

base in one term) 12. $(1+k)^n = \frac{s}{p} \implies n\log(1+k) = \log (s/p)$ $\Rightarrow n = \frac{\log s/p}{\log(1+k)}$ Case-I when B is a quadratic equation $D_1 = (m+3)^2$ and $D_2 = (m-2)^2$ roots of 1^{st} equation are 2, -(m+1) set A roots of 2nd equation are -1, $\frac{1}{1-m}$ set B For exactly there elements in $A \cup B$ two of the roots must be same note that $2 \neq -1$ possibilities are $2 = -(m+1) \implies m = -3$ $2 = \frac{1}{1-m} \implies 2-2m=1$ m = 1/2 $-m-1=-1 \implies m=0$ $-(m+1) = \frac{1}{1-m} \Rightarrow \qquad 1-m^2 = -1$ \Rightarrow m= $\pm \sqrt{2}$ $\frac{1}{1-m} = -1 \qquad \Rightarrow \qquad m-1 = 1$ m=2. ⇒ Now if m = 1, then B becomes linear roots of B as x = -1

roots of A are 2 and -2

3 elements in common

 $\log_2 x = 0$ or

x = 1

D < 0 no real solution

EVEDCISE 2

15.
$$\frac{\log x}{\log \frac{p}{q}} = \frac{\log x}{\log p - \log q} = \frac{1}{\frac{\log p}{\log x} - \frac{\log q}{\log x}}$$
$$= \frac{1}{\log_x p - \log_x q} = \frac{1}{\frac{1}{\alpha} - \frac{1}{\beta}} = \frac{\alpha\beta}{\beta - \alpha}$$
17.
$$B = \frac{12}{3 + \sqrt{5} + \sqrt{8}}$$
$$B = \left(\frac{12(3 + \sqrt{5} - \sqrt{8})}{(3 + \sqrt{5})^2 - 8}\right) = \frac{12(3 + \sqrt{5} - \sqrt{8})}{6 + 6\sqrt{5}}$$
$$= \left(\frac{2(3 + \sqrt{5} - 2\sqrt{2})}{1 + \sqrt{5}}\right) = \frac{6 + 2\sqrt{5}}{\sqrt{5} + 1} - \frac{4\sqrt{2}}{\sqrt{5} + 1}$$
$$= \frac{(\sqrt{5} + 1)^2}{\sqrt{5} + 1} - \frac{4\sqrt{2}(\sqrt{5} - 1)}{4}$$
$$= \sqrt{5} + 1 - \sqrt{10} + \sqrt{2} = A \implies \log_A B = 1$$

20.
$$x = \left(\frac{5}{3}\right)^{-100} \implies \log_{10} x = -100(\log 5 - \log 3)$$

= $-100 \left(\log_{10} 10 - \log_{10} 2 - \log_{10} 3\right)$
= $-100(1 - .3010 - .4771)$
= $-22.19 = \overline{23}.81$ hence $0 \le 23 - 1 = 22$

Part # 1 : Multiple Choice
1. (A)
$$\log_{3} 19 \cdot \log_{1/7} 3 \cdot \log_{4} \frac{1}{7} = \log_{3} 19 \log_{4} 3$$

 $= \log_{4} 19 > 2$
(B) $\frac{1}{5} > \frac{1}{23} > \frac{1}{25}$
 $\log_{5} \frac{1}{5} > \log_{5} \frac{1}{23} > \log_{5} \frac{1}{25}$
(C) $m = 7$ & $n = 7^{4}$
 $\Rightarrow n = m^{4}$
(D) $\log_{\sqrt{5}} 5^{2} = 4$
7. $\sin^{2} \beta = \sin \alpha \cos \alpha$
 $\frac{1 - \cos 2\beta}{2} = \frac{\sin 2\alpha}{2}$
 $\cos 2\beta = 1 - \sin 2\alpha$ (A)
 $= 1 - \cos(\pi/2 - 2\alpha) = 2\sin^{2}(\frac{\pi}{4} - \alpha) \Rightarrow$ (B)
 $= 2\cos^{2}(\frac{\pi}{4} + \alpha) \Rightarrow$ (D)
10. $\log_{2} 3 > 1, \log_{12} 10 < 1 \Rightarrow \log_{2} 3 > \log_{12} 10$
 $\log_{5} 5 < 1, \log_{7} 8 > 1 \Rightarrow \log_{5} 5 < \log_{7} 8$
 $\log_{3} 26 < 3, \log_{2} 9 > 3 \Rightarrow \log_{3} 26 < \log_{7} 8$
 $\log_{16} 15 < 1, \log_{10} 11 > 1 \Rightarrow \log_{16} 15 < \log_{10} 11$
11. $(-b/2, 0) - |a| = 0$ |a| (b/2, 0)

13. Let any two distinct odd number be (2n + 3) and (2n + 1) when $n \in W$ Now According to question $(2n + 3)^2 - (2n + 1)^2$ $= (4n^2 + 12n + 9) - (4n^2 + 4n + 1)$ $4n^2 + 12n + 9 - 4n^2 - 4n - 1$ = 8n + 8 = 8(n + 1)Which is always divisible by 4 & 8.

MATHS FOR JEE MAIN & ADVANCED $2x^2 + 2x + a + 3$ must be positive hence D < 0 16. $4-8(a+3) < 0 \implies 1-2a-6 < 0$ i.e. $\Rightarrow -2a < 5 \Rightarrow a > -\frac{5}{2}$**(i)** Also base of the logarithm 7-a > 0 and $7-a \neq 1$ $a < 7 \& a \neq 6$**(ii)** from (1) and (2) $\mathbf{a} \in \left(-\frac{5}{2}, 6\right) \cup (6, 7)$ \Rightarrow (B), (C) and (D) are correct $|\mathbf{z}_1 + \mathbf{z}_2|^2 = |\mathbf{z}_1|^2 + |\mathbf{z}_2|^2$ 17. $z_1\overline{z}_2 + \overline{z}_1z_2 = 0 \implies \frac{z_1}{z_2} = -\frac{\overline{z}_1}{\overline{z}_2}$ $\frac{z_1}{z_2} + \overline{\left(\frac{z_1}{z_2}\right)} = 0 \implies \frac{z_1}{z_2}$ Pure imaginary $\operatorname{amp}\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$ (A) $\log_{10}5(2\log_{10}2 + \log_{10}5) + (\log_{10}2)^2$ 19. $=(\log_{10}2 + \log_{10}5)^2 = (\log_{10}10)^2 = 1$ **(B)** $\frac{\log 4 + \log 3}{2 \log 4 + \log 3 - \log 4} = 1$ (C) $-\log_5 \log_3 3^{1/5} = -\log_5 \frac{1}{5} = 1$ **(D)** $\frac{1}{6} \log_{\sqrt{\frac{3}{4}}} \left(\frac{4}{3}\right)^3 = \log_{3/4} \frac{4}{3} = -1$

Let
$$\log_{3} 2 = y$$

$$N = \frac{1+2y}{(1+y)^{2}} + \frac{1}{(\log_{2} 6)^{2}}$$

$$= \frac{1+2y}{(1+y)^{2}} + \frac{1}{(1+\frac{1}{y})^{2}} = \frac{1+2y+y^{2}}{(1+y)^{2}} = 1$$

$$\log_{7} 6 < 1 < \log_{3} \pi$$

$$\log_{x^{2}} 16 + \log_{2x} 64 = 3$$

$$\Rightarrow 4 \log_{x^{2}} 2 + 6 \log_{2x} 2 = 3$$

$$\Rightarrow \frac{4}{\log_{2} x^{2}} + \frac{6}{\log_{2} 2x} = 3$$

$$\Rightarrow \frac{2}{\log_{2} x} + \frac{6}{1+\log_{2} x} = 3$$
but
$$\log_{2} x = t$$

$$\therefore \frac{2}{t} + \frac{6}{1+t} = 3$$

$$\Rightarrow 2+2t+6t = 3t+3t^{2}$$

$$\Rightarrow 3t^{2} - 5t - 2 = 0$$

$$\Rightarrow (3t+1)(t-2) = 0$$

$$\Rightarrow t = -\frac{1}{3}, t = 2$$

$$\log_{2} x = -\frac{1}{3}$$

$$\log_{2} x = 2 = \frac{1}{2^{1/3}}.$$

$$\log_{2} x = 2 = \frac{1}{2^{1/3}}.$$

$$\log_{2} x = 2 = \frac{1}{2}$$

$$\log_{2} x = 2 = \frac{1}{2} = \frac{1}{2^{1/3}}.$$

$$\log_{2} x = 2 = \frac{1}{2} = \frac{1}{$$

: solution
$$x = \pi$$
, $x = 2 + \frac{1}{\sqrt[3]{9}}$, $x = \frac{e}{2}$

$$\log_{p} \log_{p} (p)^{1/p^{n}} = \log_{p} \frac{1}{p^{n}} = \log_{p} p^{-n} = -n$$

4.

21.

22.

29.
$$x^{\left[\log_{3}x\right]^{2} - \frac{9}{2}\log_{3}x + 5} = 3\sqrt{3}$$

$$\Rightarrow (\log_{3}x)^{3} - \frac{9}{2} \log_{3}x + 5 = \log_{x} 3\sqrt{3}$$
1.

$$\Rightarrow (\log_{3}x)^{2} - \frac{9}{2}\log_{3}x + 5 = \frac{3}{2}\log_{x} 3$$
let $\log_{3}x = t$

$$\Rightarrow t^{2} - \frac{9}{2}t + 5 = \frac{3}{2t}$$

$$\Rightarrow 2t^{3} - 9t^{2} + 10t - 3 = 0$$

$$t = 1 \text{ satisfied}$$
So $2t^{3} - 9t^{2} + 10t - 3 = 2t^{2}(t - 1) - 7t(t - 1) + 3(t - 1)$

$$= (t - 1)(2t^{2} - 7t + 3)$$

$$= (t - 1)(2t - 1)(t - 3)$$

$$\Rightarrow t = 1$$

$$t = 3$$

$$\Rightarrow \log_{3}x = 1$$

$$\log_{3}x = 3$$

$$x = 37$$

$$x = 27.$$
Part # 11 : Assertion & Reason
1.
(A)
Graph of y = |x - a| + |x - b| + |x - c|
$$\frac{1}{4} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}$$

$$\Rightarrow x^{2} - 5x + 6 = 0 (\text{ for } x \in z)$$

$$\Rightarrow x^{2} - 5x + 6 = -1 (\text{ for } x \notin z)$$

$$\Rightarrow x^{2} - 5x + 6 = -1 (\text{ for } x \notin z)$$

$$\Rightarrow x^{2} - 5x + 7 = 0 \Rightarrow \text{ no real root}$$

$$\Rightarrow St. 1 \text{ is true.}$$
5. $-\log_{2t_{|x|}}(5 + x^{2}) = \log_{3,x_{|x|}}(15 + \sqrt{x})$

$$Q LHS < 0 \text{ and } RHS > 0$$
hence no solution.

EXERCISE - 3 Part # I : Matrix Match Type $(\mathbf{C}) \rightarrow (\mathbf{q}),$ $(A) \rightarrow (r),$ $(\mathbf{B}) \rightarrow (\mathbf{t}),$ $(\mathbf{D}) \rightarrow (\mathbf{p})$ $\frac{5x+1-x^2-2x-1}{(x+1)^2} < 0$ **(A)** $-x^2 + 3x < 0, x \neq -1$ $x(x-3) > 0, x \neq -1$ $\therefore \qquad \mathbf{x} \in (-\infty, -1) \cup (-1, 0) \cup (3, \infty)$ $|\mathbf{x}| + |\mathbf{x} - 3| = \begin{cases} -2\mathbf{x} + 3 & : & \mathbf{x} < 0\\ 3 & : & 0 \le \mathbf{x} \le 3\\ 2\mathbf{x} - 3 & : & \mathbf{x} > 3 \end{cases}$ **(B)** $\therefore \qquad \mathbf{x} \in (-\infty, 0) \cup (3, \infty)$ (C) $\frac{1}{|\mathbf{x}|-3} - \frac{1}{2} < 0$ $\frac{2 - |x| + 3}{2(|x| - 3)} < 0$ (5-|x|)/(|x|-3) < 0|x| < 3 or |x| > 5 \Rightarrow $x \in (-\infty, -5) \cup (-3, 3) \cup (5, \infty)$ ⇒ (D) $\frac{x^4}{(x-2)^2} > 0$ $\Rightarrow \qquad \mathbf{x} \in (-\infty, 0) \cup (0, 2) \cup (2, \infty)$ (A) $2\log_{10}(x-3) = \log_{10}(x^2-21)$ \Rightarrow $(x-3)^2 = x^2 - 21$ \Rightarrow 6x = 30 \Rightarrow x=5 **(B)** $x^{\log_2 x+4} = 32$ $\Rightarrow (\log_2 x + 4) \log_2 x = \log_2 32$ Let $\log_2 x = y$ \Rightarrow y² + 4y - 5 = 0 \Rightarrow (y+5)(y-1)=0 $\log_2 x = -5 \qquad \qquad \log_2 x = 1$ \Rightarrow $x = \frac{1}{32}$ & x = 2

(C)
$$5^{\log_{10} x} + \frac{5^{\log_{10} x}}{5} = 3.3^{\log_{10} x} + \frac{3^{\log_{10} x}}{3}$$

 $\Rightarrow \left(\frac{6}{5}\right) 5^{\log_{10} x} = \left(\frac{10}{3}\right) 3^{\log_{10} x}$
 $\Rightarrow \left(\frac{5}{3}\right)^{\log_{10} x} = 2 \Rightarrow x = 100$
(D) $9.9^{\log_{3} x} - 3.3^{\log_{3} x} - 210 = 0$
 $\Rightarrow 9x^2 - 3x - 210 = 0$
 $\Rightarrow 3x^2 - x - 70 = 0$
 $\Rightarrow 3x^2 - 15x + 14x - 70 = 0$
 $\Rightarrow x = 5; x = \frac{-14}{3}$ (Reject)
3. (A) \rightarrow (p,r,s), (B) \rightarrow (r,s), (C) \rightarrow (t), (D) \rightarrow (p,r,s)
(A) $(3-x) > 3\sqrt{1-x^2}$
Case-I (i) $3-x \ge 0 \Rightarrow x \le 3$
(ii) $\sqrt{1-x^2} \ge 0 \Rightarrow x \in [-1,1]$
(iii) $9+x^2 - 6x > 9 - 9x^2$
 $10x^2 - 6x > 0$
 $x (5x - 3) > 0$
 $\Rightarrow x \in (-\infty,0) \cup \left(\frac{3}{5}, \infty\right)$
 $\therefore x \in [-1,0] \cup \left(\frac{3}{5}, 1\right]$
Case-II (i) $3-x < 0$
 $-ve > + ve$ not possible \therefore
by case-I & II $x \in [-1,0] \cup \left(\frac{3}{5}, 1\right]$
(B) $-\sqrt{x+2} < -x \Leftrightarrow x < \sqrt{x+2}$
 $case-I (i) x \ge 0$
 $(i) x^2 - x \ge 0$
 $(i) x^2 - x \ge 0$
 $(i) (x^2 - x) \le 0$
 $(i) (x^2 - x) \ge 0$
 $(i) (x^2 - x) \ge 0$
 $(i) (x^2 - x) \le 0$
 $(i) (x^2 - x) \ge 0$
 $(i) (x^2 - x) \ge 0$
 $(i) (x^2 - x) \le 0$
 $(i) (x^2 - x) \ge 0$
 $(i) (x^2$

(C) $\log_5(x-3) + \frac{1}{2} \log_5 3 < \frac{1}{2} \log_5 (2x^2 - 6x + 7)$ $3(x-3)^2 < (2x^2-6x+7)$ $x \in (2, 10)$ ⇒ **→** x > 3 $x \in (3, 10)$ so $7^{x+2} - \frac{1}{7} \cdot 7^{x+1} - 14 \cdot 7^{x-1} + 2 \cdot 7^x = 48$ **(D)** Let $7^{x} = t$ 49t - t - 2t + 2t = 48t = 1.... **Part # II : Comprehension**

hension 1

(A)
$$|x^3 - x| + |2 - x| = (x^3 - x) - (2 - x)$$

∴ $x^3 - x \ge 0$ and $2 - x \le 0$
 $x^3 - x \ge 0$ and $x \ge 2$
 $x(x^2 - 1) \ge 0$ and $x \ge 2$
∴ $x \in [2, \infty)$

(D)

$$(x^2-x)(x+3) \le 0$$

 $x(x-1)(x+3) \le 0$
 $x \in (-\infty, -3] \cup [0, 1]$

$$-+++-++$$

-3 0 1 +

-g(x) = |f(x)| + |g(x)|ously $f(x) \cdot g(x) \le 0$

hension 3

e 2m - n = 3 has the solution m = 4 $a_5 - (a_1 + a_2 + a_3 + a_4) = 9 - (1 + 3 + 4 + 7) = -6 < 5$ there are 2 solutions

e 2m - n = 2 is not possible 2m - n + 1 = 2 has the solution m = 3 and 2 < 510 - (1 + 3 + 4) = 2 > 1there is no solution

e 2m - n = 2 has no solution n + 1 = 2 has a solution m = 3 and 2 < 57 - (1 + 2 + 4) = 0 < 10:. there are two solutions.

so

by case-I & II $x \in [-2, 2)$

0.
$$x = 10/3, y = 20/3$$
 & $x = -10, y = 20$
1. $\log_{100} |x + y| = \frac{1}{2}$ and
 $\log_{10} y - \log_{10} |x| = \log_{100} 4 = \log_{10} 2$
 $\Rightarrow |x + y| = 10$ & $\frac{y}{|x|} = 2$ $\Rightarrow y = 2|x|$
when $x > 0$; $y = 2x$
 $\Rightarrow x = \frac{10}{3}$ & $y = \frac{20}{3}$
when $x < 0; y = -2x$
 $\Rightarrow |-x| = 10$
 $\Rightarrow x = -10$ $y = 20$
2. (i) $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$
 $\frac{(3-i)(x+ix-2i)+(3+i)(2y-3iy+i)}{(3+i)(3-i)} = i$
 $3x + 3ix - 6i - ix + x - 2 + 6y - 9iy + 3i + 2iy + 3y - 1 = 10i$
 $4x + 9y - 3 = 0$...(i)
 $2x - 7y - 13 = 0$...(i)
 $2x - 7y - 13 = 0$...(ii)
 $23y + 23 = 0$ y = -1
 $4x - 9 - 3 = 0$
 $4x = 12$
 $x = 3.$
3. $k_1p + 7 = 296$
 $k_2p + 11 = 436$
 $k_3p + 15 = 542$
 $k_1p = 289 = (17)(17)$
 $k_2p = 425 = (17)(25)$
 $k_3p = 527 = (17)(31)$
Hence p is 17
4. (i) $x \in \left[-2, -\frac{3}{2}\right]$
(ii) $(\log_2 5, \infty)$
(iii) $(0, 10^{-1}] \cup [10^2, \infty)$
(iv) $(-\infty, -5) \cup (-5, -1) \cup (3, \infty)$
(v) $(-\infty, -1) \cup (1, \infty)$

but $x \in N \ge 2$ have no solution

```
(vii) ||x-1|-2| = |x-3|
15. (i) (-\infty, 1) \cup (5, \infty)
                                                                                          by using property
     (ii) [-1, (\sqrt{5} - 1)/2) (iii) x \in [3, \infty)
                                                                                          ||a| - |b|| = |a - b| \implies a \cdot b \ge 0
     (iv) x \in \left[\frac{7-\sqrt{21}}{2}, 2\right] \cup \left[4, \frac{7+\sqrt{21}}{2}\right] (v) x=2
                                                                                          2(x-1) \ge 0
                                                                                                            ⇒ x≥1
                                                                                                                  \Rightarrow x \in [1, \infty)
                                                                                    17. x = 9, \frac{1}{9}
     (vi) \left(0,\frac{1}{4}\right] \cup [1,4)
                                                                                    18. x = 3 \text{ or } -3
16. (i) |\mathbf{x}| + 2 = 3
                                                                                    20. \left\{\frac{1}{4}\right\}
     \Rightarrow |\mathbf{x}| = 1
     \Rightarrow x=±1
                                                                                    21. (x^2 + y^2)
(ii) |\mathbf{x}| - 2\mathbf{x} + 5 = 0
                                                                                    22. x \in \phi
     case (i)
                  x < 0
                                                                                    23. x \in \left[\frac{1}{2}, 5\right]
                  -x - 2x + 5 = 0
                 \Rightarrow x = \frac{5}{3} (not possible) (\Rightarrow x < 0)
                                                                                   24. (i) x \in (-\infty, 1] \cup [5, \infty)
     case (ii)
                                                                                          (ii) x = 5 or x = -1
                 x \ge 0
                                                                                          (iii) x \in R - \{3\}
                  x - 2x + 5 = 0
                                                                                          (iv) x \in [0, 6]
                  \therefore x=5
(iii) x |x| = 4
                                                                                     25. 2
     case (i)
                 x < 0
                  \therefore -x<sup>2</sup>=4 (no solution)
      case (ii)
                  x \ge 0
                        x^2 = 4
                        x = \pm 2
                        ∴ x=2
(iv) ||x-1|-2| = 1
(vi) |x-3|+2|x+1|=4
      case (i)
                  x < -1
                  -x+3-2x-2=4
                  -3x = 3
                  x = -1
      case (ii)
                  -1 \leq x < 3
                  -x+3+2x+2=4
                 x = -1
      case (iii)
                 x≥3
                  x - 3 + 2x + 2 = 4
                  3x = 5
           \frac{5}{3}
     \mathbf{x} =
                        (not possible)
      \therefore x = -1
```


Part # II : IIT-JEE ADVANCED

12. (4)

Let
$$\sqrt{4 - \frac{1}{3\sqrt{2}}\sqrt{4 - \frac{1}{3\sqrt{2}}\sqrt{4 - \frac{1}{3\sqrt{2}}...}}} = y$$

So, $4 - \frac{1}{3\sqrt{2}}y = y^2$ (y>0)
 $\Rightarrow y^2 + \frac{1}{3\sqrt{2}}y - 4 = 0 \Rightarrow y = \frac{8}{3\sqrt{2}}$
so, the required value is $6 + \log_{3/2} \left(\frac{1}{3\sqrt{2}} \times \frac{8}{3\sqrt{2}}\right)$
 $= 6 + \log_{3/2} \frac{4}{9} = 6 - 2 = 4.$

13. (ABC)

 $log_{2}3^{x} = (x-1) log_{2}4 = 2 (x-1)$ $\Rightarrow x = log_{2}3 = 2x - 2$

$$\Rightarrow$$
 x = $\frac{2}{2 - \log_2 2}$

Rearranging, we get

$$x = \frac{2}{2 - \frac{1}{\log_3 2}} = \frac{2\log_3 2}{2\log_3 2 - 1}$$

Rearranging again,

$$\mathbf{x} = \frac{\log_3 4}{\log_3 4 - 1} = \frac{\frac{1}{\log_4 3}}{\frac{1}{\log_4 3} - 1} = \frac{1}{1 - \log_4 3}$$

MOCK TEST 1. (C) $\log_2 15 \log_{1/6} 2 \log_3 1/6 = \frac{\log_{15}}{\log_2} \times \frac{\log_2}{\log_{1/6}} \times \frac{\log_{1/6}}{\log_3}$ $= \frac{\log(3 \times 5)}{\log_3} = 1 + \log_3 5 > 2$ (but < 3) **2.** (C) (i) $\log_{\frac{1}{3}} (x^2 + x + 1) > -1$ $\Rightarrow x^2 + x + 1 < 3$ $\Rightarrow x^2 + x - 2 < 0$ $\Rightarrow (x + 2) (x - 1) < 0 \Rightarrow x \in (-2, 1)$ (i) and (ii) $x^2 + x + 1 > 0 \Rightarrow x \in \mathbb{R}$ (ii) by (i) & (ii) $x \in (-2, 1)$

3. (**D**)

$$|x^{2}-9|+|x^{2}-4| = 5$$

$$|x^{2}-9|+|x^{2}-4| = |(x^{2}-9)-(x^{2}-4)|$$

$$\Rightarrow (x^{2}-9)(x^{2}-4) \le 0$$

$$\{ \Rightarrow |a|+|b|=|a-b| \Leftrightarrow a \cdot b \le 0 \}$$

$$\Rightarrow x \in [-3,-2] \cup [2,3]$$

(A)
$$|a| + |b| = |a|$$

 $|\mathbf{a}| + |\mathbf{b}| = |\mathbf{a} - \mathbf{b}| \implies \mathbf{a} \cdot \mathbf{b} \le 0$ (x²-5x+7)(x²-5x-14) \le 0 (x-7)(x+2) \le 0 \implies x \in [-2,7]

5. (A)

$$S_{1}: e^{y \bullet n7 - x \bullet n11} = e^{\ln \frac{7^{y}}{11^{x}}} = \frac{7^{y}}{11^{x}} = \frac{7^{\sqrt{\log_{7} 11}}}{11^{\sqrt{\log_{11} 7}}}$$
$$= \frac{7^{\frac{\log_{7} 11}}{\sqrt{\log_{11} 7}}}{11^{\sqrt{\log_{11} 7}}} = \frac{11^{\sqrt{\log_{11} 7}}}{11^{\sqrt{\log_{11} 7}}} = 1$$
$$S_{2}: \log_{x} 3 > \log_{x} 2 \implies x > 1$$
$$S_{2}: |x - 2| = [-\pi]$$

|x-2| = -4 no solution

$$\begin{aligned} \mathbf{S}_{4} : \log_{22} (2 + \tan^{2} \theta) = 0.5 & 9. & (0) \\ \Rightarrow & \frac{1}{2} \log_{2} (2 + \tan^{2} \theta) = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & 9. & (0) \\ \Rightarrow & \frac{1}{2} \log_{2} (2 + \tan^{2} \theta) = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & 12 |2| - |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & |2| |2| - |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & |2| |2| - |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & |2| |2| - |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} \Rightarrow 2 + \tan^{2} \theta = 5 & |2| |2| - |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} & |2| |2| + |2| \\ \Rightarrow & \theta \mod 2 + \frac{1}{2} \theta = \frac{1}{2} + \frac{1}{$$

$$N = \frac{409}{409}$$

$$N = 1$$

$$\log_2 N = \log_2 1 = 0$$
11. (A, D)
$$\bullet_n (x+z) + \bullet_n (x-2y+z) = 2 \bullet_n (x-z)$$

$$\begin{aligned} & \bullet n(x+z) + \bullet n(x-2y+z) = 2 \bullet n(x-z) \\ & \bullet n(x+z)(x-2y+z) = \bullet n(x-z)^2 \\ & x^2 - 2xy + 2zx - 2yz + z^2 = x^2 + z^2 - 2zx \\ \Rightarrow \quad y = \frac{2xz}{z+x} \quad \text{or} \quad \frac{x}{z} = \frac{x-y}{y-z} \end{aligned}$$

2)2 $(g_{10}^2)^2 = \log_{10}^2 5 +$ $\log_{10}2 \left[\log_{10}5 + \log_{10}2\right]$

BASIC MATHS & LOGARITHM

Case II when x < -2 $\frac{|x+2|-x}{x} < 2 \implies \frac{-2-2x}{x} < 2$ $\Rightarrow \frac{1+x}{x} + 1 > 0$ $\Rightarrow (1+2x)/x > 0 \implies x \in (-\infty, -2) \qquad \dots \dots (ii)$ $\therefore \text{ from (i) and (ii) we get } x \in (-\infty, 0) \cup (1, \infty)$

14. (B, D)

(A)
$$\log_3 \log_{27} \log_4 64 = \log_3 \log_{27} 3 = \log_3 \left(\frac{1}{3}\right) = -1$$

(B)
$$2 \log_{18} (\sqrt{2} + \sqrt{8}) = 2 \cdot \log_{(3\sqrt{2})^2} (\sqrt{2} + 2\sqrt{2}) = 2$$

 $\log_{(3\sqrt{2})^2} (3\sqrt{2}) = \frac{2}{2} = 1$
(C) $\log_2 \left(\sqrt{10} \times \frac{2}{\sqrt{5}}\right) = \log_2 2\sqrt{2} = \frac{3}{2}$
(D) $-\log_{\sqrt{2}-1} (\sqrt{2} + 1) = \log_{\sqrt{2}-1} (\sqrt{2} + 1)^{-1}$
 $= \log_{\sqrt{2}-1} (\sqrt{2} - 1) = 1$

15. (A,B)

 \rightarrow AM \geq GM

$$\frac{x+y}{2} \ge \sqrt{xy}$$

$$\Rightarrow \left(\frac{2-z}{2}\right) \ge \sqrt{xy}$$

$$\frac{2-z}{2} \ge \sqrt{\frac{z^2+4}{2}}$$

 $\frac{4+z^2-4z}{4} \ge \frac{4+z^2}{2}$ $(z+2)^2 \le 0 \quad \therefore \quad z=-2$ $x+y=4 \quad \text{and} \quad xy=4$ x-y=0 $\therefore \quad x=2, y=2 \quad \text{and} \quad z=-2$ only one real solution.

16. (D) Statement I is false

✤ Sum of the length of any two sides of a triangle is greater than length of third side

Statement II is true $\Rightarrow a^2 + c^2 - b^2 < 0$

then $\cos B < 0 \implies B$ is obtuse

17. (A)

Graph of y = |x - a| + |x - b| + |x - c|

We get its minimum value at x = b. So minimum value |b - a| + |b - c|

18. (C)

The result can be easily understood with the help of nature of graph of $y = \log_a x$

19. (A)

Statement 2 is correct and from statement 1 $\Rightarrow x^2-5x+6=0 \text{ (for } x \in z)$ $\Rightarrow x=\{2,3\}$ Also, $x^2-5x+6=-1 \text{ (for } x \notin z)$ $\Rightarrow x^2-5x+7=0$ $\Rightarrow \text{ no real root} \Rightarrow \text{ St. 1 is true.}$

20. (A)

 $\log_a b < 0$

- \Rightarrow either {0 < a < 1 and b > 1}
- or $\{a > 1 \text{ and } b < 1\}$
- \Rightarrow 1 lies between the roots
- \therefore a + α + β < 0 and so α + β < 0
- :. both the statements are true. Statement-2 is a correct explanation for Statement-1.

21. (A) - (r), (B) - (t), (C) - (p,q,r), (D) - (p,q)

(A) $\log_{sinx} (\log_3 (\log_{0.2} x)) < 0$

$$\Rightarrow \log_3(\log_{0.2} x) > 1$$

$$\Rightarrow \log_{0.2} x > 3$$

$$\Rightarrow 0 < x < (0.2)^3$$

$$\Rightarrow 0 < x < \frac{1}{125}$$
 (which also satisfy $0 < \sin x < 1$)

(B)
$$\frac{(e^{x} - 1)(2x - 3)(x^{2} + x + 2)}{(\sin x - 2) x(x + 1)} \le 0$$

$$\frac{(e^{x} - 1)(x - 3/2)}{x(x + 1)} \ge 0$$

$$\frac{+ - - - + +}{-1 - 0} = \frac{+}{3/2}$$

$$\Rightarrow x \in (-\infty, -1) \cup [3/2, \infty)$$
(C)
$$|2 - |[x] - 1| |\le 2 \Rightarrow ||[x] - 1| - 2| \le 2$$

$$\Rightarrow 0 \le |[x] - 1| \le 4 \Rightarrow -3 \le |x| \le 5$$

$$\Rightarrow x \in [-3, 6)$$
(D)
$$|\sin^{-1} (3x - 4x^{3})| \le \frac{\pi}{2}$$

$$\Rightarrow -\frac{\pi}{2} \le \sin^{-1} (3x - 4x^{3}) \le \frac{\pi}{2}$$

$$\Rightarrow -1 \le 3x - 4x^{3} \le 1 \Rightarrow -1 \le x \le 1$$
22. (A) $\rightarrow (p, r, s), (B) \rightarrow (r, s), (C) \rightarrow (1), (D) \rightarrow (p, r, s)$
(A)
$$(3 - x) > 3\sqrt{1 - x^{2}}$$
Case-I (i) $3 - x \ge 0 \Rightarrow x \le 3$
(ii) $\sqrt{1 - x^{2}} \ge 0 \Rightarrow x \in [-1, 1]$
(iii) $9 + x^{2} - 6x > 9 - 9x^{2}$
 $10x^{2} - 6x > 0$
 $x(5x - 3) > 0 \Rightarrow x \in (-\infty, 0) \cup (\frac{3}{5}, \infty)$

$$\therefore x \in [-1, 0] \cup (\frac{3}{5}, 1]$$
Case-II (i) $3 - x < 0$
 $- ve > + ve not possible$

$$\therefore by case-I \& II \qquad x \in [-1, 0] \cup (\frac{3}{5}, 1]$$
(B) $-\sqrt{x + 2} < -x \Leftrightarrow x < \sqrt{x + 2}$
Case-I (i) $x \ge 0$
(ii) $x + 2 > 0$
(iii) $x + 2 > 0$
(iii) $x^{2} < x + 2$
so $x \in [0, 2)$

Case-II (i) x < 0(ii) $x + 2 \ge 0$ (iii) -ve < +veso $x \in [-2, 0)$ by case-I & II $x \in [-2, 2)$ (C) $\log_5(x-3) + \frac{1}{2} \log_5 3 < \frac{1}{2} \log_5 (2x^2 - 6x + 7)$ $3(x-3)^2 < (2x^2-6x+7) \implies x \in (2,10)$ → x>3 so $x \in (3, 10)$ **(D)** $7^{x+2} - \frac{1}{7} \cdot 7^{x+1} - 14 \cdot 7^{x-1} + 2 \cdot 7^x = 48$ Let $7^x = t$ 49t - t - 2t + 2t = 48 : t = 1 so x = 023. 1. (A) $|x^3 - x| + |2 - x| = (x^3 - x) - (2 - x)$ \therefore $x^3 - x \ge 0$ and $2 - x \le 0$ $x^3 - x \ge 0$ and $x \ge 2$ $x(x^2-1) \ge 0$ and $x \ge 2$ $\therefore x \in [2, \infty)$ 2. (D) $(x^2 - x)(x + 3) \le 0$ $\mathbf{x}(\mathbf{x}-1)\,(\mathbf{x}+3) \le 0$ + $\mathbf{x} \in (-\infty, -3] \cup [0, 1]$

3. (C)

|f(x) - g(x)| = |f(x)| + |g(x)|obviously $f(x) \cdot g(x) \le 0$

24.

1. This equation is equivalent to the system

$$\begin{cases} 2x > 0 \\ (2x)^2 = 7x - 2 - 2x^2 \end{cases} \implies \begin{cases} x > 0 \\ 6x^2 - 7x + 2 = 0 \end{cases}$$
$$\Rightarrow \qquad \begin{cases} x > 0 \\ (x - 1/2)(x - 2/3) = 0 \end{cases} \Rightarrow \qquad \begin{cases} x = \frac{1}{2} \\ x = \frac{2}{3} \end{cases}$$

 \therefore Number of solutions = 2.

2. This equation is equivalent to the system

$$\begin{cases} 4x - 15 > 0 \\ 2x = (4x - 15)^{2} \end{cases}$$

$$\Rightarrow \begin{cases} x > \frac{15}{4} \\ 2x = 16x^{2} - 120x + 225 \end{cases}$$

$$\Rightarrow \begin{cases} x > \frac{15}{4} \\ 16x^{2} - 122x + 225 = 0 \end{cases}$$

$$\therefore x = \frac{9}{2}$$

- \therefore Number of solutions = 1.
- 3 This equation is equivalent to the system

$$\begin{cases} 3x^{2} + x - 2 > 0 \\ 3x^{2} + x - 2 = (3x - 2)^{3} \end{cases}$$

$$\Rightarrow \begin{cases} (x - 2/3)(x + 1) > 0 \\ (x - 2/3)(9x^{2} - 13x + 3) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} x < 2/3 \text{ and } x < -1 \\ x = 2/3, x = \frac{13 \pm \sqrt{61}}{18} \end{cases}$$

No root.

25.

1. (C)

Since 2m - n = 3 has the solution m = 4and $a_5 - (a_1 + a_2 + a_3 + a_4) = 9 - (1 + 3 + 4 + 7) = -6 < 5$ \therefore there are 2 solutions

2. (A)

Since 2m - n = 2 is not possible but 2m - n + 1 = 2 has the solution m = 3 and 2 < 5and 10 - (1 + 3 + 4) = 2 > 1 \therefore there is no solution

3. (C)

Since 2m - n = 2 has no solution 2m - n + 1 = 2 has a solution m = 3 and 2 < 5and 7 - (1 + 2 + 4) = 0 < 10 \therefore there are two solutions.

Case – I

 $0 < x^{2} < 1 \implies x \in (-1, 1) - \{0\} \qquad \dots \dots (i)$ |x-1|<1 $\implies -1 < x - 1 < 1$ $\implies 0 < x < 2 \qquad \dots \dots (ii)$ from (i) and (ii), we get $x \in (0, 1)$

Case - II

$$x^{2} > 1$$

 $\Rightarrow x \in (-\infty, -1) \cup (1, \infty)$ (iii)
 $|x-1| > 1$
 $\Rightarrow x-1 > 1 \text{ or } x-1 < -1$
 $\Rightarrow x > 2 \text{ or } x < 0$ (iv)

from (iii) and (iv), we get $x \in (-\infty, -1) \cup (2, \infty)$ $\therefore x \in (-\infty, -1) \cup (0, 1) \cup (2, \infty)$ inequality is not defined for x = -1, 0, 1, 2 \therefore sum of their absolute values = |-1| + |0| + |1| + |2| = 4.

27. 2.

> $|x^{2}-3x-1| < |3x^{2}+2x+1|+|2x^{2}+5x+2|, x^{2}-3x-1 \neq 0$ $\Rightarrow |(3x^{2}+2x+1)-(2x^{2}+5x+2)| < |3x^{2}+2x+1|+|2x^{2}+5x+2|, x^{2}-3x-1\neq 0$ The inequality holds if and only if $(3x^{2}+2x+1)(2x^{2}+5x+2)>0$ i.e. $2x^{2}+5x+2>0$ i.e. (2x+1)(x+2)>0i.e. $x \in (-\infty, -2) \cup (-1/2, \infty)$ $\Rightarrow a = 2 \text{ and } b = \frac{1}{2}$ $\therefore a + \log ab = 2$ 28. $\sqrt[p]{\sqrt[p]{p/\dots,p}\sqrt{p}} = (p)^{\frac{1}{p^{2008}}} = p^{p^{-2008}}$

2008 times

$$\log_{p} \log_{p} \sqrt[p]{\sqrt{p} / \dots / p} / \sqrt{p}}_{2008 \text{ times}} = \log_{p} \log_{p} (p^{p^{-2008}})$$

$$= \log_{p} (p^{-2008}) = -2008,$$

$$\therefore \lambda = 2008$$

29. (3)

Drawing the graph of y = f(x)

Clearly the range of y = f(x) is [1, 3] when $-2 \le x \le -1$, $\{f(x)\} = 0$ when $-1 \le x \le 0$, $\{f(x)\}$ will have the value $\frac{1}{2}$ for

one value of x.

when $0 \le x \le 1$, $\{f(x)\}$ will have the value $\frac{1}{2}$ for one value of x.

when $1 \le x \le 2$, $\{f(x)\}$ will have the value $\frac{1}{2}$ for one value of x.

Hence the total number of values of x for which $\{f(x)\} = \frac{1}{2}$ are 3

30. (1)

$$\sqrt{\left[x + \left[\frac{x}{2}\right]\right]} + \left[\sqrt{\left\{x\right\}} + \left[\frac{x}{3}\right]\right] = 3$$

$$\Rightarrow \sqrt{\left[x\right] + \left[\frac{x}{2}\right]} + \left[\sqrt{\left\{x\right\}}\right] + \left[\frac{x}{3}\right] = 3$$

$$\Rightarrow \sqrt{\left[x\right] + \left[\frac{x}{2}\right]} + \left[\frac{x}{3}\right] = 3$$

Case-1
$$\sqrt{[x] + \left[\frac{x}{2}\right]} = 3$$
 and $\left[\frac{x}{3}\right] = 0$
i.e. $[x] + \left[\frac{x}{2}\right] = 9$ and $0 \le x < 3$
 $\Rightarrow 0 \le x < 3 \implies [x] = 0, 1 \text{ or } 2; \left[\frac{x}{2}\right] = 0 \text{ or } 1$

... There is no solution in this case.

Case-2
$$\sqrt{[x] + \left[\frac{x}{2}\right]} = 2$$
 and $\left[\frac{x}{3}\right] = 1$
i.e. $[x] + \left[\frac{x}{2}\right] = 4$ and $3 \le x \le 6$
 $\Rightarrow 3 \le x \le 6 \Rightarrow [x] = 3, 4$ or 5 ; $\left[\frac{x}{2}\right] = 1$ or 2
 $\therefore [x] + \left[\frac{x}{2}\right] = 4$ has a solution for $[x] = 3$ and
 $\left[\frac{x}{2}\right] = 1$ and $\left[\frac{x}{3}\right] = 1$.
i.e. $3 \le x \le 4, 2 \le x \le 4$ and $3 \le x \le 6$
 $\therefore [3, 4]$ are solutions.
Case-3 $\sqrt{[x] + \left[\frac{x}{2}\right]} = 1$ and $\left[\frac{x}{3}\right] = 2$
i.e. $[x] + \left[\frac{x}{2}\right] = 1$ and $6 \le x \le 9$
 $\Rightarrow [x] = 6, 7$ or 8 ; $\left[\frac{x}{2}\right] = 3$ or 4
 $\therefore [x] + \left[\frac{x}{2}\right] = 1$ and $\left[\frac{x}{3}\right] = 2$ is not possible.
Case-4 $\sqrt{[x] + \left[\frac{x}{2}\right]} = 0$ and $\left[\frac{x}{3}\right] = 3$
i.e. $[x] + \left[\frac{x}{2}\right] = 0$ and $9 \le x \le 12$
 $\Rightarrow [x] = 9, 10$ or 11 ; $\left[\frac{x}{2}\right] = 4$ or 5
 $\therefore [x] + \left[\frac{x}{2}\right] = 0$ has no solution.

Hence the solution set is [3, 4).