

8. The equation of a curve is given as $y = x^2 + 2 - 3x$. The curve intersects the x-axis at (1) (1, 0) (2) (2, 0) (3) Bo

(3) Both (1) and (2) (4) No where

- 9. Two particles A and B are moving in XY-plane. Their positions vary with time t according to relation: $x_A(t) = 3t$, $x_B(t) = 6$
 - y_A (t) = t, y_B (t) = 2 + 3t² Distance between two, particles at t = 1 is : (1) 5 (2) 3 (3) 4 (4) $\sqrt{12}$
- **10.** A particular straight line passes through origin and a point whose abscissa 'is double of ordinate of the point. The equation of such straight line is:

(1) $y = \frac{x}{2}$ (2) y = 2x (3) y = -4x (4) $y = -\frac{x}{4}$

- 11. The side of a square is increasing at the rate of 0.2 cm/s. The rate of increase of perimeter w.r.t. time is:
 (1) 0.2 cm/s
 (2) 0.4 cm/s
 (3) 0.6 cm/s
 (4) 0.8 cm/s
- 12. Frequency f of a simple pendulum depends on its length λ and acceleration g due to gravity according to the following equation: $f = \frac{1}{2\pi} \sqrt{\frac{g}{1}}$. Graph between which of the following quantities is a straight line?
 - (1) f on the ordinate and λ on the abscissa .
 - (2) f on the ordinate and $\sqrt{1}$ on the abscissa
 - (3) f^2 on the ordinate and λ on the abscissa
 - (4) f^2 on the ordinate and $1 / \lambda$ on the abscissa
- 13. The sum of the series $1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \dots \infty$ is (1) $\frac{8}{7}$ (2) $\frac{6}{5}$ (3) $\frac{5}{4}$ (4) $\frac{4}{3}$
- 14. In the given figure, each box represents a function machine. A function machine illustrates what it does with the input.

Input (x) add three	Square root of the input
------------------------	--------------------------------

Which of the following statements is correct?

(1)
$$z = 2x + 3$$
 (2) $z = 2(x + 3)$ (3) $z = \sqrt{2x + 3}$ (4) $z = \sqrt{2(x + 3)}$

DEFINITION & TYPES OF VECTOR

- **15.** Which of the following statements is false :
 - (1) Mass, speed and energy are scalars
 - (2) Momentum, force and torque are vectors
 - (3) Distance is a scalar while displacement is a vector
 - (4) A vector has only magnitude whereas as a scalar has both magnitude and direction

Power by: VISIONet Info Solution Pvt. Ltd		
Website : www.edubull.com	Mob no. : +91-9350679141	

16.		n the direction of the v	-							
	(1) $\hat{\mathbf{n}} = \frac{\mathbf{A}}{ \mathbf{A} }$	(2) $\hat{n} = \hat{A} \hat{A} $	(3) $\hat{\mathbf{n}} = \frac{ \mathbf{A} }{\mathbf{A}}$	(4) None of the above						
17.	A physical quantity v (1) must be a vector	which has a direction: (2) may be a vector	(3) must be a scalar	(4) none of the above						
18.	Which of the followi (1) displacement	ng physical quantities (2) force	is an axial vector? (3) velocity	(4) forque						
19.	The forces, which meet at one point but their lines of action do not lie in one plane, are called: (1) non-coplanar and non-concurrent forces (2) coplanar and non-concurrent forces (3) non-coplanar and concurrent forces (4) coplanar and concurrent forces									
20.	The direction of the angular velocity vector is along: (1) Along the tangent of circular path (2) Along the direction of radius vector (3) Opposite to the direction of radius vector (4) Along the axis of rotation									
21.	Two vectors $\stackrel{1}{A}$ and $\stackrel{1}{B}$ lie in a plane, another vector $\stackrel{1}{C}$ lies outside this plane, then the resultant of these three vectors i.e. $\stackrel{1}{A} + \stackrel{1}{B} + \stackrel{1}{C}$: (1) can be zero (3) lies in the plane containing $\stackrel{1}{A} & \stackrel{1}{B}$ (4) lies in the plane containing $\stackrel{1}{B} & \stackrel{1}{C}$									
22.	In vector diagram shown in figure where (R) is the resultant of vectors (Å) and (B). $If R = \frac{B}{\sqrt{2}}, then value of angle \theta is :$									
	V Z		(2) (0)	(4) 750						
	(1) 30°	(2) 45°	(3) 60°	(4) 75°						
23.	The resultant of \overrightarrow{A} and \overrightarrow{B} make an angle α with \overrightarrow{A} and β with \overrightarrow{B} , then : (1) $\alpha < \beta$ (2) $\alpha < \beta$ if $A < B$ (3) $\alpha < \beta$ if $A > B$ (4) $\alpha < \beta$ if $A = B$									
25.	Two vectors $\stackrel{1}{A}$ and $\stackrel{1}{B}$ are such that $\stackrel{1}{A} + \stackrel{1}{B} = \stackrel{1}{C}$ and $A^2 + B^2 = C^2$. Which of the following statements, is correct? (1) $\stackrel{1}{A}$ is parallel to $\stackrel{1}{B}$ (2) $\stackrel{1}{A}$ is anti-parallel to $\stackrel{1}{B}$ (3) $\stackrel{1}{A}$ is perpendicular to $\stackrel{1}{B}$ (4) $\stackrel{1}{A}$ and $\stackrel{1}{B}$ are equal in magnitude									
25.	The minimum number (1) 2	er of vectors of equal n (2) 3	nagnitude required to p (3) 4	(4) more than 4						
	by: VISIONet Info Solution Pvt. 2 : www.edubull.com	Ltd Mob no. : +91-9.	350679141							
L										

Εd	П	bu	

			Edubuli				
26.	How many minimum give zero resultant?	n number of coplanar v	vectors having differen	t magnitudes can be added to			
	(1) 2	(2) 3	(3) 4 (4) 5				
27.	How many minimu resultant?	m number of vectors	s in different planes can be added to give zero				
	(1) 2	(2) 3	(3) 4	(4) 5			
28.		-	nts into which a vector	-			
	(1) 2	(2) 3	(3) 4	(4) Infinite			
29.	its own plane?	-	-	which a vector can be split in			
30.	(1) 2 What is the maximus space?	(2) 3 m number of rectange	(3) 4 llar components into v	(4) Infinite which a vector can be split in			
	(1) 2	(2) 3	(3) 4	(4) Infinite			
31.			and <u>6 newton</u> can be :				
	(1) 2N	(2) 8N	(3) 18N	(4) 20N			
32.	Vector sum of two fo (1) 4N	orces of 10N and 6N ca (2) 8N	annot be: (3) 12N	(4) 2N			
33.			never give a resultant f				
	(1) 2 N and 2 N	(2) 1 N and 1 N	(3) 1 N and 3 N	(4) 1 N and 4 N			
34.	If $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$ and $\overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}$	B = C, then the angle	between $\stackrel{1}{A}$ and $\stackrel{1}{B}$ is	:			
	(1) 0	(2) $\frac{\pi}{4}$	(3) $\frac{\pi}{2}$	(4) π			
35.	The resultant of $\stackrel{1}{A}$ &		ng the vector $\stackrel{1}{B}$, the re	esultant becomes $\mathbf{R}_2^{\mathbf{I}}$. What is			
	the value of $R_1^2 + R_2^2$?					
	(1) $A^2 + B^2$	(2) $A^2 - B^2$	(3) $2(A^2 + B^2)$	(4) $2(A^2 - B^2)$			
36.	Given that $\overset{I}{P} + \overset{I}{Q} = \overset{I}{P}$	$-\overset{1}{Q}$. This can be true	when:				
	(1) $P = Q$		(2) $\mathbf{\hat{Q}} = \mathbf{\hat{0}} - \mathbf{\hat{Q}}$				
	(3) Neither P nor Q	is a null vector	(4) $\stackrel{1}{P}$ is perpendicul	ar to Q			
37.		ng sets of concurrent f	Forces may be in equili	brium?			
	(1) $F_1 = 3N$, $F_2 = 5N$, (3) $F_1 = 3N$, $F_2 = 5N$,	$F_3 = 1N$ $F_3 = 6N$	forces may be in equili (2) $F_1 = 3N$, $F_2 = 5N$ (4) $F_1 = 3N$, $F_2 = 5N$	$F_3 = 9N$ $F_3 = 15N$			
A C							
38.	If vectors A and B a	the such that $ A + B = A + B $	$\stackrel{\mathbf{I}}{\mathbf{A}} \models \stackrel{\mathbf{I}}{\mathbf{B}} \mid$, then $\mid \stackrel{\mathbf{I}}{\mathbf{A}} - \stackrel{\mathbf{I}}{\mathbf{B}} \mid$	may be equated to			

(1)
$$\frac{\sqrt{3}}{2} \begin{vmatrix} \mathbf{r} \\ \mathbf{A} \end{vmatrix}$$
 (2) $\begin{vmatrix} \mathbf{A} \\ \mathbf{A} \end{vmatrix}$ (3) $\sqrt{2} \begin{vmatrix} \mathbf{A} \\ \mathbf{A} \end{vmatrix}$ (4) $\sqrt{3} \begin{vmatrix} \mathbf{A} \\ \mathbf{A} \end{vmatrix}$

- 39. What happens, when We multiply a vector by (-2)?
 (1) direction reverses and unit changes
 (2) direction reverses and magnitude is doubled
 (3) direction remains unchanged and unit changes
 (4) none of these
- 40. Two vectors of equal magnitude have a resultant equal to either of them in magnitude. The angle between them is : (1) 60° (2) 00° (2) 105° (4) 120°

(1)
$$60^{\circ}$$
 (2) 90° (3) 105° (4) 120

41. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is :

(1)
$$\sqrt{2}$$
 (2) $\sqrt{3}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\sqrt{5}$

RESOLUTION OF VECTOR42. If a unit vector is represented by
$$0.5\hat{i} + 0.8\hat{j} + c\hat{k}$$
 then the value of 'c' is :(1) 1(2) $\sqrt{0.11}$ (3) $\sqrt{0.01}$ (4) $\sqrt{0.39}$

43. Vector $\stackrel{1}{P}$ makes angles α , β & γ with the X, Y and zaxes respectively, then $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ (1) 0 (2) 1 (3) 2 (4) 3

44. The direction cosines of a vector
$$\hat{i} + \hat{j} + \sqrt{2}\hat{k}$$
 are a

(1)
$$\frac{1}{2}, \frac{1}{2}, 1$$
 (2) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}$ (3) $\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}$ (4) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

45. The unit vector along $\hat{i} + \hat{j}$ is :

 $(1) \frac{1}{7}$

(1)
$$\hat{k}$$
 (2) $\hat{i} + \hat{j}$ (3) $\frac{\hat{i} + \hat{j}}{\sqrt{2}}$ (4) $\frac{\hat{i} + \hat{j}}{2}$

46. The unit vector parallel to the resultant of the vectors $\mathbf{\hat{A}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} = \mathbf{\hat{B}} = -\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 8\hat{\mathbf{k}}$ is:

$$\begin{bmatrix} 3\hat{i} + 6\hat{j} - 2\hat{k} \end{bmatrix} \quad (2) \ \frac{1}{7} \begin{bmatrix} 3\hat{i} + 6\hat{j} + 2\hat{k} \end{bmatrix} \quad (3) \ \frac{1}{49} \begin{bmatrix} 3\hat{i} + 6\hat{j} + 2\hat{k} \end{bmatrix} \quad (4) \ \frac{1}{7} \begin{bmatrix} 3\hat{i} + 6\hat{j} - 2\hat{k} \end{bmatrix}$$

47. If $\hat{A} + \hat{B}$ is a unit vector along x-axis and $\hat{A} = \hat{i} - \hat{j} + \hat{k}$, then what is \hat{B} ? (1) $\hat{j} + \hat{k}$ (2) $\hat{j} - \hat{k}$ (3) $\hat{i} + \hat{j} + \hat{k}$ (4) $\hat{i} + \hat{j} - \hat{k}$

48. Forces 3N, 4N and 12N act at a point in mutually perpendicular directions. The magnitude of the resultant force is :
(1) 19 N
(2) 13 N
(3) 11 N
(4) 5 N

49. The angle that the vector $\mathbf{\hat{A}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ makes with y-axis is:

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

|--|

				Edubull						
	(1) $\tan^{-1}(3/2)$	(2) $\tan^{-1}(2/3)$	(3) $\sin^{-1}(2/3)$	$(4)\cos^{-1}(3/2)$						
		DOT	PRODUCT							
50.	What is the angle l	between A and the res								
	(1) 0°	(2) $\tan^{-1}\left(\frac{A}{B}\right)$	(3) $\tan^{-1}\left(\frac{B}{A}\right)$	(4) $\tan^{-1}\left(\frac{\mathbf{A}-\mathbf{B}}{\mathbf{A}+\mathbf{B}}\right)$						
51.	If $\hat{n} = a\hat{i} + b\hat{j}$ is pe	rpendicular to the vect	or $(\hat{i} + \hat{j})$, then the val	lue of a and b may be :						
	(1) 1, 0		(3) 3, 0	(4) $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}$						
52.	Given that $A = B$. (1) 30°	What is the angle betw (2) 60°	Veen $(\stackrel{1}{A} + \stackrel{1}{B})$ and $(\stackrel{1}{A} - (3)90^{\circ}$	- ¹ B)? (4) 180°						
53.	 The vector sum of two forces is perpendicular to their vector difference. In that case, the force: (1) Are equal to each other. (2) Are equal to each other in magnitude. (3) Are not equal to each other in magnitude (4) Cannot be predicted. 									
54.		f vectors $\stackrel{1}{A}$, $\stackrel{1}{B}$ and $\stackrel{1}{C}$ veen $\stackrel{1}{A}$ and $\stackrel{1}{B}$ is : (2) $\pi / 3$	C are respectively 12, (3) $\pi/2$	5 and 13 units and $\dot{A} + \dot{B} = \dot{C}$ (4) $\pi / 4$						
55.	If vectors $\stackrel{1}{P}$, $\stackrel{1}{Q}$ and $\stackrel{1}{R}$ have magnitudes 5, 12 and 13 units and $\stackrel{1}{P} + \stackrel{1}{Q} = \stackrel{1}{R}$, the angle between $\stackrel{1}{Q}$ and $\stackrel{1}{R}$ is:									
	$(1)\cos^{-1}\left(\frac{5}{12}\right)$	$(2)\cos^{-1}\left(\frac{5}{13}\right)$	$(3)\cos^{-1}($	$(4)\cos^{-1}\left(\frac{2}{13}\right)$						
56.	A vector perpendic	cular to $(4\hat{i}-3\hat{j})$ may	be :							
		(2) 7k	(3) 6i	(4) $3\hat{i} - 4\hat{j}$						
57.	A force $(3\hat{i}+2\hat{j})N$ displaces an object through a distance $(2\hat{i}-3\hat{j})$ m. The work $(W=\hat{F}\cdot\hat{S})$									
	done is : (1) zero	(2) 12 J	(3) 5 J	(4) 13 J						
58.	If $\mathbf{P} \cdot \mathbf{Q} = \mathbf{P}\mathbf{Q}$, then angle between \mathbf{P} and \mathbf{Q} is:									
	(1) 0°	(2) 30°	(3) 45°	(4) 60°						
59.		and $\stackrel{1}{B}$ is perpendicul	lar to Å.							
		between A and \tilde{B} ?	(Δ)							
	(1) $\cos^{-1}\left(\frac{A}{B}\right)$	$(2)\cos^{-1}\left(-\frac{A}{B}\right)$	(3) $\sin^{-1}\left(\frac{A}{B}\right)$	(4) $\sin^{-1}\left(-\frac{A}{B}\right)$						

Mob no. : +91-9350679141

60.	What is the compo	hent of $(3\hat{i} + 4\hat{j})$ along	$(\hat{i} + \hat{j})$?							
	(1) $\frac{1}{2}(\hat{j}+\hat{i})$	$(2) \frac{3}{2} \left(\hat{j} + \hat{i} \right)$	$(3) \frac{5}{2} (\hat{j} + \hat{i})$	$(4) \ \frac{7}{2} \left(\hat{j} + \hat{i} \right)$						
61.	The vector $\stackrel{1}{B} = 5\hat{i} + (1) 1$	$-2\hat{j}-S\hat{k}$ is perpendicul (2) 4.7	ar to the vector $\mathbf{\dot{A}} = 3\hat{\mathbf{i}}$ (3) 6.3	$\hat{j} + \hat{j} - 2\hat{k}$ if S = (4) 8.5						
62.	What is the project (1) $A.B$	$\begin{array}{c} \text{ion of } \stackrel{\text{I}}{\text{A}} \text{ on } \stackrel{\text{I}}{\text{B}} ?\\ \text{(2) } \stackrel{\text{I}}{\text{A}} \stackrel{\text{I}}{\text{B}} \end{array}$	(3) $\overset{1}{B}.\overset{1}{A}$ -	(4) Â.B						
63.	The angle between vectors $(\hat{i} + \hat{j})$ and $(\hat{j} + \hat{k})$ is :									
	(1) 90° (2) 180° (3) 0° (4) 60°									
64.	The angle between the two vectors $\hat{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\hat{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be :- (1) zero (2) 180° (3) 90° (4) 45°									
65.	Let $\mathbf{\hat{A}} = \hat{\mathbf{i}} \mathbf{A} \cos \theta + \hat{\mathbf{j}} \mathbf{A} \sin \theta$, be any vector. Another vector $\mathbf{\hat{B}}$ which is normal to $\mathbf{\hat{A}}$ is : (1) $\hat{\mathbf{i}} \mathbf{B} \cos \theta + \hat{\mathbf{j}} \mathbf{B} \sin \theta$ (2) $\hat{\mathbf{i}} \mathbf{B} \sin \theta + \hat{\mathbf{j}} \mathbf{B} \cos \theta$ (3) $\hat{\mathbf{i}} \mathbf{B} \sin \theta - \hat{\mathbf{j}} \mathbf{B} \cos \theta$ (4) $\hat{\mathbf{i}} \mathbf{A} \cos \theta - \hat{\mathbf{j}} \mathbf{A} \sin \theta$									
66.	The vector $\mathbf{\hat{P}} = a\hat{i} + a\hat{j} + 3\hat{k}$ and $\mathbf{\hat{Q}} = a\hat{i} - 2\hat{j} - \hat{k}$ are perpendicular to each other. The positivalue of a is : (1) 3 (2) 2 (3) 1 (4) zero									
67.	A force $\stackrel{r}{F} = (3\hat{i} + 4\hat{j})N$ acts on a body and displaces it by $\stackrel{r}{S} = (3\hat{i} + 4\hat{j})M$. The work done									
	$\left(W = \overrightarrow{F} \cdot \overrightarrow{S}\right)$ by the force is :									
	(1) 10 J	(2) 12 J	(3) 19 J	(4) 25 J						
68.	What is the project (1) 3	ion of $3\hat{i} + 4\hat{k}$ on the y (2) 4	-axis? (4) 5	(4) zero						
69.	If vector $(2\hat{i}+3\hat{j}+8\hat{k})$ is perpendicular to the vector $(4\hat{i}-4\hat{j}+\alpha\hat{k})$, then the value of α is : (1) -1 (2) 1/2 (3) -1/2 (4) 1									
70.	If $\stackrel{1}{A} = 3\hat{i} + 4\hat{j}$ and \hat{l} following is not tru (1) $\stackrel{1}{A} \times \stackrel{1}{B} = \stackrel{1}{0}$	e?	B are the magnitudes of (3) $\stackrel{1}{A}\stackrel{1}{B} = 48$	of $\stackrel{1}{A}$ and $\stackrel{1}{B}$, then which of the (4) A = 5						
71.	A vector $\mathbf{F}_{1}^{\mathbf{I}}$ is alon then $\mathbf{F}_{2}^{\mathbf{I}}$ may be :-			with another vector $\mathbf{F}_{2}^{\mathbf{I}}$ is zero						

(1)
$$4\hat{j}$$
 (2) $-(\hat{i}+\hat{j})$ (3) $(\hat{i}+\hat{k})$ (4) $-4\hat{i}$

- 72. If \hat{i} , \hat{j} and \hat{k} are unit vectors long X, Y & Z axis respectively, then tick the wrong statement: (1) $\hat{i}.\hat{i}=1$ (2) $\hat{i}\times\hat{j}=\hat{k}$ (3) $\hat{i}.\hat{j}=0$ (4) $\hat{i}\times\hat{k}=-\hat{i}$
- **73.** Two vectors $\stackrel{1}{P}$ and $\stackrel{1}{Q}$ are inclined to each other at angle θ . Which of the following is the unit vector perpendicular to $\stackrel{1}{P}$ and $\stackrel{1}{Q}$?

(1)
$$\frac{\dot{P} \times \dot{Q}}{P.Q}$$
 (2) $\frac{\dot{P} \times \hat{Q}}{\sin \theta}$ (3) $\frac{\dot{P} \times \hat{Q}}{PQ \sin \theta}$ (4) $\frac{\dot{P} \times \dot{Q}}{PQ \sin \theta}$

- **74.** The magnitude of the vector product of two vectors \overrightarrow{A} and \overrightarrow{B} may not be : (1) Greater than AB (2) Less than AB (3) Equal to AB (4) Equal to zero
- 75. If $\mathbf{P} \times \mathbf{Q} = \mathbf{R}$, then which of the following statements is not true? (1) $\mathbf{R} \perp \mathbf{P}$ (2) $\mathbf{R} \perp \mathbf{Q}$ (3) $\mathbf{R} \perp (\mathbf{P} + \mathbf{Q})$ (4) $\mathbf{R} \perp (\mathbf{P} \times \mathbf{Q})$
- 76. Which of the following vector identities is false? (1) P + Q = Q + P (2) $P + Q = Q \times P$ (3) $P \cdot Q = Q \cdot P$ (4) $P \times Q \neq Q \times P$

77. What is the value of
$$(\stackrel{1}{A} + \stackrel{1}{B} -) \bullet (\stackrel{1}{A} \times \stackrel{1}{B})$$
?
(1) 0 (2) $A^2 - B^2$ (3) $A^2 + B^2 + 2AB$ (4) none of these

- 78. If $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{0}$ and $\overrightarrow{B} \times \overrightarrow{C} = \overrightarrow{0}$, then the angle between \overrightarrow{A} and \overrightarrow{C} may be : (1) zero (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{2}$ (4) None
- **79.** If the vectors $(\hat{i} + \hat{j} + \hat{k})$ and $3\hat{i}$ form two sides of a triangle, then area of the triangle is : (1) $\sqrt{3}$ unit (2) $2\sqrt{3}$ unit (3) $\frac{3}{\sqrt{2}}$ unit (4) $3\sqrt{2}$ unit

80. For a body, angular velocity $\stackrel{\mathbf{r}}{\omega} = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ and radius vector $\stackrel{\mathbf{r}}{\mathbf{r}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, then its velocity $(\stackrel{\mathbf{i}}{\mathbf{v}} = \stackrel{\mathbf{i}}{\omega} \times \stackrel{\mathbf{r}}{\mathbf{r}})$ is : (1) $-5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ (2) $-5\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ (3) $-5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ (4) $-5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$

81. Area of a parallelogram, whose diagonals are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ will be : (1) 14 unit (2) $5\sqrt{3}$ unit (3) $10\sqrt{3}$ unit (4) $20\sqrt{3}$ unit

82. The angle between vectors $(\stackrel{1}{A} \times \stackrel{1}{B})$ and $(\stackrel{1}{B} \times \stackrel{1}{A})$ is :

				Edubuli
	(1) π rad	(2) $\frac{\pi}{2}$ rad	(3) $\frac{\pi}{4}$ rad	(4) zero
83.	A vector $\stackrel{1}{A}$ points v (1) zero	vertically upward and B (2) along west	points towards north (3) along east	The vector product $\stackrel{1}{\mathbf{A}} \times \stackrel{1}{\mathbf{B}}$ is (4) vertically downward
84.	If $\begin{vmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{A} \times \mathbf{B} \end{vmatrix} = \begin{vmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{A} \cdot \mathbf{B} \end{vmatrix}$, the	en the angle between A	and $\stackrel{1}{B}$ will be :	
	(1) 30°	(2) 45°	(3) 60°	(4) 75°

						ANSW	ER KE	Y					
				EX	ERCIS	E-I (Co	nceptu	al Ques	tions)				
1.	(2)	2.	(2)	3.	(1)	4.	(3)	5.	(2)	6.	(2)	7.	(2)
8.	(3)	9.	(1)	10.	(1)	11.	(4)	12.	(4)	13.	(4)	14.	(3)
15.	(4)	16.	(1)	17.	(2)	18.	(4)	19.	(3)	20.	(4)	21.	(2)
22.	(2)	23.	(3)	24.	(3)	25.	(1)	26.	(2)	27.	(3)	28.	(4)
29.	(1)	30.	(2)	31.	(2)	32.	(4)	33.	(4)	34.	(1)	35.	(3)
36.	(2)	37.	(3)	38.	(4)	39.	(2)	40.	(4)	41.	(2)	42.	(2)
43.	(3)	44.	(3)	45.	(3)	46.	(1)	47.	(2)	48.	(2)	49.	(2)
50.	(1)	51.	(4)	52.	(3)	53.	(2)	54.	(3)	55.	(3)	56.	(2)
57.	(1)	58.	(1)	59.	(2)	60.	(4)	61.	(4)	62.	(2)	63.	(4)
64.	(3)	65.	(3)	66.	(1)	67.	(4)	68.	(4)	69.	(3)	70.	(3)
71.	(4)	72.	(4)	73.	(2)	74.	(1)	75.	(4)	76.	(2)	77.	(1)
78.	(1)	79.	(3)	80.	(1)	81.	(2)	82.	(1)	83.	(2)	84.	(2)