loops is made by same wire. The ratio of magnetic field at the centre of coils respectively :
(1) 1:4
(2) 1:1
(3) 1:8
(4) 4:1

Ans. (1)

7. Magnetic field at point O will be :-

(1)
$$\frac{\mu_0 I}{2R}$$
 (2) $\frac{\mu_0 I}{2R}$ e (3) $\frac{\mu_0 I}{2R} \left(1 - \frac{1}{\pi}\right)$ (4) $\frac{\mu_0 I}{2R} \left(1 + \frac{1}{\pi}\right)$ e

Ans. (3)

The vector form of Biot savart law for a current carrying element is :-(1) $dB = \frac{\mu_0}{4\pi} \frac{idl \sin \phi}{r^2}$ (2) $dB = \frac{\mu_0}{4\pi} \frac{idl \times \hat{r}}{r^2}$ (3) $dB = \frac{\mu_0}{4\pi} \frac{idl \times \hat{r}}{r^3}$ (4) $dB = \frac{\mu_0}{4\pi} \frac{idl \times \hat{r}}{r^2}$ 8.

9. A and B are two concentric circular loop carrying current i_1 and i_2 as shown in figure. If ratio of their radii is 1 : 2 and ratio of the flux densities at the centre O due to A and B is

Ans. (4)

For the given current distribution the magnetic field at point, 'P' is :-10. 1

(1)
$$\frac{\mu_0}{4\pi}$$
 e (2) $\frac{\mu_0}{\pi}$ \otimes (3) $\frac{\mu_0}{2\pi}$ \otimes (4) $\frac{\mu_0}{2\pi}$ e Ans. (3)

11. 1A current flows through an infinitely long straight wire. The magnetic field produced at a point 1m. away from it is :-

1

(1)
$$2 \times 10^{-3} \text{ T}$$
 (2) $\frac{2}{10} \text{ T}$ (3) $2 \times 10^{-7} \text{ T}$ (4) $2\pi \times 10^{-6} \text{ T}$

(3) Ans.

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

12.	 Two infinite long parallel wires carry equal currents in same direction. The magnetic field at a mid point in between the two wire is :- (1) Twice the magnetic field produced due to each of the wires (2) Half of the magnetic field produced due to each of the wires. (3) Square of the magnetic field produced due to each of the wires. (4) Zero 				
Ans.	(4)				
13. Ans.	A closely wound flat current of 4 ampere. (1) 1.679×10^{-5} T (3)	t circular coil of 25 tur Determine the magnit (2) 2.028×10^{-4} T	rns of wire has diamete ude flux density at the (3) 1.257×10^{-3} T	er of 10 cm and carries a centre of the coil :- (4) 1.512×10^{-6} T	
14	π ampere current is f	lowing through a long	straight wire Due to t	his a field of $5 \times 10-5$ T	
Ans	produced, then distant (1) $10^4 \mu_0 m$ (1)	the point from the p	the axis of the wire is :- (3) $10^6 \mu_0 m$	(4) $10^8 \mu_0 m$	
Ans,					
15.	Radius of a current c is R distance away f coil :-	carrying coil is 'R'. The from the centre of the	e ratio of magnetic fie coil to the magnetic f	ld at a axial point which ield at the centre of the	
	$(1)\left(\frac{1}{2}\right)^{1/2}$	(2) $\frac{1}{2}$	$(3)\left(\frac{1}{2}\right)^{3/2}$	(4) $\frac{1}{4}$	
Ans.	(3)				
16.	When the current flo in it is halved, the ma (1) Same	wing in a circular coil agnetic field at its cent (2) Four times	is doubled and the nut re will become :- (3) Half	(4) Double	
Ans.	(1) Stante (1)		(0) 11411	(1) Double	
17. Ans.	Which of the follow carrying loop :- (1) proportional to cu (2) inversely proport (3) proportional to m (4) none (4)	wing statement is not arrent ional to radius umber of turns	true; magnetic field	at the centre of current	
18.	A circular coil of rac	lius R carries an electi	ric current. The magnet	ic field due the coil at a	
	point on the axis of $r > P$ varies as :	the coil located at a d	listance r from the cen	ter of the coil, such that	
Ans.	(1) 1/r (4)	(2) $1/r^{3/2}$	(3) $1/r^2$	(4) 1/r ³	

Power by: VISIONet Info Solution Pvt. L	td
Website : www.edubull.com	

	(1) $ {}^{\mathbf{r}}_{\mathbf{B}} = \frac{\mu_0 i}{8\mathbf{R}}$ into the	plane of the figure			
	(2) $ {}^{r}B = \frac{\mu_0 i}{8R}$ out of the plane of the figure				
	(3) $\left \stackrel{r}{B} \right = \frac{\mu_0 i}{8\pi R}$ into the	e plane of the figure			
	(4) $ {}^{\mathbf{r}}_{\mathbf{B}} = \frac{\mu_0 i}{8\pi R}$ out of	the plane of the figure			
Ans.	(1)				
AMPI	ERE'S LAW				
25.	For the hollow cylind (1) magnetic field ins (2) magnetic field outsi (3) electric field outsi (4) electric field on the	erical current carrying ide the pipe is not zero side the pipe is zero de the pipe is zero he surface of pipe is zero	g pipe which statement	is correct :-	
Ans.	(3)				
26. Ans.	In a current carrying 1 (1) number of turns p (2) current is solenoid (3) radius fo cross sec (4) all of the above (3)	long solenoid the field er unit length l tion of the solenoid	produced does not dep	bend on :-	
27.	If length and number becomes :-	of turns becomes ha	If for a solenoid then	value of magnetic field	
Ans.	(1) twice (2)	(2) same	(3) han	(4) one fourth	
28.	If number of turns an field becomes :-	nd current become do	uble for any solenoid,	then value of magnetic	
Ans.	(1) twice (4)	(2) same	(3) half	(4) four times	
29. Ans.	A current of $1/4\pi$ ampere is flowing through a toroid. It has 1000 number of turn per meter then value of magnetic field (in Wb/m ²) along its axis is :- (1) 10^{-2} (2) 10^{-3} (3) 10^{-4} (4) 10^{-7} (3)				
30.	Mean radius of a toro it is 0.1 ampere then $(1) 10^{-2}$	bid is 10 cm and numb value of magnetic field $(2) 10^{-5}$	per of turns are 500. If (1) (in tesla) (3) 10^{-3}	current flowing through $(4) \ 10^{-4}$	
Ans.	(4)	× /	、 /		

31.	A long solenoid has length L, average diameter D and n layer of turns. Each layer contains N turns. If current flowing through the solenoid is I the value of magnetic field at the centre :-				
Ans.	(1) Proportional to D(3) Does not depend on I(3))	(2) Inversely propor(4) Proportional to I	tional to D	
32.	A long solenoid carryin current is doubled and magnetic field is :-	g a current produce the number of tur	ces a magnetic field ms per cm is halved	B along its axis. If the l, the new value of the	
Ans.	(1) B/2 (2) (2)) B	(3) 2B	(4) 4B	
33.	A long solenoid having	200 turns/cm and	carries current i. Mag	gnetic field at its axis is	
	$6.28 \times 10^{-2} \text{ wb/m}^2$. An a	nother solenoid ha	ving 100 turns/cm an	d carries $\frac{i}{2}$ current, then	
	magnetic field at its axis (1) 1.05×10^{-4} Wb/m ² (3) 1.05×10^{-5} Wb/m ²	will be :-	(2) 1.05×10^{-2} Wb/r (4) 1.05×10^{-3} Wb/r	n^2 n^2	
Ans.	(2)				
MAG	NETIC FORCE & MOV	VING CHARGE I	N MAGNETIC FIEI	LD	
MAG 34.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle	VING CHARGE IN particle are separa le initial velocities es move along circ	N MAGNETIC FIEI ately projected in a rate perpendicular to t des of equal radii, the	LD region where a uniform he direction of magnetic e ratio of momentum of	
MAG. 34.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle	VING CHARGE II particle are separate initial velocities es move along circe $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :-	N MAGNETIC FIEI ately projected in a rate perpendicular to t eles of equal radii, the	LD region where a uniform he direction of magnetic e ratio of momentum of	
MAG 34. Ans.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	VING CHARGE II particle are separate initial velocities es move along circe $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :-	N MAGNETIC FIEI ately projected in a rate are perpendicular to t eles of equal radii, the (3) 2	(4) ¹ / ₄	
MAG 34. Ans. 35.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle (1) 1 (2) (2) Cathode rays are moving field of magnet :-	VING CHARGE II particle are separate initial velocities es move along circe $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :-) 1/2 g between the pole	N MAGNETIC FIEI ately projected in a r are perpendicular to t eles of equal radii, the (3) 2	(4) ¹ / ₄	
MAG 34. Ans. 35.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle (1) 1 (2) (2) Cathode rays are moving field of magnet :	VING CHARGE II particle are separate initial velocities es move along circe $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :- (1/2) g between the pole	N MAGNETIC FIEI ately projected in a r are perpendicular to t cles of equal radii, the (3) 2 es of a magnet. Due t	region where a uniform he direction of magnetic e ratio of momentum of (4) ¹ / ₄ o the effect of magnetic	
MAG: 34. Ans. 35.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle (1) 1 (2) (2) Cathode rays are moving field of magnet :	TING CHARGE II particle are separate initial velocities es move along circe $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :- 1/2 g between the pole	N MAGNETIC FIEI ately projected in a p are perpendicular to t cles of equal radii, the (3) 2 es of a magnet. Due t	region where a uniform he direction of magnetic e ratio of momentum of (4) ¹ / ₄ o the effect of magnetic	
MAG 34. Ans. 35.	NETIC FORCE & MOV A proton and an alpha magnetic field exists. Th field. If both the particle proton to alpha particle (1) 1 (2) (2) Cathode rays are moving field of magnet : (1) velocity of rays increa (2) velocity of rays decre (3) rays deflected toward	VING CHARGE II particle are separate initial velocities es move along circo $\left(\frac{P_{\rho}}{P_{\alpha}}\right)$ is :- (1/2) g between the pole N S asses eases ls south pole	N MAGNETIC FIEL ately projected in a r are perpendicular to t teles of equal radii, the (3) 2 es of a magnet. Due t	region where a uniform he direction of magnetic e ratio of momentum of (4) ¹ / ₄ o the effect of magnetic	

36. Following charge has maximum frequency of rotation in uniform transverse magnetic field :-

(1) a proton (2) an alpha particle (3) an electron (4) a neutron

Ans.	(3)				
37.	Which of the following projected with the same ver (1) electron (2) p	particle will exploring the set of the set o	periences maximum lar to a magnetic field (3) He^+	magnetic force, when :- (4) Li ⁺⁺	
Ans.	(4)				
38.	When α and β rays are a direction of their motion, particles are :- (1) equal	subjected to a m with their same	agnetic field which it speed. The curvatur (2) more for α particl	is perpendicular to the re of path of both the es	
Ans.	(3) more for β particles(3)		(4) none		
39.	If an electron of velocity (2 (a) path will change (c) path must be circular (1) a, b (2) A	2î+3ĵ) is subject	ed to magnetic field of (b) speed does not cha (d) momentum is con (3) a, b, c	f 4k̂, then its :- ange stant (4) none	
Ans.	(3)				
40.	Two identically charged particles A and B initially at rest, are accelerated by a common potential difference V. They enters into a uniform transverse magnitude field B and describe a circular path of radii r_1 and r_2 respectively then their mass ratio is :- $(1)\left(\frac{r_1}{r}\right)^2 \qquad (2)\left(\frac{r_2}{r}\right)^2 \qquad (3)\left(\frac{r_1}{r}\right) \qquad (4)\left(\frac{r_2}{r}\right)$				
Ans.	(1)				
41.	An α -particle experiences magnetic field of 0.2 Wb/m (1) 6.0×10^5 m/sec (2) 5	a force of 3.84 n^2 then speed of th 0.0×10^5 m/sec	× 10^{-14} N when its r ne α -particle is :- (3) 1.2×10^6 m/sec	noves perpendicular to (4) 3.8×10^6 m/sec	
Ans.	(1)			. /	
42. Ans.	If an electron enters a magnetic field with its velocity pointing in the same direction as the magnetic field then :- (1) the electron will turn towards right (2) the electron will turn towards left (3) the velocity of the electron will increase (4) the velocity of the electron will remain unchanged (4)				
43.	A charge having q/m equ uniform magnetic field B = be :-	al to 10 ⁸ C/kg a = 0.3 tesla an angle	nd with velocity $3 \times 30^{\circ}$ with direction of	10^5 m/s enters into a field. Then radius will	
Ans.	(1) 0.01 cm (2) 0 (2)	0.5 cm	(3) 1 cm	(4) 2 cm	

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

- 44. When a charged particle enters in a uniform magnetic field its kinetic energy :-(1) remains constant (2) increases (3) decreases (4) becomes zero (1)
- Ans.
- 45. Two particles x and y have equal charges and possessing equal kinetic energy enter in a uniform magnetic field and describe circular path of radius of curvature r_1 and r_2 respectively. The ratio of their masses is :-

(1)
$$\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)$$
 (2) $\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^{1/2}$ (3) $\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^2$ (4) $\left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)^2$

(3) Ans.

46. An electron having mass 'm' and kinetic energy K enter in uniform magnetic field B perpendicularly, then its frequency of uniform circular motion will be :-

(1)
$$\frac{eE}{qVB}$$
 (2) $\frac{2\pi m}{eB}$ (3) $\frac{eB}{2\pi m}$ (4) $\frac{2m}{eBE}$

Ans. (3)

47. In a mass spectrograph an ion A of mass number 24 and charge +e and an ion B of mass number 22 and charge +2e are entered in transverse magnetic field with same velocity. The ratio of radii of their paths respectively :-

(1) 11	(2) 12	(2) 11	(4) 24
$(1) \frac{1}{24}$	$(2) \frac{11}{11}$	$(3) \frac{1}{22}$	$(4) \frac{11}{11}$

```
Ans.
       (4)
```

- **48**. A charge particle is moving in the direction of a magnetic field The magnetic force acting on the particle :-
 - (1) is in the direction of its velocity
 - (2) is in the direction opposite to its velocity
 - (3) is perpendicular to its velocity
 - (4) is zero
- (4) Ans.
- An electron of kinetic energy of 7.2×10^{-18} J is revolving on circular path in magnetic 49. field 9×10^{-5} Wb/m² then radius of its circular path is :-

```
(1) 1.25 cm.
                      (2) 2.5 m.
                                            (3) 2.5 m.
                                                                   (4) 25.0 cm.
```

```
(4)
Ans.
```

50. An electron moves with velocity v in uniform transverse magnetic field B on circular path of radius 'r', then e/m for it is :-

(1)
$$\frac{\mathrm{v}}{\mathrm{Br}}$$
 (2) $\frac{\mathrm{B}}{\mathrm{rv}}$ (3) Bvr (4) $\frac{\mathrm{vi}}{\mathrm{B}}$

Ans. (1)

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

51. A proton, deutron and an α -particle are accelerated by same potential, enter in uniform magnetic field perpendicularly. Ratio of radii of circular path respectively :-

(1) $1:\sqrt{2}:\sqrt{2}$ (2) 2:2:1 (3) 1:2:1 (4) 1:1:1Ans. (1)

- **52.** A charged particle moves through a magnetic field in a direction perpendicular to it. Then the :-
 - (1) speed of the particle remains unchanged
 - (2) direction of motion of particle remains unchanged
 - (3) acceleration of particle remains unchanged
 - (4) velocity of particle remains unchanged

Ans. (1)

- **53.** A magnetic field :-
 - (1) Always exerts a force on charged particle
 - (2) Never exerts a force on charged particle
 - (3) Exert a force, if the charged particle is moving across the magnetic field line
 - (4) Exerts a force, if the charged particle is moving along the magnetic field line

Ans. (3)

- 54. A proton and an α -particle moving with the same velocity and enter into a uniform magnetic field which is acting normal to the plane of their motion. The ratio of the radii of the circular paths described by the proton and α -particle respectively.
 - (1) 1:2 (2) 1:4 (3) 1:16 (4) 4:1
- Ans. (1)
- 55. A very long straight wire carries a current I. At the instant when a charge +Q at point P has velocity $\frac{1}{v}$, as shown, the magnetic force on the charge is :-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

63. Force exist on a current carrying wire which is placed in external magnetic field, due t :-

(1) free electrons in wire (2) free positive ions in wire

(3) (1) & (2) both (4) none (1)

Ans. (1)

64. A wire PQRST carrying current I = 5A is placed in uniform magnetic field B = 2T as shown in figure. If the length of part QR = 4 cm and SR = 6 cm then the magnetic force on SR edge of the wire is :-

70. A rectangular loop carrying a current i_1 , is situated near a long straight wire carrying a steady current i_2 . The wire is parallel to one of the sides of the loop and is in the plane of the loop as shown in the figure. Then the current loop will :--

(1) move away from the wire

(3) remain stationary

- (2) move towards the wire
- (4) rotate about an axis parallel to the wire

- Ans. (2)
- 71. A current carrying wire is arranged at any angle in an uniform magnetic field, then (1) only force acts on wire (2) only torque acts on wire
 - (3) both

(2) only torque acts on w

- Ans. (1)
- 72. Two parallel beams of positrons moving in the same direction will :-
 - (1) Repel to each other
 - (2) Will not interact with each other
 - (3) Attract to each other
 - (4) Be deflected normal to the plane containing the two beams
- Ans. (1)

CURRENT LOOP & MOVING COIL GALVANOMETER

73. Due to the flow of current in a circular loop of radius R, the magnetic field produced at the centre of the loop is B. The magnetic moment of the loop is :-

(1) BR³/2 $\pi\mu_0$ (2) 2π BR³/ μ_0 (3) BR²/2 $\pi\mu_0$ (4) 2π BR²/ μ_0 Ans. (2)

 74. A circular loop has a radius of 5 cm. and it is carrying a current of 0.1 A. its magnetic moment is : $(1) 1.32 \times 10^{-4} \text{ amp-m}^2$ $(2) 2.62 \times 10^{-4} \text{ amp-m}^2$ $(3) 5.25 \times 10^{-4} \text{ amp-m}^2$ $(4) 7.85 \times 1$

Ans. (4)

- 75. An electron is moving in a circle of radius 5.1×10^{-11} m. at a frequency of 6.8×10^{15} revolution/sec. The equivalent current is approximately :-(1) 5.1×10^{-3} A (2) 6.8×10^{-3} A (3) 1.1×10^{-3} A (4) 2.2×10^{-3} A Ans. (3)
- **76.** If number of turn, area and current through the coil is given by n, A and i respectively then its magnetic moment will be :-

(1) niA (2)
$$n^2$$
iA (3) niA² (4) $\frac{ni}{\sqrt{A}}$

Ans. (1)

77. An electron is moving around a proton in an orbit of radius 1Å and produces 16 Wb/m² of magnetic field at the centre, then find the angular velocity of electron :-(1) $20 \pi \times 10^{16}$ rad/sec (2) 10×10^{16} rad/sec (2) 5×10^{16} rad/sec

- (3) $\frac{5}{2\pi} \times 10^{16}$ rad/sec (4) $\frac{5}{4\pi} \times 10^{16}$ rad/sec
- Ans. (2)
- **78.** Current I is flowing in a conducting circular loop of radius R. It is kept in a magnetic field B which is perpendicular to the plane of circular loop, the magnetic force acting on the loop is :-
- (1) IRB (2) 2π IRB (3) Zero (4) π IRB Ans. (3) 79. The unit of magnetic moment will be :-(1) $\frac{A}{m}$ (2) $A-m^2$ (3) $\frac{T-m}{A}$ (4) $\frac{T-m}{A^2}$
- Ans. (2)

80. A current carrying coil behave like tiny magnet. If area of coil is A and magnetic moment is 'M' then current through the coil is :-

(1) $\frac{M}{A}$	(2) $\frac{A}{M}$	(3) MA	(4) $\frac{A^2}{M}$
(1)			

- Ans. (1)
- 81. An electron revolves with frequency 6.6×10^{15} r.p.s. around nucleus in circular orbit of radius 0.53 Å of hydrogen atom, then magnetic field produced at centre of orbit is :-(1) 0.125 T (2) 1.25 T (3) 12.5 T (4) 125 T Ans. (3)
- 82. A current loop of area 0.01 m² and carrying a current of 10A is held perpendicular to a magnetic field of 0.1 T, the torque in N-m acting on the loop is :-(1) 0 (2) 0.001 (3) 0.01 (4) 1.1
- Ans. (1)
- 83. The magnetic moment (μ) of a revolving electron around the nucleus varies with principal quantum number n as :-(1) $\mu \propto n$ (2) $\mu \propto 1/n$ (3) $\mu \propto n^2$ (4) $\mu \propto 1/n^2$ Ans. (1)
- **84.** A current carrying coil is placed in a constant uniform magnetic field B. Torque is maximum on this coil when plane of coil is :-

Ans.	 (1) perpendicular to E (3) at 45° to B (2) 	3	(2) parallel to B(4) at 60° to B	
85.	Magnetic field is para (1) Maximum	allel to the plane of con (2) Minimum	il then torque will be :- (3) Zero	(4) None of these
Ans.	(1)			
BAR N 86.	MAGNET The work done in rot external magnetic fid through an angle of 6 (1) 1/2	ating a magnet of mag eld direction is 'n' tin 0°. Where 'n' gives by (2) 2	gnetic moment M by an mes the corresponding y :	n angle of 90° from the work done to turn it
Ans.	(2)			
87.	Magnetic field lines p (1) At neutral points (3) At equatorial axis	produced by a bar mag	net, cuts each other :- (2) Near the poles of t (4) Never intersects to	the magnets b each other
Ans.	(4)			
EART 88. Ans. 89.	'H MAGNETIC FIE If the angel of dip at component of earth's field of earth is same, (1) $\sqrt{3}:\sqrt{2}$ (1) Two bar magnets hav placed in such a wa	LD two places are 30° and magnetic field at two will be :- (2) 1: $\sqrt{2}$ ving same geometry w by that their similar p	1 45° respectively, then places assuming magn (3) 1: $\sqrt{3}$ with magnetic moments poles are same side the	 a the ratio of horizontal nitude of total magnetic (4) 1 : 2 A and 2M, are firstly nen its time period of und then time period of the second se
	oscillation is T_1 . Not oscillation is T_2 , then (1) $T_1 < T_2$	$\begin{array}{l} \text{(2) } T_1 = T_2 \end{array}$	(3) $T_1 > T_2$	(4) $T_2 = \infty$
Ans.	(1)			
90.	Magnetic field of ear How much the magnet 10 per min :- (1) 0.3G	th is 0.3 gauss. A mag etic field of earth is ind (2) 0.6 G	gnet oscillating with ra creased, so the number (3) 0.9G	te of 5 oscillation/min. of oscillations become (4) 1.2G
ANS.	(3)			
91.	A magnet makes 40 c T. At another place, horizontal field at that (1) 0.25×10^{-6} T	oscillations per minute it takes 2.5 sec to c t place is :- (2) 0.36×10^{-6} T	at a place having magnomplete one vibration (3) 0.66×10^{-8} T	netic field of 0.1×10^{-5} . The value of earth's (4) 1.2×10^{-6} T
Ans.	(2)			

92.	The magnetic needle of a tangent galvanometer is deflected at an angle 30°. The horizontal component of earth's magnetic field 0.34×10^{-4} T is along the place of the coil. The magnetic field of coil :-				
Ans.	(1) 1.96×10^{-4} T (2)	(2) 1.96×10^{-5} T	(3) $1.96 \times 10^4 \text{ T}$	(4) $1.96 \times 10^5 \text{ T}$	
MAG] 93.	NETIC PROPERTIE For protecting a magr	S OF MATERIALS	e placed :-		
Ans.	(1) in an iron box (1)	(2) in wooden box	(3) in metallic box	(4) none of these	
94. Ans	Which of the followir (1) Iron (4)	ng materials is repelled (2) Cobalt	l by an external magner (3) Steel	tic field :- (4) Copper	
Ans.	(-)				
95.	If a diamagnetic mate compared to that outs	rial is placed in a mag ide will be :-	metic field, the flux der	nsity inside the material	
Ans.	(1) Slightly less (1)	(2) Slightly more	(3) Very much more	(4) Same	
96.	To protect a sensitive container made of :-	e instrument from exte	ernal magnetic jerks, i	t should be placed in a	
Ans.	(1) Non magnetic subs(3) Paramagnetic subs(4)	stance	(4) Ferromagnetic sub	ostance	
97.	Substances in which t	he magnetic moment	of a single atom is not a	zero, are known as :-	
Ans.	(1) Diamagnetic(4)	(2) Ferromagnetic	(3) Paramagnetic	(4) (2) and (3) both	
98.	Susceptibility of a ma of the magnetising fie	ignetic substance is fo ld. The material is a :-	und to depend on temp -	erature and the strength	
Ans.	(1) Diamagnetic(2)	(2) Ferromagnetic	(3) Paramagnetic	(4) Superconductor	
99.	 Property possessed by only ferromagnetic substance is :- (1) Attracting magnetic substance (2) Hysteresis (3) Susceptibility independent of temperature (4) Directional property 				
Ans.	(2)				
100.	The hard ferromagnet (1) Narrow hysteresis (2) Broad hysteresis h (3) High mechanically	ic material is characte loop oop y hardness, all over	rized by :		

Ans.	(4) Mechanically hard surface (2)								
101.	The magnetic momen (1) Infinity	t of paramagnetic mate (2) Zero	erials is :– (3) Constant but low	(4) None of above					
Ans.	(2)	~ /	~ /						
102. Ans.	The cause of paramag (1) Unpaired electron (2) Electron excess ar (3) Paired electrons an (4) Electrons and orbit (2)	netism is : s ad spin motion of elect ad orbital motion of elect tal motion of electrons	rons ectrons						
103. Ans	The cause of diamagn (1) Orbital motion of (2) Spin motion of ele (3) Paired electrons (4) None of the above (1)	etism is : electrons ectrons							
AII5.	(1)								
104.	(1) Infinity	t of diamagnetic mater	rials is :- (2) Zero						
Ans.	(3) 100 amp-m ² (2)		(4) None of the above						
105.	Which of the following	ng statements is correct	for diamagnetic mater	rials :					
	(1) $\mu_r < 1$ (3) γ does not depend	on temperature	(2) χ is negative and l(4) All of the above	ow					
Ans.	(4)								
106.	The area of B–H loop	for soft iron, as comp	ared to that for steel is	:-					
Ans.	(1) More (2)	(2) Less	(3) Equal	(4) None of the above					
107.	The liquid in the wate	h glass in the followin	g figure is :						
		NIS							
Ans.	(1) Ferromagnetic(2)	(2) Paramagnetic	(3) Diamagnetic	(4) Nonmagnetic					
108.	Powerful permanent r	nagnets are made of :-	(3) Tin- coal	(1) Cohalt steel					
Ans.	(4)		(5) 111-004						

 Power by: VISIONet Info Solution Pvt. Ltd

 Website : www.edubull.com
 Mob no. : +91-9350679141

109. Ans	 Which of the following statements is correct for ferromagnetic material :- (1) These become diamagnetic at Curie temperature (2) These become paramagnetic at Curie temperature (3) Their magnetic susceptibility becomes zero at Curie temperature (4) Its magnetic properties are explained on the basis of electron principle 								
Ans.	(2)								
110.	A material rod, when placed in a strong ma magnetic field. The nature of material is :- (1) Diamagnetic	(2) Paramagnetic	If at right angles to the						
Ans.	(1) Ferromagnetic	(4) Low terromagnetic	,						
111.	The relative permeability of air is :-	(2) Infinity							
Ans.	(1) Zero (2) 1.04 (2)	(5) mininty	(4) 1						
112.	If the magnetic susceptibility of a magnetic (1) Diamagnetic (2) Paramagnetic	the magnetic susceptibility of a magnetic material is -0.004 then its nature will be :- Diamagnetic (2) Paramagnetic (3) Ferromagnetic (4) Non magnetic							
Ans.	(1)								
113.	The correct measure of magnetic hardness of (1) Ramnant magnetism (3) Coercivity	neasure of magnetic hardness of a material is :- magnetism (2) Hysteresis loss v (4) Curie temperature							
Ans.	(3)								
114.	If the relative permeability of a material is ((1) Paramagnetic (2) Diamagnetic	0.9999 then its nature wi (3) Ferromagnetic	ill be :– (4) Non–magnetic						
Ans.	(2)								
115.	The magnetic susceptibility of a paramagneric at -173° C will be :-	etic material at -73°C is	s 0.0075 then its value						
Ans.	(1) 0.0045 (2) 0.0030 (3)	(3) 0.015	(4) 0.0075						
116.	When a magnetic substance is heated, then if (1) Becomes a strong magnet(3) Does not effect the magnetism	it : (2) Losses its magnetis (4) Either (1) or (3)	sm						
Ans.	(2)								
117. Ans.	Diamagnetic substance are :- (1) Feebly attracted by magnets (3) Feebly repelled by magnets (3)	(2) Strongly attracted (4) Strongly repelled b	by magnets by magnets						
117. Ans.	 Diamagnetic substance are :- (1) Feebly attracted by magnets (3) Feebly repelled by magnets (3) 	(2) Strongly attracted by magnets(4) Strongly repelled by magnets							

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

118.	If a diamagnetic solution is poured into a U–tube and one arm of this U–tube placed between the poles of a strong magnet with the meniscus in a line with the field, then the level of the solution will :-						
Ans.	(1) Rise (2) F (2)	fall	(3) Oscillate slowly	(4) Remain as such			
119.	Magnetic permeability is m (1) Diamagnetic substance (3) Ferromagnetic substance	aximum for :	(2) Paramagnetic sub(4) All of these	stance			
Ans.	(3)	•					
120.	Which one of the following (1) Co (2) Z	g is ferro–magnet Zn	ic :- (3) Hg	(4) Pt			
Ans.	(1)		< , C				
121.	For paramagnetic materials $(1) \propto T^2$ (2) \propto	magnetic suscep	tibility is related with (3) \propto T ⁻¹	temperature as :- (4) $\propto T^{-2}$			
Ans.	(3)						
122.	According to Curie's law temperature T is proportion	, the magnetic s al to :	susceptibility of a su (2) $1/T^2$	bstance at an absolute $(4) T^2$			
Ans.	 (2) Magnetic permeability is maximum for : (1) Diamagnetic substance (2) Paramagnetic substance (3) Ferromagnetic substance (4) All of these Which one of the following is ferro-magnetic :- (1) Co (2) Zn (3) Hg (4) Pt For paramagnetic materials magnetic susceptibility is related with temperature as :- (1) x T² (2) x T¹ (3) x T⁻¹ (4) x T⁻² According to Curie's law, the magnetic susceptibility of a substance at an absolute temperature T is proportional to :- (1) 1/T (2) T (3) 1/T² (4) T² A diamagnetic material in a magnetic field moves (1) from stronger to the weaker parts of the field (2) from weaker to the stronger parts of the field (3) perpendicular to the field (4) in none of the above directions (1) Diamagnetic substances characterise by :- (1) low and negative magnetic susceptibility (2) low and positive magnetic susceptibility (3) high and negative magnetic susceptibility (4) high and positive magnetic susceptibility (4) T² Magnetic suceptibility of a diamagnetic substance varies with absolute temperature as :- (1) directly proportional to T (2) inversely proportional to T (3) nermains unchanged with T 						
123.	A diamagnetic material in a (1) from stronger to the wea (2) from weaker to the stron (3) perpendicular to the fiel (4) in none of the above dir	a magnetic field r aker parts of the f nger parts of the f ld rections	noves field field				
Ans.	(1)						
124.	Diamagnetic substances cha (1) low and negative magne	aracterise by :- etic susceptibility	,				
	(2) low and positive magne	tic susceptibility					
	(4) high and positive magne	etic susceptibility	y 7				
Ans.	(1)						
125.	Magnetic suceptibility of a (1) directly proportional to (2) inversely proportional to (3) remains unchanged with (4) exponential decreases w	diamagnetic subs T o T n T vith T	stance varies with abso	olute temperature as :			
Ans.	(3)						
126	The meterial of memory and	man a ser at la a a					

126. The material of permanent magnet has

Edubull

- (1) High relentivity, low coercivity (2) Low retentivity, high coercivity
- (3) Low relentivity, low coercivity
- (4) High retentivity, high coercivity

(4) Ans.

- 127. Hysteresis property is shown by :-(1) paramagnetic and diamagnetic (2) diamagnetic
 - (3) paramagnetic
 - (4) ferromagnetic
- Ans. (4)

128.	Magnetic susceptibility of the follo	owing is :	
	(1) negative for diamagnetic		
	(2) positive for diamagnetic and pa	aramagnetic	
	(3) negative for diamagnetic and z	ero for paramagnetic	
	(4) zero for paramagnetic and posi-	tive for ferromagnetic	
Ans.	(1)		
129.	Which statement is true :		
128. Ans. 129. Ans. 130.	(1) atomic magnetic dipole moment	nt of diamagnet is zero	
	(2) atomic magnetic dipole moment	nt of paramagnet is zero	
	(3) atomic magnetic dipole moment	nt of ferromagnet is zero	
	(4) ferromagnet is demagnetised ra	apidly after mov <mark>ing in</mark> mag	gnetising field.
Ans.	(1)		
130.	Curie-Weiss law is obeyed by iron	n at a temperature	
	(1) Below Curie temperature	(2) Above Curi	e temperature
	(3) At Curie temperature only	(4) At all tempe	eratures

Ans. (2)

131.	Ferromagnetic substance contain :-	_
	(1) empty subshell	(2) partially empty subshell
	(3) full fill subshell	(4) none of these
Ans.	(2)	

- 132. Soft iron is used to make the core of transformer, because of its :
 - (1) low coercivity and low retantivity
 - (2) low coercivity and high retentivity
 - (3) high coercivity and high retenvity
 - (4) high coercivity and low retentivity
- (1) Ans.

133.	Above curie temperature ferromagnetic substance converts into :						
	(1) paramagnetic	(2) diamagnetic	(3) ferromagnetic				

(1) paramagnetic (2) diamagnetic

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

(4) non magnetic

Ans. (1)

134. Relation between μ_r and χ will be :

(1)
$$\mu_r = 1 + \chi$$
 (2) $\chi = \mu_r + 1$ (3) $\frac{\mu_0}{\mu}$ (4) $\mu_0 \chi$

Ans. (1)

EX	EXERCISE-I (Conceptual Questions) ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	1	2	2	4	1	3	2	4	3	3	4	3	1	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	.29	30
Ans.	1	4	4	1	2	4	3	3	1	3	3	2	4	3	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	3	2	2	2	4	3	4	3	3	1	1	4	2	1	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	3	4	4	4	1	1	1	3	08 1 % -	3	60 1 70	3	2	3	/ 3
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	4	1	1	1	1	1	3	3	1	2	1	1	2	4	3
Que.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans.	1	2	3	2	1	3	1	1. 1 . 9. 1	210	: B ag	Sin 2 5 (1	4	1	. 1	3
Que.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105
Ans.	2	2	1	4	1	4	4	2	2	2	2	2	1	2	4
Que.	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	2	2	4	2	1	2	1	3	2	3	2	3	2	3	1
Que.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	tivale.
Ans.	3	1	1	1	3	4	4	1	1	2	2	1	1	1 Go	oo Semno