EXERCISE-I (Conceptual Questions)

N	ÆΕ	'N	$\mathbf{I}\mathbf{D}$	EI	TS	M

1.	On which plant Meno (1) Garden-pea	lal had carried out his i (2) Wild-pea	nvestigation:- (3) Cow-pea	(4) Pigeon –pea
2.	During breeding the (1) Anthesis	removal of anthers from (2) Pollination	a a flower is called:- (3) Emasculation	(4) Vasectomy
3.	Mendel formulated th (1) Dihybrid cross (3) Back cross	ne law of purity of gam	etes on the basis of :- (2) Monohybrid cros (4) Test cross	s
4.	A cross between AaB (1) 1 AaBB: 1 aaBB (3) 3 AaBB: 1 aaBB	BB X aa BB yields a ge	notypic ratio of :- (2) 1 AaBB : 3 aaBB (4) All AaBb	
5.	In monohybrid cross individuals in F ₂ - gen (1) 1:2:1		homozygous dominar (3) 3:1/1:3	nt and homozygous recessive (4) 1:1
6.	The cross between 4r (1) Back cross (3) Monohybrid cross	recessive to it's hybrid	or its's F ₁ plant is call (2) Test cross (4) Dihybrid cross	ed:-
7.	What is the genotypic (1) 1:2	c and phenotypic ratio (2) 1:2	of monohybrid test cro (3) 3:1	oss:- (4) 1 : 2 : 1
8.	Dihybrid cross prove (1) Segregation	s the law of :- (2) Purity of gametes	(3) Dominance	(4) Independent assortment
9.	How many tpes & in (1) 4 types in the ratio (2) 2 types in the ratio (3) 3 types in the ratio (4) 4 types in the ratio	o of 9:3:3:1 o of 3:1 o of 1:2:1	s are produced by a di	hybrid heterozygous :-
10.	How many gametes a (1) 3	are produced in F ₁ gene (2) 4	ration of a trihybrid:- (3) 8	(4) 16
11.	Which genotype represent (1) tt rr	esents a true dihybrid c (2) Tt rr	condition (3) Tt Rr	(4) TT Rr
12.	Mendelian ratio 9:3 (1) Law of segregatio (3) Law of independe	on	(2) Law of pu (4) Law of ur	urity of gametes nit characters

13.		pure tall plant with gree produced in F ₂ gener		rt plant with yellow pod. How
	(1) 1	(2) 3	(3) 4	(4) 9
14.	In a dihybrid cross generation is:-	between AABB and	aabb the ratio of AAl	BB, AABb, aaBb, aabb in F ₂
	(1) 9 : 3 : 3 : 1	(2) 1 : 1 : 1 : 1	(3) 1 : 2 : 2 : 1	(4) 1 : 1 : 2 : 2
15.	AABbCc genotype f (1) 4	forms how many types (2) 8	of gametes:- (3) 2	(4) 6
16.	Who rediscovered the (1) DeVries, Tscheme (3) Tschemark, Morgania		experiments:- (2) DeVries, Tscgen (4) Tschemark, Bate	_
17.	Crossing AABB & a (1) 1/16	abb, the probability of (2) 2/16	AaBb would be in G ₂ (3) 8/16	generation:- (4) 4/16
18.	height of stem, are ca	alled:-		ition of flower, colour of pod
	(1) Alleles	(2) Genotype	(3) Phenotype	(4) All of the above
19.	ratio of off springs w	vill be:-		flowered pea plants, than the
	(1) 90 Red : 30 Whit (3) 60 Red : 60 Whit		(2) 30 Red : 90 Whit (4) All Red	te e
20.		wo identical members	of a pair of genetic fac	tors is called:-
	(1) Heteromorphic(3) Homomoorphic		(2) Heterozygote(4) Homozygote	
21.	Two allelic genes are			
	(1) The same chromo (3) Two non-homolo		(2) Two homologous(4) Any two chromo	
22.	The percentage of ab	gametes produced by	AaBb parent will be:-	
	(1) 12.5	(2) 25	(3) 50	(4) 75
23.	How many character (1) 7	of pea pod were chose (2) 5	en by Mendel:- (3) 4	(4) 2
24.	Mendel's law of seg	regation is based on se	paration of alleles duri	ng:-
	(1) Gamete formatio	n	(2) Seed formation	onmont
	(3) Pollination		(4) Embryonic devel	оршеш
25.	When two hybrids T	trr & Rrtt are crossed,	the phenotypic ratio of	f offspring shell be:-

Mob no.: +91-9350679141

	(1) 3 : 1	(2) 1:1:1:1	(3) 1 : 1	(4) 9:3:3:1	
26.		unable to express its e	ffect in the presence of	f another is called:-	
	(1) Co-dominant		(2) Supplementary		
	(3) Complementary		(4) Recessive		
27.	Which technique is	used by Mendel for hy	ybridisation		
	(1) Emasculation	•	(2) Bagging		
	(3) Protoplast fusion	1	(4) 1 & 2 both		
28.	When flowers are u	nisexual then emascul	ation is done in:-		
	(1) Female	(2) Male	(3) 1 & 2 both	(4) None of these	
	(1) I chiare	(2) 1/14/10	(5) 1 66 2 55611	(1) I tone of these	
29.	• •	•	ration of dihybrid cross		
	(1) One	(2) Two	(3) Four	(4) Sixteen	
30.	Heterozygous tall p	lants were crossed wit	th dwarf plants. What	will be the ratio of dwarf plants	
	in the progeny:-			P	
	(1) Homozygous		(2) Dioecious		
	(3) Heterozygous		(4) Monoecious		
21	II.4	14	1	:11 b - (b(b	
31.	in the progeny:-	iants were crossed wit	th dwarf plants. What	will be the ratio of dwarf plants	
	(1) 50%	(2)25%	(3) 75%	(4) 100%	
	(1) 5070	(2)25 70	(5) 75 70	(1) 10070	
32.		be differentiated from	-		
	(1) By measuring le		(2) By spraying gib		
	(3) If all plants are t	all after self-pollination	on (4) If all plants are	dwarf after self-pollination	
33.	Genetic constitution	of an individual is re	presented by:-		
	(1) Genome	(2) Genotype	(3) Phenotype	(4) Karyotype	
	· ·		``	, , , , , , , , , , , , , , , , , , ,	
34.	Genes do not occur	-			
	(1) Zygote	(2) Somatic cell	(3) Embryo	(4) Gametes	
35.	"Like begets like" a	n important and unive	ersal phenomenon of li	fe. is due to:-	
	(1) Eugenics	(2) Inheritance	(3) dominance	(4) Crossing-over	
	, ,			. ,	
26	How many tymas of	comptes are avecated	from the engenism wi	th construe AADDCC	
36.	(1) One	(2) Two	(3) Four	th genotype AABBCC:- (4) Eight	
	(1) One	(2) TWO	(3) 1 Out	(4) Eight	
37.	One of the following	ng did not constitute	the seven contrasting	pairs of characters noticed by	
	Mendel				
	(1) Height of the pla	ants	(2) Shape of the lea	ives	
	(3) Shape of pod		(4) Colour of pod		

	(3) Wrinkled seeds	of flower	s showing dominance- (2) Green colour in so (4) Green pod colour	
39.	9. Due to the cross between TTRr × ttrr the resultant progenies showed how many would be, tall, red flowered:-		wed how many percent plants	
	(1) 50%	(2) 75%	(3) 25%	(4) 100%
40.	to which enzyme:-	nkled seeds in pea due	-	rs instead of starch. It was due
	(1) Amylase(3) Diastase		(2) Invertase(4) Absence of starch	n branching enzyme
41.	(2) It expressed only	ect only in homozygou in heterozygous condi in homozygous and he	tion	
42.	A plant of F_1 -gener phenotypic ratio in F_2 (1) 3 : 1 (3) 9 : 3 : 3 : 1		"AABbCC". On selfi (2) 1 : 1 (4) 27 : 9 : 9 : 9 : 3 : 3	ng of this plant what is the $3:3:1$
43.	Which one of the following traits of garden pea studied by Mendel, was a recessive feature (1) Axial flower position (2) Green seed colour (3) Green pod colour (4) Round seed shape			r
44.	•	nade between two plan we a genotype a/a b/b c (2) 1/4	· • • • • • • • • • • • • • • • • • • •	B/b C/c how many offsprings (4) 1/32
45.	How is the arrangeme (1) One in ch.no. 1, 4 (2) 2 in ch.no. 1, 3 in (3) 3 in ch.no. 1, 1 in	in ch.no. 4, one in ch.	ed seven characters on no. 5, and one in ch.no. 5, and one in ch.no. 6 , and one in ch.no. 7	o. 7
46.	When two different then each one is know (1) Phenotype (3) Progeny		(2) Phenocopy (4) Independent offsp	to environmental difference,
47.	When a red flower h produced in F ₁ :- (1) Red	omozygous pea plant (2) White	is crossed with a whit (3) Pink	te flower plant what colour is (4) Red + White

48.	If a heterozygous tall plant is crossed with a homozygous dwarf plant then what shall be percentage of dwarf in offspring:-			dwarf plant then what shall be the
	(1) 25%	(2) 100%	(3) 75%	(4) 50%
49.	If a homozygous offsprings:-	tall plant is crossed	with a dwarf plant, v	what shall be the ratio of plants in
	(1) All heterozygo (3) 1 : 2 : 1	ous tall	(2) Two tall & 7 (4) All homozy	
50.	following cross:	AA BB CC \times aa bb cc		y F ₁ progeny, resulting from the
	(1) 3	(2) 8	(3) 27	(4) 64
51.		at the different types of the crossed to a plant with (2) aabb	-	by a pea plant having the genotype (4) aaBB
52.	Law of independe (1) Monohybrid c (3) dihybrid cross	nt assortment of Menross	del was proved by:- (2) Reciprocal ((4) Back cross	cross
	•			
53.	Mendel does not s (1) Plant height	select which character	in his experiment:- (2) Plant colour	
	(3) Pod shape		(4) Pod colour	
54.	Genes controlling	seven traits in pea stu	idied by Mendel were	e actually located on:-
	(1) Seven chromo	somes	(2) Six chromos	somes
	(3) Four chromoso	omes	(4) Five chromo	osomes
55.	gametes are rever	veen the same pair of sed in one cross, is kn	own as:-	otypes in which the sources of the
	(1) Test cross(3) Dihybrid cross		(2) Reciprocal of (4) Reverse cross	
	(3) Diffyoria cross		(+) Reverse ero.	55
56.	RRYY, RrYY. RI	1		ratio of given genotype will be:-
	(1) 1 : 2 : 2 : 4 (3) 1 : 1 : 1 : 1		(2) 1 : 2 : 2 : 1 (4) 2 : 2 : 2 : 1	
	(3) 1 . 1 . 1 . 1		(+) 2 . 2 . 2 . 1	
57.	<u>-</u>	ating between closely		:-
	(1) Out-breeding(3) Hybridisation		(2) Inbreeding(4) Heterosis	
5 0			• •	
58.	_	trihybrid plant forms: metes and 32 zygotes		ametes and 64 zygotes

Mob no.: +91-9350679141

	(3) 4 different gamete	es and 16 zygotes	(4) 8 different gamete	es and 16 zygotes
59.60.		(2) Anaphase olve three pair of char		(4) Embryo formation e rise to the F ₁ hybrids which will be produced in both male
	and female: - (1) 2	(2) 4	(3) 6	(4) 8
61.	When an F ₁ individua (1) Test cross	al is crossed with its eight (2) Back cross	<u>-</u>	Then it is known as:- (4) Monohybrid cross
62.	If a homozygous red (1) All red flowered (3) Half red flowered	flowered plant is cross	ed with white plant, th (2) All White flowers (4) Half white flower	ed
63.	How many types of dihybrid F ₁ :- (1) 9	genotypes are formed (2) 3	in F ₂ progeny obtain (3) 6	ned from self pollination of a (4) 1
64.	If a dwarf plant is tre	ated with gibberellins y of first generation (F	it becomes tall and thi	s plant now crosses with pure
65.		eneration plants		
66.	If a cross is made bet (1) genotypically AA (2) genotypically Aa, (3) genotypically Aa, (4) genotypically aa,	phenotypically a phenotypically A	ature of F ₁ progeny w	ill be :-
67.	•	on consists of tall plan		arf plant with wrinkled seeds. How many types of gametes (4) Eight
68.		re dwarf plant were contact the ratio between true (2) 3 : 1	<u> </u>	springs. Offsprings were self

69.	If hybrid red flower will show:-	red plants of pea are ca	rossed back to pure red	I flowered parent, the progeny
	(1) All red flowered	±	(2) White flowered pts (4) 3 Red : 1 white flowered	
70.	What result Mendel (1) All tall plants (3) All dwarf plants	_	he self pollinated a dwa (2) Tall and dwarf pl (4) Tall and dwarf pl	ants in 3:1 ratio
71.	Mendel's laws of inl (1) Reproduce asext (3) Reproduce vege	ıally	e on the plants which:- (2) Reproduce sexua (4) All of the above	
72.	Dihybrid test cross 1 (1) 9:3:3:1 (3) 1:2:2:4:1:2	ratio proposed by Meno 2:1:2:1	del is:- (2) 1 : 1 : 1 : 1 (4) 3 : 1	
73.	A cross between p produce tall F ₂ plant (1) 15		h green pods and dwa (3) 12	rf pea with yellow pods will (4) 7
Mendel's Principle of segregation means that the gamete cells always (1) one pair of alleles (2) one quarter of the ger (3) one of the paired alleles (4) any pair of alles			- -	
75.	How many types o having the genotype (1) Two	_	gametes will be produced (3) Six	uced by a heterozygous plant (4)Nine
76.	The phenotypic rational would be:- (1) 1:1	io in a back cross be (2) 1 : 1 : 1 : 1		homozygous recessive parent (4) 1 : 1 : 1 : 1 : 1 : 1 : 1
77.		pairs of contrasting tra er, pod and seed respe (2) 2, 2, 1		ed by Mendel, the number of (4) 1, 1, 2
78.	(1) Round seed shap(2) Yellow seed cole(3) Yellow seed cole	our, inflated pod shape our, violet flower color	endel were:- pe and axial flower pose and axial flower positi ur and yellow pod colou r and green seed colour	on ar
79.	The colour based co	entrasting traits in seve	n contrasting pairs stud (3) 3	ied by Mendel in pea were:- (4) 4

Mob no.: +91-9350679141

80.	Mendel observed that all the F 1 progeny (1) resembled either one of the parents	plants. (2) resembled neither of the parents	
	(3) resembled both of the parents	(4) shows 3: 1 ratio	
81.	Accoding to Mendel, "factors" or "genes" (1) are the units of inheritance (2) contain information that is required to (3) Both 1 and 2 (4) None of the above		
82.	The phenotype of any character will not b (1) Normal enzyme (3) No enzyme at all	pe affected if the modified allele produces- (2) Non-functional enzyme (4) 2 and 3 both	
83.	Te recessive characters are- (1) Only expressed in heterozygous condit (2) Only expressed in homozygous condit (3) Blend in heterozygous condition (4) Always impure		
	ALLELIC & NON-ALLE	ELIC GENE INTERACTIONS	
84.	In Mirabilis & Antirrhinum plant the appe (RR) and white (rr) flower parent indicate (1) Incomplete dominance (3) Dominance	pearance of the pink hybrid (Rr) between cross of a ses:- (2) Segregation (4) Heterosis	red
85.	RR (red) is crossed with rr (white). All Ri (1) Hybrid (3) Recessive	r offsprings are pink. This indicates that R-gene is: (2) Incompletely dominant (4) Mutant	
86.	In case of incomplete dominance the mon (1) 1 : 2 : 1 (2) 3 : 1 : 1	nohybrid ratio of phenotypes in F_2 w generation is: (3) $9:3:3:1$ (4) $2:3:1$	
87.	When the phenotypic and genotypic ratios (1) Independent assortment (3) Segregation of factors	s resemble in the F ₂ generation it is an example of: (2) Qualitative inheritance (4) Incomplete dominance	
88.	3 I	and flowered and white flowered plants are crossed, if F_2 produced by selfing of F_1 plants, red, pink, when y in the ratio of:- (3) 1:0:1 (4) 1:2:1	
89.	In case of incomplete dominance, F 2 gen (1) Genotypic ratio equal to phenotypic ra (2) Genotypic ratio is 3:1	neration has:-	
Power Website	by: VISIONet Info Solution Pvt. Ltd e: www.edubull.com Mob no.: +91	1-9350679141	
	- · · · · · · · · · · · · · · · · · · ·		

	(3) Phenotypic ratio(4) None	is 3:1		
90.	Incomplete dominan (1) Mirabilis	ce occurs in:- (2) Antirrhinum	(3) Andulasion fowl	(4) All of the above
91.	Which cross yields r (1) $RR \times Rr$	ed, white & pink flow (2) $Rr \times RR$	vers variety of dog flowe (3) $Rr \times Rr$	er:- (4) Rr × rr
92.	Which of the follow: (1) Linkage (3) Co-dominance	ing is exception to Me	endel's laws (2) Incomplete domin (4) All of the above	nance
93.	In a dihybrid cross, comes to (1) 3:6:3:1:2:1 (3) 9:3:3:1	-	(2) 1 : 2 : 2 : 4 : 1 : 2 (4) 1 : 2 : 1	e dominance, genotypic ratio :1:2:1
94.	Which of the follows (1) Hb ^A Hb ^A , I ^A , I ^B (3) Hb ^A Hb ^s , I ^A , I ^B	ing is the example of o	co-dominance:- (2) Hb ^s Hb ^s , I ^A , I ^B (4) Hb ^s Hb ^s , I ^A , I ^A	
95.	(1) A gene expresses (2) Genes that are interact to produce a (3) Allele, both of w type.	s itself, suppressing the similar in phenotypic different trait which interact to produ		s alleles eparately, but when together esemble either of the parental
96.	The phenomenon of (1) De vires	incomplete dominance (2) Correns	e was observed by:- (3) Tschermak	(4) None
97.	Mendel did not prop (1) Dominance (3) Segregation	ose:-	(2) Incomplete domir (4) Independent assor	
98.	The phenomenon if another gene is know (1) Dominance		one gene suppresses th	ne expression of an allele of (4) Suppression
99.	•	e but when they pres	•	with each other to produce produce phenotype they are
	(3) Duplicate gene		(4) Inhibitory gene	

Website: www.edubull.com Mob no.: +91-9350679141

100.	AB- Blood group sho (1) Co-dominance (3) Mixed inheritance		(2) Complete domina (4) Composite inheri	
101.	ABO blood group is		. ,	
102.	(1) Epistasis(3) PleotropismA child is blood group	p is '0'. His parents blo	(2) Multiple allelism (4) Complementary g	
102.	(1)B&O	(2)A&O	(3)AB	(4)A&B
103.	If one parent has blo which blood group:-		ther parent has blood	group B. The offsprings have
	(1)AB only	(2) O only	(3) B only	(4) A, B, AB, O
104.	Ratio 9:7 is due to:- (1) Supplementary g (3) complementary g		(2) Lethal genes (4) Epistatic genes	
105.	A man of A blood grindicate that man is h	± // /	of AB blood group. V	Which type of progeny would (4) B
106.	A child of 0 blood gr (1) I ^O I ^O	oup, has B-blood grou (2) I ^B I ^B	p father, the genotype (3) I ^A I ^B	of father would be :- (4) I ^B I ^O
107.		ain a phenotypic ratio on ance	nated by white flowered of 1:2:1, it has to be a continuous (2) Dominance (4) Pleurotropic effects	
108.	Andalucian fowl exh (1) Phenotypic blend (3) Epistasis		(2) Mosaic inheritance (4) Co-dominance	ce
109.	A gene that shows it's (1) Polygene	s effect on more than of (2) Pleotropic gene	one character is :- (3) Multifactor gene	(4) Multiple gene
110.	In multiple allele syst (1) Two alleles	tem a gamete possesse (2) Three alleles	s :- (3) One allele	(4) Several alleles
111.	(1) 4 alleles in which	I ^A and I ^B are dominan none is dominant		

112.	Multiple alleles are present: (1) In different chromosomes (2) At different loci on chromosome (3) At the same locus on homologous chromosomes (4) At the non homologous chromosome
113.	Epistasis differs from dominance because (1) In epistasis one gene pair mask the expression of another pair of genes. (2) Epistasis is an allelic interaction. (3) Many genes collectively controls a particular phenotype. (4) One gene pair independently controls a particular phenotype.
114.	In a genetic cross having recessive epistasis, F_2 phenotypic ratio would be :- (1) 9:6:1 (2) 15:1 (3) 9:3:4 (4) 12:3:1
115.	Sickle cell anaemia induces due to: (1) Change of Amino Add in α-chain of Haemoglobin (2) Change of Amino Add in β-chain of Haemoglobin (3) Change of Amino Acid in both α and β chain of Haemoglobin (4) Change of Amino acid either α or β chain of Haemoglobin
116.	What would be the colour of flower in F_1 progeny as a result of cross between homozygous red and homozygous white flowered Snapdragon:- (1) Red (2) White (3) Red and White (4) Pink
117.	Incomplete dominance is found in: (1) Pisum sativum (2) Antrrhinum majus (3) Both Pisum sativum and Antirrhinum majus (4) None of these
118.	In Mirabilis red (RR) and white (rr) flower produces pink (Rr) flower. A plant with pink flower is crossed with white flower the expected phenotypic ratio is :- (1) red: pink: white (1:2:1) (2) pink: white (1:1) (3) red: pink (1:1) (4) red: white (3:1)
119.	A child with mother of 'A' blood group and father of 'AB' blood group will be :- (1) O (2) A (3) A and O (4) O and B
120.	Epistasis implies:- (1) One pair of genes can completely mask the expression of another pair of genes (2) One pair of genes independently controls a particular phenotype (3) One pair of genes enhances the phenotypic expression of another pair of genes (4) Many genes collectively control a particular phenotype

121.	The possible blood g (1) O, A	(2) A, B, AB	to parents having A at (3) O, A, B	nd AB groups are :- (4) O, A, B, AB	
122.		roup B marries a fema t is the genotype of ch		and their first child is having	
	$(1) I^{A} I^{B}$	$(2) I^{A} I^{O}$	(3) IBIO	(4) IBIB	
123.	following blood grou			AB, will not have which of the	
124.	(1) A If mother has blood (1) A	(2) B group B, father has A (2) O	(3) AB group, the offspring wi (3) AB	(4) O ll be of :- (4) any of the above	
125.	Two nonallelic general independently then is (1) Epistatisis (3) Non compliment	t is called :-	phenotype when prese (2) Polygene (4) Complimentary §	ent together but fail to do so	
126.	Sickel cell anemia is (1) frame shift	the result of mu (2) deletion	tation in the haemoglol (3) point	oin gene :- (4) none of the above	
127.	When both alleles of a pair are fully expressed in a heterozygote, theye are called :- (1) Lethals (2) Co-dominants (3) Semi-dominants (4) Recessive allele				
128.	In the inheritance of flower colour in dog flower plant, the F ₁ had a phenotype that (1) resembles both of the parents (2) did not resembles either of the two parents (3) resembles with only one parent (4) 1 and 3 both				
129.	phenotypes respectiv	vely—	-	duce how many genotypes &	
	(1) 4 & 6	(2) 6 & 4	(3) 6 & 6	(4) 4 & 4	
130.	Other than pea plants it was found that sometimes the F ₁ had a phenotype that did not resemble either of the two parents and was in between the two. It is due to (1) Complete Dominance (2) Incomplete Dominance (3) Co-Dominance (4) Complementary gene interaction				
131.	Which of the following (1) Sweet Pea	ing material is good to (2) Cattle	understand incomplete (3) Snapdragon	e dominance (4) Kernel colour in wheat	
132.	Find out the correct match- (1) F ₁ resembled either of the two parents- Dominance (2) F ₁ resembled in between -incomplete dominance (3) F ₁ resembled both parent - Co-dominance				

		Edubull
	(4) All are correct	
133.	 Which of the following condition is true for codo: (1) Phenotype of F₁ resembled either of the two p (2) Phenotype of F1 did not resemble either of tw (3) Phenotype of F₁ resembles both parents (4) None of these 	arents
134.	(1) ABO blood groups (2) S	tiple allele- ize of starch grain in pea lower colour in pea
135.	· · · · · · · · · · · · · · · · · · ·	es polymerisation under low oxygen tension sixth position of the α -chain of haemoglobin
136.	plant, the F_1 (Rr) was pink. When the F_1 was so ratio 1 (RR) red; 2(Rr) pink; 1(rr) white. Above c (1) True dominance (2) I	elf pollinated the F ₂ resulted in the following
137.	In case of ABO blood group allele I ^A and I ^B if pre (1) Ony I ^A allele expresses (2) Only 1 ^B allele expresses (3) Both I ^A and I ^B alleles express (4) None of these	sent together then -
	POLYGENICE AND CYTOPLA	SMIC INHERITANCE
138.	(1) skin colour (2) s	ickle cell anaemia henylketonuria
139.	E	Chromosomes (4) Golgi-complex

140. When certain character is inherited only through the female parent, it probably represents the case of:-

(1) Mendelian nuclear inheritance (2) Multiple plastid inheritance (3) Cytoplasmic inheritance (4) Incomplete dominance

(3) Cytoplasmic inheritance (4) Incomplete dominance

141. Cytoplasmic male sterility is inherited :-

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

	(1) Maternally	(2) Paternally	(3) Both	(4) Bacteriophage multiplication		
142.	In which type of inhe (1) Nuclear	ritance the results are a (2) Cytoplasmic	affected by reci	procal cross :- (4) All the above		
143.	The scientist who first discovered cytoplasmic - inheritance was :- (1) Correns (2) Rhoades (3) Mendel (4) Morgan					
144.	Extranuclear inheritance is a consequence of presence of genes in :- (1) Lysosomes and ribosomes (2) Mitochondria and chloroplasts (3) Endoplasmic reticulum and mitochondria (4) Ribosomes and chloroplast					
145.	Inheritance of skin colour in human beings is an example of:- (1) Complementary gene (2) Monogenic inheritance (3) Polygenic inheritance (4) Mendelian inheritance					
146.	Polygenic genes show (1) Identical phenoty (3) Different phenoty	pe	(2) Identical b (4) Identical g	•		
147.	A dihybrid ratio of 1:4:6:4:1 is obtained instead of 9:3:3:1. This is an example of: (1) Complementary gene (2) Supplementary gene (3) Polygenic inheritance (4) Incomplete dominance					
148.	1 00	r three alleles, crosse	d each other.	irs of genes. Two individuals which Such type of cross produces what $4:1$ (4) $1:6:15:20:15:6:1$		
149.		aabbcc produces 100g of each polygene in the (2) 20 g		AABBCC produces 160g tomatoes. tomatoes:- (4) 40 g		
150.	A polygenic trait is controlled by 3 genes A, Band C. In a cross AaBbCc \times AaBbCc, the phenotypic ratio of the offsprings was observed as: $1:6:\times:20:\times:6:1$ what is the possible value of x?					
151.	(1) 3 Gene for cytoplasmic (1) chloroplast genom (3) nucleaer genome	(2) 9 male sterility in plants ne	(3) 15 s are generally l (2) mitochond (4) cytosol			
	LINKAGE, SEX LINKAGE					

What is the inheritance of colour blindness of both parents having a normal vision but mother 152. has a recessive gene for colour blindness:-

	Son	Doughter
(1)	50%	Nil
(2)	100%	Nil
(3)	Nil	100%
(4)	Nil	Nil

- **153.** What would be the nature of children if a colour blind woman marries a normal man:
 - (1) Colourblind daughter & normal sons
 - (2) Colourblind sons and carrier daughters
 - (3) Normal sons & carrier daughters
 - (4) Normal sons & Normal daughters
- 154. A colourblind man marries a normal lady whose father was colour blind. If it produces two sons & two daughters, how many of them would be suffer
 - (1) Both sons

(2) Both daughters

- (3) One son & one daughter
- (4) Both sons & both daughters
- 155. A colourblind daughter is born when:
 - (1) Father is colourblind, mother is normal
 - (2) Mother is colourblind, father is normal
 - (3) Mother is carrier, father is normal
 - (4) Mother is carrier, father is colourblind
- **156.** Hypertrichosis is:-
 - (1) Holandric character

(2) X-Linked character

(3) Diagenic character

- (4) Sex-influened character
- 157. In which of the following the inheritance takes place only by male:
 - (1) Nuclear
- (2) Cytoplasmic
- (3) co-dominance
- (4) Holandric inheritance
- 158. Which of the following is not a sex linked characters
 - (1) Haemophilia
- (2) Colour blindness (3) Hypertrichosis
- (4) Baldness
- 159. A gene located on Y-chromosome and therefore, transmitted from father to son is known as:-
 - (1) Supplementary gene

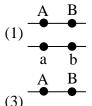
(2)Complementarygene

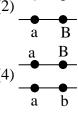
(3) Duplicate gene

- (4) Holandric gene
- 160. The condition in which only one allele of a pair is present in a diploid organism is known as :-
 - (1) Homozygous
- (2) Heterozygous
- (3) Hemizygous
- (4) Incomplete dominance

- 161. Baldness in man is a:
 - (1) Autosomal character

- (2) Sex linked character
- (3) Sex influenced character
- (4) 1 and 3 both


Power by: VISIONet Info Solution Pvt. Ltd


Mob no.: +91-9350679141 Website: www.edubull.com

162.	A colourblind man marries a daughter of co (1) All sons are colourblind (3) Half sons are colourblind	lourblind father, then in the offsprings:- (2) All daughters are colourblind (4) No daughter is colourblind			
163.	A woman with normal vision marries a man with normal vision and gives birth to a colourblind son. Her husband dies and she marries a colourblind man. what is the probability of her children having the abnormality:- (1) 50% colourblind sons + 50% colourblind daughters (2) All sons colourblind & daughter carrier (3) All daughter colourblind & sons normal (4) 50% sons colourblind and all daughters normal				
164.	A single recessive trait which can express it (1) Any autosome (3) X-chromosome of female	s effect should occur on :- (2)Any-chromosome (4) X- chromosome of male			
165.	Sex-linked disorders are generally:- (1) Lethal (2) Recessive	(3) Dominant (4) Not inherited			
166.	In Drosophila crossing over occurs in female but not in male. Gene A and Bare 10 map unit apart on chromosome. A female Drosophila with genotype $\frac{AB}{ab}$ and male Drosophila with				
	genotype $\frac{AB}{ab}$. How many type of gametes are produced by female and male Drosophila respectively (1) 4 types : 2 types (2) 2 types : 2 types (3) 4 types : 4 types (4) 4 types : one types				
167.	In a cross between individuals homozygous for (a, b) and wild type(+ +). In this cross 700 out of 1000 individuals were of parental type. Then the distance between a and b is :- (1) 70 map unit (2) 35 map unit (3) 30 map unit (4) 15 map unit				
168.		nant over colourless (c) and full endosperm (R) is id of F_1 -generation was test crossed it produced four ween the two non allelic genes: (3) 4 unit (4) 12 unit			
169.	blind:-	her is colour blind and mother's father was colour			
	(1) 50% daughter - colour blind(3) All the daughters colour blind	(2) All the sons are colour blind(4) All the sons are normal			
Power by	: VISIONet Info Solution Pvt. Ltd				
	www.edubull.com Mob no.: +91-93	50679141			

170.	There are three genes a, b, c percentage of crossing over between a and b is 20%, b and c is 28% and a and c is 8%. What is the sequence of genes on chromosome				
	(1) b, a, c	(2) a, b, c	(3) a, c, b	(4) None	
171.	The linkage map of X-chromosome of fruitfly has 66 units, with yellow body gene (y) at one end and bobbed hair (b) gene at the other end. The recombination frequency between these two genes (y and b) should be:-				
	(1) 60%	(2) > 50%	(3) > 50%	(4) 100%	
172.	Mammary glands in f (1) Sex linked traits (3) Sex differentiating		d beard in human male (2) Sex limited traits (4) Sex-determining		
173.	When a cluster of ger (1) Do not show a chr (3) Do not show inde	_	vior they:- (2) Show recombina (4) Induce cell divisi		
174.	Genetic Map is one that :- (1) Establishes sites of the genes on a chromosome (2) Establishes the various stages in gene evolution (3) Shows the stages during the cell division (4) Shows the distribution of various species in a region ·				
175.	One of the genes pres (1) Baldness (3) Facial hair/Mousta		X-chromosome in hu (2) Red green colour (4) Night blindness.	mans is concerned with blindness.	
176.	The recessive genes let (1) Expressed in femal (3) Sub-lethal		ome in humans are alw (2) Lethal (4) Expressed in mal		
177.	-		es A and B in fruit fly (3) Recombination		
178.	A normal woman, whose father was colour-blind is married to a normal man. The sons would be				
	(1) All colour-blind(3) 50% colour-blind		(2) 75% colour-bline(4) All normal	d	
179.	(1) All the female chi(2) A male child has 3(3) Female child has 1		active disease	for haemophelia	

180. Which of the following show linkage group in coupling phase :-

181. The longer the chromosome of an organism, the more genetic variability it gets from :-

(1) Independent assortment

(2) Linkage

(3) Crossing over

(4) Mutation

182. A woman with normal vision, but whose father was colour blind, marries a colour blind man. Suppose that the fourth child of this couple was a boy. This boy-

- (1) Must have normal colour vision
- (2) May be colour blind or may be normal vision
- (3) Will be partially colour blind since he is heterozygous for the colour blind mutant allele
- (4) Must be colour blind

183. Haemophilia is more commonly seen in human males than in human females because -

- (1) This disease is due to a Y-linked recessive mutation
- (2) This disease is due to an X-linked recessive mutation
- (3) This disease is due to an X-linked dominant mutation
- (4) A greater proportion of girls die in infancy

184. If Mendel has chosen to study traits determined by linked genes he would not have discovered

(1) Law of segregation

- (2) Law of dominance
- (3) Law of independent assortment
- (4) Law of unit character.

185. Which law would have been violated if Mendel had chosen eight characters in garden -pea:

(1) Law of dominance

- (2) Law of segregation
- (3) Law of independent assortment
- (4) Law of purity of gametes

186. If Mendel might have studies 7 pairs of characters in a plant with 12 chromosomes. instead of 14, then:-

- (1) He could not discover independant assortment
- (2) He might have not discovered linkage
- (3) He might have discovered crossing-over
- (4) He might have not observed dominance

187. With increasing age the linkage becomes:

- (1) Strong
- (2) Weak
- (3) Terminates
- (4) Remains unchanged

188. If there were only parental combinations in F₂ of a dihybrid cross then Mendel might have discovered:-

Power by: VISIONet Info Solution Pvt. Ltd

Website: www.edubull.com Mob no.: +91-9350679141

189.	(1) Independant assor(3) LinkageLinkage discovered i		(2)Atavism(4) Repulsion	
107.	(1) Bateson	(2) Morgan	(3) Muller	(4) Correns
190.	A dihybrid plant with (1) 2	n incomplete linkage on (2) 4	n test cross may product (3) 8	ce how many types of plants:- (4) 1
191.	How many linkage gr (1) One	roup are there in bacter (2) Two	ria E.coli :- (3) Four	(4) None
192.	If distance between g (1) Weak linkage	ene on chromosome is (2) Strong linkage	more, then gene show (3) Less crossing	vs: (4) 1 & 3 both
193.	Linked gene shows: (1) Always parental (3) Always new com	combination	(2) Sometimes new c (4) New combination	
194.	` '		ng 10 pairs of chromo (3) 15	
195.	The association of parental characters combinations in the offsprings of a dihybrid is excess to non-parental combinations is said to be due to: (1) Co-dominance (2) Blending inheritance			
196.	(3) LinkageComplete linkage is f(1) Birds(3) Female- Drosoph		(4) Duplicate genes(2)Snakes(4) Male-Drosophila	
197.	A phenomenon which (1) Independent associ (3) Segregation	h works opposite to the rtment	e linkage is: (2) Crossing-over (4) Mutation	
198.	Cross over value (COV) of gene A and B is 5% while COV of genes Band Cis 15% th possible sequence of these genes on chromosome is:- (1) A-B-C (2) C-A-B (3) B-C-A (4) Both (1) & (2)			
199.	TDF gene is a :- (1) A gene present or	x-chromosome	(2) A segment of RN (4) A gene present or	Ā
200.	(3) A proteinaceous factor A diseased man marries a normal woman daughters were diseased and sons were normal to the second of		n. They get three dau	ghters and five sons. All the lisease is:-
201.	Who postulated the 'C	Chromosome Theory o	f Inheritance' :-	

	(1) De Vries(3) Sutton and Boveri	(2) Mendel(4) Morgan
202.	Drosophila melanogaster has:- (1) 2 pairs of autosomes and 1 pair of. sex (2) 3 pairs of autosomes and 3 pairs of sex of (3) 1 pairs of autosomes and 3 pairs of sex of (4) 3 pairs of autosomes and 1 pairs. of sex of	hromosomes
203.	Walter Sutton is famous for his contribution (1) Gentic engineering (3) Qantitative genetics	to: (2) Totipotency (4) Chromosomal theory of inheritance
204.	If a colour blind man marries a girl who genotypically:- (1) sons and daughters will be normal (2) sons will be colour blind, daughters will (3) sons will be normal, daughters will be ca (4) both sons and daughters will be colour b	arri <mark>ers</mark>
205.	Frequency of crossing over will be relatively (1) distance between the two genes is less (2) distance between the two genes is more (3) linked genes are more (4) both (2) & (3)	y more if :-
206.	Presence of recombinants is due to: (1) crossing over (3) lack of independent assortment	(2) linkage (4) all of the above
207.	Morgan coined the term to describe the the term to describe the generation of non-p (1) Recombination; Linkage (2) Recombination; Non-recombination (3) Linkage; Non-recombination (4) Linkage; Recombination	e physical association of genes on a chromosome & arental gene combinations.
208.	Experimental verification of the chromosor Thomas Hunt Morgan and his colleagues the (1) Pea plant (3)Snapdragon	omal chromosomes theory of inheritance done by ey worked with - (2) Sweet pea plant (4)Drosophila
209.	Which is incorrect for Drosophila melanoga (1) They could be grown on simple syntheti (2) Single mating could produce a large nun (3) They complete their life cycle in about 7	c medium nber of progeny

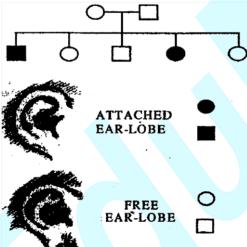
210.	Morgan and his group found that when genes were grouped on the same chromosome, sor genes were very tightly linked and showed-				
	(1) Very low recombination(3) No recombination		(2) Higher recombir(4) 100% parental co		
211.	Which statement is not true for Drosophila melanogaster- (1) They complete their life cycle about two weeks (2) Single mating produce large number of progeny flies (3) It has few hereditary variation that can be seen with high power microscope (4) It has clear differentiation of the sex				
212.	The experimental verification of the (1) Boveri (2) Sutton		osomal theory of inhe H. Morgan	ritance by- (4) Bateson	
	SEX	DETER	RMINATION		
213.	How sex of offsprings determined in (1) Sex chromosome of mother (3) Size of sperm	n humar	(2) Size of ovum (4) Sex chromosomo	e of father	
214.	Which of the following possess hom (1) Plants (2) Man	nogamet	tic male (3) Insect	(4) Birds	
215.	Which chromosome set is found in (1) 2A + XY (2) 2A + XO	_	ass hopper:- (3) 2A + YY	(4) 2A + XX	
216.	Genic balance theory for sex determ (1) Pro. R.P.Roy (2) H.E.Warr		in Drosophila was pro (3) C.B. Bridges	o~sed by :- (4) Me. clung	
217.	No. of Bar Body in XXXX female: (1) 1 (2) 2		(3) 3	(4) 4	
218.	In Drosophila, the sex is determined by:- (1) The ratio of number of X-chromosomes to the sets of autosomes (2) X and Y chromosomes (3) The ratio of pairs of X-chromosomes to the pairs of autosomes (4) Whether the egg is fertilized or develops parthenogenetically				
219.					

(4) There was a clear differentiation of the sexes.

220.	Sex determination ratio in an organism is given $\frac{X}{A} = 1.5$, then organism will be:-				
	(1) male	(2) female	(3) super female	(4) intersex	
221.	Barr body is associate (1) sex chromosome (3) autosome of fema	of female	(2) sex chromosome of (4) autosome of male		
222.	In male grass hoppers (1) X only	s and moths there are to (2) X and Y	wo pairs of autosomes (3) Y only	and :- (4) none of these	
223.	Which of the following (1) ZZ – ZW	ng symbols are used fo (2) XX – XY	or representing sex chro (3) XO – XX	omosome of birds :- (4) ZZ - WW	
224.	person would be :-			genetic composition of the	
	(1) XYY	(2) XXY	(3) XO	(4) XXXY	
225.	The theory where ratio between the number of X chromosomes and number of complete sets o autosomes will determine the sex is known as: (1) Chromosome theory of sex determination (2) Genic balance theory of sex determination (3) Harmonal balance theory of sex determination (4) environmental sex determination				
226.	Sex determination in (1) sex chromosomes (3) measurement of o		y:- (2) measurement of sp (4) sex chromosomes	-	
227.	In Drosophila sex ind (1) 1	lex of super female is: (2) 0.5	(3) 1.5	(4) 0.67	
228.	If X/A Ratio of two I (1) Female & male (3) Inter sex & super). 33 respectively w}"la (2) Super female & su (4) Inter sex and supe	iper male	
229.	Which of the followin (1) 2A +XXX	ng genotype represent (2) 2A + XXY	intersex Drosophila :- (3) 3A + XXY	(4) 2A + XY	
230.	In which organism fe (1) Birds	male in homogametic (2) Drosophila	& also have one chrom (3) Chicks	osomes more than male. (4) Grasshopper	
231.	Grasshopper is an exa (1) XO type of sex de (3) Environmental sex	etermination	(2) XY type of sex de (4) Genic balance the		

232.	Which of the followi (1) Sperm	ng is responsible for so (2) Egg	ex determination in ch (3) Somatic cell	ick :- (4) Every cell of body
233.	In which of the follow (1) Human	wing sex is determined (2) Drosophila	by female · (3) Birds	(4) Grasshopper
234.	Male heterogamy for (1) XO type male in (3) ZW male in birds	Grasshopper	(2) XY type male in (4) land 2 both	human .
	HU	MAN GENETICS, P	OPULATION GENE	TICS
235.	the abundance of sec	ond allele (A ₂) is :-		bundance in a population then
	(1) 0.25	(2) 1.00	(3) 0.40	(4) 0.50
236.	If a normal woman i woman is:-	marries an albino man	and their offsprings a	re half albino, half normal the
	(1) Homozygous nor (3) Homozygous reco		(2) Heterozygous no (4) Homozygous doi	
237.	Which is a dominant (1) Colour blindness	trait :-	(2) Albinism	
	(3) Haemophilia		(4) Rh factor	
238.	Parents are carrier fo (1) Some normal, het (3) All heterozygous	terozygous & albino	oe the first <mark>thre</mark> e childr (2) All normal (4) No normal	en :-
239.		e first has dominant tr		otype Bb, two offsprings are bility that the second offspring
	(1) 1/4	(2) 100	(3) Zero	(4) 3/4
240.	A family has five gir (1) 1/2	ls and no son, the prob (2) 1/5	pability of the occurance (3) 1	tee of son in 6 th child is:- (4) No chance
241.		• 0	n is self-pollinated and we the parental genoty (3) 1200	1 1200 seeds are subsequently pe:- (4) 300
	(1) 300	(2) 000	(3) 1200	(+) 300
242.	The migration of gen (1) Gene pool	e in to a population from (2) Gene flow	om other population by (3) Genetic drift	y· interbreeding is· called (4) Gene erosion
243.	What is the probabili	ty of three daughters to	o a couple in three chil	ldren :-

(1)	1
(1)	$\frac{-}{4}$


(2)
$$\frac{1}{8}$$

$$(3) \frac{1}{16}$$

(4)
$$\frac{3}{8}$$

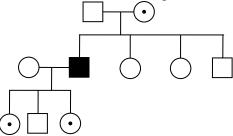
- **244.** In human right handedness is dominant over left handedness. What offsprings would be expected from two left handed parents:-
 - (1) Only left handed

- (2) Only right handed
- (3) Left handed & right handed both
- (4) Neither left handid nor right handed
- **245.** Probability of four son to a couple is :-
 - (1) $\frac{1}{4}$
- (2) $\frac{1}{8}$
- (3) $\frac{1}{16}$
- $(4) \frac{1}{32}$
- **246.** A male human is heterozygous for autosomal genes A and Band is also hemizygous for hemophilic gene h. What proportion of his sperms will be abh
 - $(1) \frac{1}{4}$
- (2) $\frac{1}{8}$
- $(3) \frac{1}{32}$
- $(4) \frac{1}{16}$
- 247. Given below is a pedigree chart of a family with five children. It shows the inheritance of attached ear-lobes as opposed to the free ones. The squares represent the male individuals and circles the female individuals

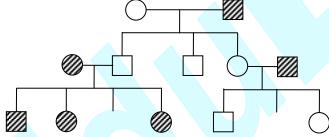
Which one of the following conclusions drawn is correct:-

- (1) The parents are homozygous recessive
- (2) The trait is Y -linked
- (3) The parents are homozygous dominant
- (4) The parents are heterozygous
- **248.** Equilibrium of gene frequencies is –

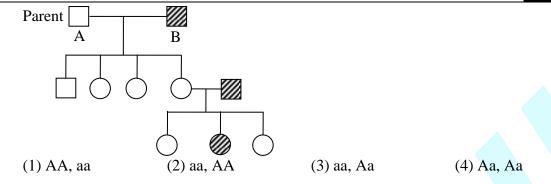
$$(1) p^2 \times 2Pq \times q^2 = 1$$

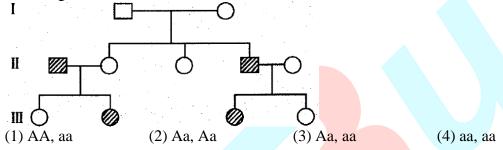

(2)
$$\sigma = \sqrt{\frac{Pq}{N}}$$

(3) Hardy weinbergh law


(4) Mutation

- **249.** In a Random mating population of 28,800 individuals percentage of dominant homozygous individuals is 49% find out the percentage of heterozygous individual
 - (1) 21%
- (2) 42%
- (3) 32%
- (4)9%


250. Predict from the following chart


- (1) Character is dominant and carried by X chromosome
- (2) Character is carried by Y chromosome
- (3) Character is sex linked recessive
- (4) Character is autosomal recessive
- **251.** In pedigree analysis symbol (•) is used for
 - (1) Heterozygous for autosomal recessive
 - (2) Affected individuals.
 - (3) Death
 - (4) Carrier for sex linked recessive
- 252. Study the given pedigree carefully, the trait indicated is :-

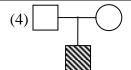
- (1) Autosomal recessive
- (2) X-linked recessive
- (3) Maternal inheritance
- (4) Paternal inheritance
- 253. In a population that is in Hardy Weinberg equilibrium, the frequency of a recessive allele for a certain hereditary trait is 0.20. What percentage of the individual in the next generation would be expected to show the dominant trait:-
 - (1) 16%
- (2) 32%
- (3)64%
- (4) 96%
- **254.** Given pedigree shows inheritance of autosomal recessive gene. What is the genotype of given parents:-

255. A pedigree is shown below for a disease that is autosomal recessive. The genetic make up of the first generation:-

- 256. In a random mating population frequency of disease causing recessive allele is 80%. What would be the frequency of carrier individual in population:
 - (1) 64%
- (2)32%
- (3) 16%
- (4) 100%
- **257.** In a random mating population frequency of dominant allele is 0; 7. What will be the frequency of recessive phenotype:-
 - (1) 0.49
- (2) 0.09
- (3) 0.3
- (4) 0.21
- **258.** At a particular locus, frequency of 'A' allele is 0.6 and that of 'a' is 0.4. What would be the frequency of heterozygotes in a random mating population at equilibrium -
 - (1) 0.24
- (2) 0.16
- (3) 0.48
- $(4)\ 0.36$
- **259.** A normal woman whose father was albino, marries an albino man, what proportion of normal and albino are expected among their offsprings:-
 - (1) All normal

(2) 2 normal : 1 Albino

(3) All albino


- (4) 1 normal: 1 Albino
- **260.** Albinism is determined by a recessive gene in man. The presence of albinism in 50% children born to a couple proves that:-
 - (1) Both parents are heterozygous for albinism
 - (2) Father is homozygous normal and mother is heterozygous
 - (3) Father is homozygous for albinism but mother is heterozygous
 - (4) Both are homozygous
- **261.** Family has 9 girls, Probability of son at 10th birth is :-
 - (1) 50%
- (2) 100%
- (3) 25%
- (4)75%

	Edubull
Polydactyly in man is due to: (1) autosomal dominant gene (2) autosomal recessive gene (3) sex - linked dominant gene (4) sex - linked recessive gene	
	to brown eye colour. The expected children of a a brown eyed man who had a blue eyed mother will (2) All blue eyed (4) One blue eyed and one brown eyed
probability that the eighth child will also be	
<u> </u>	(3) $\frac{1}{8}$ (4) $\frac{1}{16}$ eneficial alleles in heterozygous genotype is:- (3) genetic flow (4) selection
Study the pedigree given below and assign Normal ma Affected m Normal fer Affected fer (1) X-linked recessive (3) autosomal recessive	nale male
Given below is the pedigree of sickle cell at the cell	(2) Sickle shaped (4) Cannot be determined
	(1) autosomal dominant gene (2) autosomal recessive gene (3) sex - linked dominant gene (4) sex - linked recessive gene Blue eye colour in human is recessive marriage between a blue eyed woman and be- (1) All black eyed (3) All brown eyed If the first seven children born to a par probability that the eighth child will also be (1) \frac{1}{2} \qquad (2) \frac{1}{4} The existence within a population of non-b (1) genetic load (2) genetic drift Study the pedigree given below and assign Normal mathematical mathematical probability in this the RBC of both parents will be - (1) Normal

268.	Which of the following symbol	is used for mating between relatives (Consangeineous mating)
	(1) $\langle 5 \rangle$	(2)

Power by: VISIONet Info Solution Pvt. Ltd	
Website: www.edubull.com	Mob no.: +91-9350679141

ANSWER KEY

EXERCISE-I (Conceptual Questions)													
										_			
1.	(1)	2.	(3)	3.	(2)	4.	(1)	5.	(4)	6.	(2)	7.	(1)
8.	(4)	9.	(4)	10.	(3)	11.	(3)	12.	(3)	13.	(3)	14.	(3)
15.	(1)	16.	(1)	17.	(4)	18.	(3)	19.	(4)	20.	(4)	21.	(2)
22.	(2)	23.	(4)	24.	(1)	25.	(2)	26.	(4)	27.	(4)	28.	(4)
29.	(3)	30.	(3)	31.	(1)	32.	(3)	33.	(2)	34.	(4)	35.	(2)
36.	(1)	37.	(2)	38.	(4)	39.	(1)	40.	(4)	41.	(3)	42.	(1)
43.	(2)	44.	(1)	45.	(4)	46.	(2)	47.	(1)	48.	(4)	49.	(1)
50.	(2)	51.	(2)	52.	(3)	53.	(2)	54.	(3)	55.	(2)	56.	(1)
<i>5</i> 7.	(2)	58.	(2)	59.	(2)	60.	(4)	61.	(2)	62.	(1)	63.	(1)
64.	(2)	65.	(3)	66.	(3)	67.	(3)	68.	(1)	69.	(1)	70.	(3)
71.	(2)	72.	(2)	73.	(3)	74.	(2)	75.	(2)	76.	(4)	77.	(1)
78.	(2)	79.	(3)	80.	(1)	81.	(3)	82.	(1)	83.	(2)	84.	(1)
85.	(2)	86.	(1)	87.	(4)	88.	(4)	89.	(1)	90.	(4)	91.	(3)
92.	(4)	93.	(2)	94.	(3)	95.	(2)	96.	(2)	97.	(2)	98.	(3)
99.	(1)	100.	(1)	101.	(2)	102.	(3)	103.	(4)	104.	(3)	105.	(4)
106.	(4)	107.	(1)	108.	(1)	109.	(2)	110.	(3)	111.	(2)	112.	(3)
113.	(1)	114.	(3)	115.	(2)	116.	(4)	117.	(3)	118.	(2)	119.	(2)
120.	(1)	121.	(2)	122.	(3)	123.	(4)	124.	(4)	125.	(4)	126.	(3)
127.	(2)	128.	(2)	129.	(2)	130.	(2)	131.	(3)	132.	(4)	133.	(3)
134.	(1)	135.	(1)	136.	(2)	137.	(3)	138.	(1)	139.	(1)	140.	(3)
141.	(1)	142.	(2)	143.	(1)	144.	(2)	145.	(3)	146.	(3)	147.	(3)
148.	(4)	149.	(1)	150.	(3)	151.	(2)	152.	(1)	153.	(2)	154.	(3)
155.	(4)	156.	(1)	157.	(4)	158.	(4)	159.	(4)	160.	(3)	161.	(4)
162.	(3)	163.	(1)	164.	(4)	165.	(2)	166.	(1)	167.	(2)	168.	(2)
169.	(1)	170.	(1)	171.	(3)	172.	(2)	173.	(3)	174.	(1)	175.	(2)
176.	(4)	177.	(4)	178.	(3)	179.	(2)	180.	(1)	181.	(3)	182.	(2)
183.	(2)	184.	(3)	185.	(3)	186.	(1)	187.	(1)	188.	(3)	189.	(2)
190.	(2)	191.	(1)	192.	(1)	193.	(2)	194.	(2)	195.	(3)	196.	(4)
197.	(2)	198.	(4)	199.	(4)	200.	(1)	201.	(3)	202.	(4)	203.	(4)
204.	(3)	205.	(2)	206.	(1)	207.	(4)	208.	(4)	209.	(3)	210.	(1)
211.	(3)	212.	(3)	213.	(4)	214.	(4)	215.	(2)	216.	(3)	217.	(3)
218.	(1)	219.	(3)	220.	(3)	221.	(1)	222.	(1)	223.	(1)	224.	(2)
225.	(2)	226.	(1)	227.	(3)	228.	(3)	229.	(3)	230.	(4)	231.	(1)
232.	(2)	233.	(3)	234.	(4)	235.	(2)	236.	(2)	237.	(4)	238.	(1)

												Edubull	
239.	(1)	240.	(1)	241.	(2)	242.	(2)	243.	(2)	244.	(1)	245.	(3)
246.	(2)	247.	(4)	248.	(3)	249.	(2)	250.	(3)	251.	(4)	252.	(3)
253.	(4)	254.	(1)	255.	(2)	256.	(2)	257.	(2)	258.	(3)	259.	(4)
260.	(3)	261.	(1)	262.	(1)	263.	(4)	264.	(1)	265.	(1)	266.	(3)
267	(3)	268	(3)										

Mob no.: +91-9350679141