EXI	ERCISE-I (Conceptu	al Questions)		Build Up Your Understanding
		INTR	ODUCTION	
1.	Rutherford's α-par (1) Electrons	ticle scattering experin (2) Neutrons	ment proved that atom (3) Nucleus	n has :- (4) Orbitals
2.	A and B are two e and 30 respectively (1) 27	elements which have s v. If the atomic weight (2) 33	ame atomic weight a of A is 57 then numb (3) 30	and are having atomic number 27 ber of neutron in B is : - (4) 40
3.	Find out the nucleu (1) ${}^{14}_{6}$ C, ${}^{15}_{7}$ N, ${}^{17}_{9}$ F (3) ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{17}_{9}$ F	is which are isoneutro	nic :- (2) ${}^{12}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F (4) ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{19}_{9}$ F	
4.	Species which are a (a) CN ⁻ (d) N ₂ Correct answer is : (1) a, b, c	isoelectronic to one an (b) OH ⁻ (e) CO - (2) a, c, d	other are (c) CH_3^+ (3) a, d, e	(4) b, c, d
5.	For any anion X^{-3} , X_2 nucleus :- (1) 10	the mass number is 14 (2) 14	4. If anion has 10 elec (3) 7	ctrons, then number of neutrons in (4) 5
6.	Which of the follow (1) Isotopes ${}^{40}_{20}$ Ca, ${}^{10}_{10}$ (3) Isobars ${}^{16}_{8}$ O, ${}^{17}_{8}$ C	wing pairs is correctly ${}_{9}^{10}$ K O, ${}_{8}^{18}$ O	matched (2) Isotones ³⁰ ₁₄ Si, (4) Isoelectronic	$^{31}_{15}P^{32}_{16}S^{N^{-3}}_{16}, O^{-2}, Cr^{+3}$
7.	The atom A, B, C have the configuration $A \rightarrow [Z(90) + n(146)], B \rightarrow [Z(92)$ (a) A and C – Isotones (b) A (c) A and B – Isobars (d) E (e) B and C – Isotopes) + n(146)], C A and C – Isotopes B and C – Isobars	\rightarrow [Z(90) + n(148)] so that :-
8.	(1) a, b only (i) ${}_{26}Fe^{54}$, ${}_{26}Fe^{56}$, ${}_{26}$ (ii) ${}_{1}H^{3}$, ${}_{2}He^{3}$ (iii) ${}_{32}Ge^{76}$, ${}_{33}As^{77}$ (iv) 92U235, ${}_{90}Th^{2}$ (v) ${}_{1}H^{1}$, ${}_{1}D^{2}$, ${}_{1}T^{3}$ Match the above co (1) [(i), - a], [(ii), - (2) [(i), - a], [(ii), - (3) [(v) - a], [(iv), - (4) None of them	(2) c, d, e only (2) c, d, e only (2) c, d, e only (3) (3) (3) (3) (3) (4) (1) (1) (1) (1) (1) (1) (1) (1	 (3) a, c, d only (a) isotopes (b) Isotones (c) Isodiaphers (d) Isobars 2], [(v), - a] 2], [(v), - a] 3], [(i), - a]	(4) a, c, e only

9.	Choose the false stat	tement about deuteriun	n :-	
	(1) It is an isotope of	f hydrogen	(2) It contains $[(1e^{-})$	$+(1p^{+})+(1n)]$
	(3) It contains only [$[(1p^+) + (1n)]$	(4) D_2O is called as	heavy water
10.	If the table of atom then the mass of carb (1) 24	ic masses is establishe bon atom would be, ap (2) 150	ed with the oxygen ato proximately :- (3) 50	om and assigned value of 200, (4) 112
11.	The relative abunda 25% respectively. Th (1) 75.5	nce of two rubidium he average atomic weig (2) 85.5	isotopes of atomic we ght of rubidium is :- (3) 86.5	(4) 87.5 and 87 are 75% and
12	The ratio of specific	charge of a proton and	l a-particle is-	
14.	(1) 2:1	(2) 1 : 2	(3) 1 : 4	(4) 1 : 1
13.	In an atom ${}_{12}Al^{27}$ n	$\frac{1}{1}$ under of proton is (a) ϵ	electron is (b) an neutro	on is (c) Hence ratio will be
10.	[in order $c : b : a$]			
	(1) 13 : 14 : 13	(2) 13 : 13 : 14	(3) 14 : 13 : 13	(4) 14 : 13 : 14
		(
14.	Atomic weight of n	e is 20.2. ne is mixtu	are of Ne ²⁰ and Ne ²² ,	relative abundance of heavier
	isotope is :-			
	(1) 90	(2) 20	(3) 40	(4) 10
			221	
15.	Number of protons,	neutrons & electrons in	n the element $_{89}\gamma^{231}$ is :	-
	(1) 89, 231, 89	(2) 89, 89, 242	(3) 89, 142, 89	(4) 89, 71, 89
16	a^{12} a^{12}			
16.	Atoms $_{6}C^{-1}$ and $_{8}C^{-1}$	are related to each oth	er as :-	(A) Las stores
	(1) Isotones	(2) isoelectronic	(3) isociapiters	(4) Isosters
17	The e/m ratio is may	vimum for ·-		
1/.	(1) D^+	$(2) \operatorname{He}^+$	(3) H ⁺	(4) He^{2+}
	(1) D	(2) 110	(5) 11	(4) 110
18.	Let mass of electron	is half, mass of proto	n is two times and mas	ss of neutron is three fourth of
	(1) increases pu 27.5	n new atomic weight of	(2) remain constant	
	(1) increases hu 37.3 (3) increases by 12.5	3% 5%	(2) remain constant (4) decreases by 25%	6
	(3) Increases by 12	J 70	(4) decreases by 237	0
19.	Am isotone of ${}_{32}\text{Ge}^7$	⁶ is :-		
	(i) $_{32}\text{Ge}^{77}$	(ii) ${}_{33}As^{77}$	(iii) ${}_{34}$ Se ⁷⁷	(iv) ${}_{34}$ Se ⁷⁸
	(1) (ii) & (iii)	() 55	(2) (i) & (ii)	
	(3) (ii) & (iv)		(4) (ii) & (iii) & (iv)	
20.	In 7N ¹⁴ if mass attr	ributed to electrons we	ere doubled & the ma	ass attributed to protons were
	halved, the atomic m	nass would become app	proximately :-	
	(1) Halved	(2) Doubled	(3) Reduced by 25%	(4) Remain same
			-34 • •	
21.	The value of planck	s constant is 6.63×10^{-1}	Js. The velocity of	t light is $3.0510^{\circ} \text{ ms}^{-1}$. Which
Dowor b	value 1s closest to th	e wavelength in metres	s of a quantum of light	with frequency of 8×10^{10} s ⁻¹ .

Tower by. VISIONET Into Solution I vt. Etu	
Website : www.edubull.com	Mob no. : +91-9350679141

				Edubull	
	(1) 3×10^7	(2) 2×10^{-25}	(3) 5×10^{-18}	(4) 3.75×10 ⁻⁸	
22.	If change in energy the light is	y (ΔE) = 3×10 ⁻⁸ J, h =	$= 6.64 \times 10^{-34}$ J-s and c =	= 3×10^8 m/s, then wavelength of	
	(1) $6.64 \times 10^3 \text{ Å}$	(2) $6.64 \times 10^5 \text{ Å}$	(3) 6.64×10 ⁻⁸ Å	(4) $6.64 \times 10^{18} \text{ Å}$	
		BOHR'S A	TOMIC MODEL		
23.	Angular momentu 1 st excited state of	m in second Bohr orb Li ⁺² ion.	bit of H-atom is x. then	i find out angular momentum in	
	(1) 3x	(2) 9x	(3) $\frac{x}{2}$	(4) x	
24.	Angular momentu	m for P-shell electron	is :-		
	(1) $\frac{3h}{\pi}$	$(2) \ \frac{\sqrt{2}h}{2\pi}$	(3) Zero	(4) None	
25.	Multiplication of e (1) Proportional to (2) Proportional to (3) Inversely propo (4) Does not depen	lectron velocity and ra mass of electron square of mass of electron ortional to mass of electron d upon mass of electron	adius for a orbit in an at ctron ctron on	tom is :-	
26.	The radius of a she (1) 3	ell for H-atom is 4.761 (2) 9	Å. The value of n is :- (3) 5	(4) 4	
27.	In Bohr's atomic 1 Li ⁺² is :-	nodel radius of 1 st or	bit or Hydrog <mark>en</mark> is 0.05	53 nm then radius of 3 rd orbit of	
	(1) 0.159	(2) 0.053	(3) 0.023	(4) 0.026	
28.	The first three radi (1) 1 : 0.5 : 0.5	us ratio of Bohr orbits (2) 1 : 2 : 3	(3) 1 : 4 : 9	(4) 1 : 8 : 27	
29.	For Li^{+2} ion, $r_2 : r_5$ (1) 9 : 25	will be :- (2) 4 : 25	(3) 25 : 4	(4) 25 : 9	
30.	The ratio of the rat (1) K & L	lii of two Bohr orbits (2) L & K	of H-atoms is 4 : 1, what (3) N & L	at would be their nomenclature:- (4) 2 & 3 both	
31.	The velocity of ele	ectron in third excited	state Be ³⁺ ion will be :-		
	(1) $\frac{3}{4}$ (2.188×10 ⁸) ms ⁻¹		(2) $\frac{3}{4}$ (2.188×10 ⁸)	(2) $\frac{3}{4}$ (2.188×10 ⁸) ms ⁻¹	
	(3) (2.188×10^6) Kt	ms^{-1}	(4) (2.188×10^3) Kt	ns^{-1}	
32.	The Bohr orbit rac the first excited sta	lius for the hydrogen te $(n = 2)$ will be :-	atom (n = 1) is approx	imately 0.530 Å. The radius for	
	(1) 0.13 Å	(2) 1.0 Å	(3) 4.77 Å	(4) 2.12 Å	

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

33.	According to Bohr t	heory, the radius (r) an umber 'n' as :-	nd velocity (v) of an el	ectron vary with the increasing
	(1) r increases, v dec(3) r and v both incr	creases reases	(2) r and v both incr(4) r decreases, v in	reases creases
34.	The ratio of radius of (1) 1 : 1	of first orbit in hydroge (2) 1 : 2	n to the radius of first (3) 2 : 1	orbit in deuterium will be:- (4) 4 : 1
35.	For any H like syste (1) 1 : 2 : 3	em. The ratio of velocit (2) 1 : 1/2 : 1/3	ies of I, II & III orbit i (3) 3 : 2 : 1	.e., $V_1 : V_2 : V_3$ will be (4) 1 : 1 : 1
36.	The energy of H-ate	om in n^{th} orbit is E_n th	en energy in n th orbit	of singly ionized helium atom
	will be (1) $4E_n$	(2) E _n /4	(3) 2E _n	(4) $E_n/2$
37.	The energy of second	nd Bohr orbit of the h	ydrogen atom is -328	8 KJ/mol. Hence the energy of
	(1) -41 KJ/mol	(2) –1312 KJ/mol	(<mark>3) –164 K</mark> J/mol	(4) –82 KJ/mol
38.	In a hydrogen atom,	, if energy of an electro	on in ground state is –	13.6 eV, then energy in the 2^{nd}
	(1) -1.51 eV	(2) –3.4 eV	(3) –6.04 eV	(4) –13.6 eV
39.	The ratio between according to Bohr's	kinetic energy and th model is :-	ne total energy of the	e electrons of hydrogen atom
	(1) 2 : 1	(2) 1 : 1	(3) 1 : -1	(4) 1 : 2
40.	Potential energy is -	-27.2 eV in second orb	it of He ⁺ then calculate	e, double of total energy in first
	(1) - 13.6 eV	(2) -54.4 eV	(3) –6.8 eV	(4) –27.2 eV
41.	The energy levels for (1) E_n for $A^{(+z-1)} = Z$	or $_{Z}A^{(+z-1)}$ can be given $Z^{2} \times E_{n}$ for H	by :- (2) E_n for $A^{(+z-1)} = 2$	$Z \times E_n$ for H
	(3) E_n for $A^{(+z-1)} = -\frac{1}{2}$	$\frac{1}{Z^2} \times E_n$ for H	(4) E_n for $A^{(+z-1)} = -$	$\frac{1}{Z} \times E_n$ for H
42.	The graphical repres	sentation of energy of e	e ⁻ and atomic number	is :-
		t l	↑ I	$I Z^2 \rightarrow$
	(1) Ė	(2) Ė	(3) Ė	(4) Ė
	$Z^2 \rightarrow$	$Z^2 \rightarrow$	$Z^2 \rightarrow$	I
43.	Going from K-shell	to N-shell incase of H	-atom :-	
	(1) Kinetic energy d (3) Potential energy	decreases	(2) Total energy dec (4) None of these	creases
44.	Maximum frequency (1) $n = 2$ to $n = 1$	y of emission if obtain (2) $n = 6$ to $n = 2$	ed for the transition :- (3) $n = 1$ to $n = 2$	(4) n - 2 to n - 6
Power b	$\frac{1}{11} - 2 \text{ to } \Pi - 1$ by: VISIONet Info Solution Pvt	(2) II = 0 IO II = 2 . Ltd	(3) II - I IO II - 2	(+) II - 2 IU II - 0
Website	e : www.edubull.com	Mob no. : +91-9	9350679141	

45.	If the ionization ene 2^{nd} excited state will	rgy of hydrogen is 313	.8 K cam per mole, the	en the energy of the electron in
	(1) -113.2 Kcal/mol	e	(2) –78.45 Kcal/mol	le
	(3) –313.8 Kcal/mol	e	(4) –35 Kcal/mole	
46.	Which of the follo hydrogen atom :-	wing electron transition	on will require the la	argest amount of energy in a
	(1) From $n = 1$ to $n = 1$	= 2	(2) From $n = 2$ to n	= 3
	(3) From $n = \infty$ to n	= 1	(4) From $n = 3$ to n	= 5
47.	If the potential ener excited level is elect	gy (PE) of hydrogen of ron present :-	lectron is -3.02 eV then in which of the following	
	(1) 1^{st}	(2) 2^{nd}	(3) 3^{rd}	$(4) 4^{\text{th}}$
48.	The radiation of low $(1) n = 1$ to $n = 4$	frequency will be emi (2) $n = 2$ to $n = 5$	tted in which transitio (3) $n = 3$ to $n = 1$	n of hydrogen atom :- (4) n = 5 to n = 2
49.	A single electron or from third to fourth	bits a stationary nucleu Bohr orbit will be :-	s (z = 5). The energy z	required to excited the electron
	(1) 4.5 eV	(2) 8.53 eV	(3) 25 eV	(4) 16.53 eV
50.	The ratio of energies	s of hydrogen atom for	first and second excit	ed state is :-
	(1) 4/1	(2) 1/4	(3) 4/9	(4) 9/4
51.	$E_n = -313.6/n^2$. If t correspond :-	he value of $E_n = -34$.84 then to which of	the following values does 'n'
	(1) 1	(2) 2	(3) 3	(4) 4
52.	The ratio of potenti species is :-	al energy and total end	ergy of an electron in	a Bohr orbit of hydrogen like
	(1) 2	(2) –2	(3) 1	(4) –1
53.	Which is not a corre	ct order of energy for 1	$1^{\text{st}}, 2^{\text{nd}}, \& 3^{\text{rd}} \text{ orbit } :-$	
	(1) $E_1 < E_2 < E_3$		(2) $(PE)_1 < (PE)_2 < (PE)_2$	$(PE)_3$
	(3) $(KE)_1 < (KE)_2 <$	$(KE)_3$	(4) 1' & 3' both	
54.	Which of the follow (1) E_1 of $H = 1/2 E_2$	ing is a correct relation of He ⁺ = $1/3 E_3$ of Li ⁺²	$^{2} = \frac{1}{4} E_{4} \text{ of Be}^{+3}$	
	(2) E_1 (H) = E_2 (He ⁺ (3) E_1 (H) = $2E_2$ (He ⁺ (4) No relation	$= E_3 (Li^{+2}) = E_4 \text{ of } (B_4)$ $= 3E_3 (Li^{+2}) = 4E_4 \text{ of } (B_4)$	e^{+3}) of (Be ⁺³)	
55.	Which is correct for	any H like species :-		
	(1) $(E_2 - E_1) > (E_3 - (3) (E_2 - E_1)) = (E_3 - (2) (E_2 - E_1)) = (E_3 - (2) (E_3 - (E_3 $	E_2 > ($E_4 - E_3$) E_2 = ($E_4 - E_3$)	(2) $(E_2 - E_1) < (E_3 - (4) (E_2 - E_1)) = 1/4(E_2 - E_1) = 1/4(E_2 - E_1)$	$(E_2) < (E_4 - E_3)$ $(E_3 - E_2) = 1/9 (E_4 - E_3)$

56. Which of the following is a correct graph :-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Website : www.edubull.com Me	ob no. : +91-9350679141

	(1) Balmer	(2) Bracket	(3) Pfund	(4) Lyman
68.	The ratio of minimu (1) 1.25	um frequency of Lyman (2) 0.25	& Balmer series will (3) 5.4	be :- (4) 10
69.	Which transition et (1) Second spectra (3) Fifth spectral li	mits photon of maximur l line of Balmer series ne of Humphery series	n frequency :- (2) Second spectral (4) First spectral lin	line of Paschen series e of Lyman series
70.	Which one of the f $(1) \operatorname{Al}^{3+}$	following species will give (2) Na	ve a series of spectral (3) Mg ⁺	lines similar to that of Mg ²⁺ :- (4) F
71.	The ratio of minim (1) 1.25	um wavelengths of Lym (2) 0.25	nan & Balmer series w (3) 3	ill be :- (4) 10
72.	The wavelength of singly ionized He a (1) $\lambda_2 = \lambda_1$	f photon obtained by el are λ_1 and λ_2 respectivel (2) $\lambda_2 = 2\lambda_1$	ectron transition betw y, then :- (3) $\lambda_2 = \lambda_1 2$	where two levels in H-atom and (4) $\lambda_2 = \lambda_1 4$
73.	Find out ratio of fo (1) 1 : 16	ollowing for photon (v _{ma} (2) 16 : 1	$\begin{array}{l} \text{(x)}_{\text{Lyman}}:(\text{V}_{\text{max}})_{\text{Brakett}}\\ \text{(3) 4:1} \end{array}$	(4) 1 : 4
74.	The ratio of wavel deuterium $(_1H^2)$ is (1) 1 : 9	engths of first line of L :- (2) 9 : 1	yman series in Li ⁺² an (3) 1 :4	nd first line of Lyman series in (4) 4 : 1
75.	In an electronic tra (1) Visible light	nsition atom cannot emi (2) γ-rays	t :- (3) Infra red light	(4) Ultra violet light
76.	The first Lyman t change is observed (1) Li ²⁺	transition in the hydrog in the second Balmer tr (2) Li ⁺	gen spectrum has ΔE cansition of :- (3) He ⁺	= 10.2 eV. The same energy (4) Be^{3+}
77.	The limiting line in (1) $3.65 \times 10^{14} \text{sec}^{-1}$	h Balmer series will have $(2) 3.29 \times 10^{15} \text{sec}^{-1}$	e a frequency of :- (3) $2.88 \times 10^{14} \text{sec}^{-1}$	$(4) - 8.22 \times 10^{14} \text{sec}^{-1}$
78.	If the shortest wav Balmer series of H	elength of Lyman series atom will be :-	s of H atom is x, then	the wave length of first line of
	$(1) \frac{9x}{5}$	(2) $\frac{36x}{5}$	(3) $\frac{5x}{9}$	(4) $\frac{5x}{36}$
79.	The first emission (1) $\frac{5R}{36}$ cm ⁻¹	line in the H-atom spect (2) $\frac{3R}{4}$ cm ⁻¹	rum in the Balmer series (3) $\frac{7R}{144}$ cm ⁻¹	ies will have wave number :- (4) $\frac{9R}{400}$ m ⁻¹
80.	What transition in (1) $5 \rightarrow 3$	He ⁺ will have the same $(2) 3 \rightarrow 2$	λ as the I line in Lyma (3) $6 \rightarrow 4$	in series of H-atom (4) $4 \rightarrow 2$
Power h	by: VISIONet Info Solution P	vt. Ltd Mob no. : +91-9	9350679141	

81. In H-atom, electron transits from 6^{th} orbit to 2^{nd} orbit in multi step. Then total spectral lines (without Balmer series) will be :-(1) 6 (2) 10 (3) 4 (4) 0

82.An atom has x energy level, then total number of lines in its spectrum are :- $(1) 1 + 2 + 3 \dots (x + 1)$ $(2) 1 + 2 + 3 \dots (x^2)$ $(3) 1 + 2 + 3 \dots (x - 1)$ (4) (x + 1)(x + 2) (x + 4)

83. The figure indicates the energy level diagram for the origin of six spectral lines in emission spectrum (e.g. line no. 5 arises from the transition from level B to X) which of the following spectral lines will not occur in the absorption spectrum :-

- 84. A certain electronic transition from an excited state to ground state of the H_2 atom in one or more step gives rise to three lines in the ultra violet region of the spectrum. How many lines does this transition produce in the infrared region of the spectrum :-(1) 1 (2) 2 (3) 3 (4) 4
- **85.** Four lowest energy levels of H-atoms are shown in the figure. The number of emission lines could be :-

- 86. In the above problem, the number of absorption lines could be :-(1) 3 (2) 4 (3) 5 (4)

DE-BROGLIE CONCEPT AND HEISENBERG PRINCIPLE

- 88. An electron has kinetic energy 2.8×10^{-23} J. de-Broglie wavelength will be nearly :-(m_e = 9.1×10⁻³¹ kg) (1) 9.28×10^{-24} m (2) 9.28×10^{-7} m (3) 9.28×10^{-8} m (4) 9.28×10^{-10} m
- 89. What is the de-Broglie wavelength associated with the hydrogen electron in its third orbit :-(1) 9.96×10^{-10} cm (2) 9.96×10^{-7} cm (3) 9.96×10^{4} cm (4) 9.96×10^{8} cm

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

90.If the de-Broglie wavelength of the fourth Bohr orbit of hydrogen atom is circumference of the orbit will be :- (1) 4 Å(2) 4 Å(3) 16 Å(4) 16 m	4Å, the
(1) 4 Å (2) 4 Å (3) 16 Å (4) 16 m	
91. No. of wave in fourth orbit :-	
(1) 4 (2) 5 (3) 0 (4) 1	
92. What is the ration of the De-Broglie wave lengths for electrons accelerated through and 50 volts :-	200 volts
(1) $1:2$ (2) $2:1$ (3) $3:10$ (4) $10:3$	
93. For a valid Bohr orbit, its circumfrence should be :-	
(1) = n λ (2) = (n - 1) λ (3) > n λ (4) < n λ	
94. A particle X moving with a certain velocity has a de-Broglie wavelength of 1Å. If p has a mass of 25% that of X and velocity 75% that of X, de-Broglies wavelength of Y (1) 3 Å (2) 5.33 Å (3) 6.88 Å (4) 48 Å	article Y will be :-
95. The number of waves made by a Bohr electron in an orbit of maximum magnetic	quantum
number $+2:-$ (1) 3 (2) 4 (3) 2 (4) 1	
96. The uncertainty in position of an electron & helium atom are same. If the uncertainty in momentum for the electron is 32×10^5 , then the uncertainty in momentum of helium be	tainty in atom will
(1) 32×10^5 (2) 16×10^5 (3) 8×10^5 (4) None	
97. The uncertainty in the position of an electron (mass 9.1×10^{-28} gm) moving with a v 3×10^4 cm sec ⁻¹ , uncertainty in velocity is 0.011% will be :-	elocity of
(1) 1.92 cm (2) 7.68 cm (3) 0.175 cm (4) 3.84 cm	
98. Heisenberg Uncertainty principle is not valid for	
(1) Moving electron (2) Motor car	
(3) Stationary particles (4) 2 & 3 both	
99. What should be the momentum (in gram centimeter per second) of a particle if its d wavelength is 1Å and the value of h is 6.6252×10^{-27} erg second ?	e-Broglie
(1) 6.6252×10^{-19} gcm/s (3) 6.6252×10^{-24} gcm/s (4) 6.6252×10^{-27} gcm/s	
100. What should be the mass of the photon of sodium if its wavelength is 5894Å, the v	elocity of
light is 3×10^8 metre / second and the value of h is 6.6252×10^{-34} kg m ² /s?	
$\begin{array}{c} (1) & 5.746 \times 10^{-34} \text{ kg} \\ (3) & 3.746 \times 10^{-34} \text{ kg} \\ \end{array} $ $\begin{array}{c} (2) & 5.746 \times 10^{-36} \text{ kg} \\ (4) & 3.746 \times 10^{-36} \text{ kg} \\ \end{array}$	
101 Which of the following has loost de Preglie 1.9	
(1) e^- (2) p (3) CO_2 (4) SO_2	
Power by: VISIONet Info Solution Pyt. Ltd	

Mob no. : +91-9350679141

Website : www.edubull.com

		QUANTUM	I NUMBERS		
102.	The following quantu (1) 1	1m no. are possible for (2) 2	how many orbitals n = (3) 3	= 3, $\lambda = 2$, m = +2 (4) 4	
103.	Number of possible of (1) 1	orbitals (all types) in n (2) 3	= 3 energy level is :- (3) 4	(4) 9	
104.	Which sub-shell is no	ot permissible :-	(3) 6n	(1) 3s	
105.	Nodal plane is found (1) $n = 2, \lambda = 0$ = 1, $\lambda = 0$	in which orbital. (2) $n = 3, \lambda =$	0 (3) n =	(4) 55 = 2, $\lambda = 1$	(4) n
106.	No. of nodal surface a (1) 0	in 2s orbital :- (2) 1	(3) 2	(4) 3	
107.	Number of orbitals in (1) 11	h sub-shell is (2) 15	(3) 17	(4) 19	
108.	How many quantum (1) 1	numbers are required t (2) 2	o specify the position (3) 3	of electron :- (4) 4	
109	Which of the followi	ng is correct for a 4d-e	lectron		
109.	(1) $n = 4, \lambda = 2, s = +$	$\frac{1}{2}$	(2) n = 4, λ = 2, s = 0)	
	(3) $n = 4, \lambda = 3, s = 0$		(4) $n = 4, \lambda = 3, s = -$	$+\frac{1}{2}$	
110.	If $n = 3$, then which v (1) 0	value of 'λ' is correct :- (2) 1	(3) 2	(4) All of them	
111.	Energy of atomic orb (1) s	itals in a particular she (2) $s > p > d > f$	ell is in order :- (3) p < d < f < s	(4) $f > d > s > p$	
112.	Which statement is n (1) $\lambda = 4$ (3) $\lambda = 3$	ot correct for $n = 5$, m	= 2 :- (2) $\lambda = 0, 1, 2, 3, ; s =$ (4) $\lambda = 2, 3, 4$	= + 1/2	
113.	Spin angular moment (1) $\sqrt{s(s+1)} \frac{h}{2\pi}$ (3) $\sqrt{s(s+2)} \frac{h}{2\pi}$	um for electron :-	(2) $\sqrt{2s(s+1)} \frac{h}{2\pi}$ (4) None		

114. The maximum number of electrons in a p-orbital with n = 6 and m = 0 can be :-

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

				Luubun						
	(1) 14	(2) 2	(3) 2	(4) 10						
115.	The total value of m for the electrons $(n = 4)$ is :-									
1101	(1) 4	(2) 8	(3) 16	(4) 32						
				× /						
116	In an atom for how	many electrons the a	uantum number will be	$(n-3) = 2$ $(m-1)^2$ $(n-1)^2$						
110.	In an atom, for now i	many electrons, the q		r_{1} , $n = 3$, $n = 2$, $m = +2$, $s = +\frac{1}{2}$						
	(1) 18	(2) 6	(3) 24	(4) 1						

117.	Which orbital is repr	esented by the compl (2) ad	ete wave function Ψ_{420}	(4) 4 c						
	(1) 40	(2) 30	(J) 4p	(4) 45						
118.	An electron in one c	of 4d orbital. Which	of the following orbita	ll quantum number value is not						
	possible :-		C							
	(1) $n = 4$	(2) $\lambda = 1$	(3) $m = 1$	(4) $m = 2$						
110	A	a share such as OK OI	11M							
119.	A neutral atom of ar	i element nas 2K, 8L	, Thy and 2N electron	is. The number of s-electron in						
	(1) 2	(2) 8	(3) 10	(4) 6						
		()								
120.	If $\lambda = 3$ then type and	d number of orbital is	3 :-							
	(1) 3p, 3	(2) 4f, 14	(3) 5f, 7	(4) 3d, 5						
101	Any of orbital can a	acommodata unto :								
121.	(1) 14 electron	-commodate upto	(2) Six electrons							
	(3) Two electrons wi	th parallel spin	(4) Two electrons w	vith opposite spin						
122.	n, λ and m values of	an electron in 3py ort	oital are :-							
	(1) $n = 3$; $\lambda = 1$ and (2) P_{1} (1) $1 = 12$	m = 1	(2) $n = 3$; $\lambda = 1$ and (4) N	d m = -1						
	(3) Both 1 and 2 are correct (4) None of these									
123.	₃₆ Kr has the electror	nic configuration (18A	Ar) $4s^2 3d^{10} 4p^6$. The 3	39 th electron will go into which						
	one of the following	sub-levels :-	/ 1	C						
	(1) 4f	(2) 4d	(3) 3p	(4) 5s						
104	The second seco	1.11.4		11.						
124.	(1) Along the x-axis	idinity of finding an el	lectron in the d_{xy} orbita	u 18 :-						
	(1) Along the y-axis									
	(3) At an angle of 45° from the x and y axis									
	(4) At an angle of 90	° from the x and y ax	is							
105	XX71 * 1 1 */ 1 1	1								
125.	which orbital has tw (1) s	o angular nodal plane (2) n	es:-	$(A) \mathbf{f}$						
	(1) 5	(2) p	(<i>J</i>) u	(4) 1						
126.	An orbital with $\lambda = 0$) is symmetrical abou	t the :-							
	(1) x-axis only	(2) y-axis only	(3) z-axis only	(4) The nucleus						

_

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

If n & λ are principal and azimuthal quantum no. respectively then the expression for 127. calculating the total no. of electron in any energy level is :-(2) $\sum_{l=1}^{l=n-1} 2(2l+1)$ (1) $\sum_{l=0}^{n-1} 2(2l+1)$ $(4) \sum_{1=n-1}^{1=n-1} 2(21+1)$ (3) $\sum_{l=0}^{l=n+1} 2(2l+1)$ **RULES FOR FILLING OF ORBITALS** 128. Which configuration does not obey pauli's exclusion principle :-(1)(2)(3)(4)129. Which of the following configuration follows the Hund's rule :-2s2p 2p (1) [He] **↑** \downarrow (2) [He] 2p 2s 2p (3) [He] ↑↓ ↑ (4) [He] ↑↓ ↑ The basis of three unpaired electrons present in the configuration of nitrogen is :-130. (2) Pauli's principle (1) Aufbau principle (3) Hund's principle (4) Uncertainty principle 131. The orbital with maximum energy is (1) 3d (3) 4s(4) 6d (2) 5p n and λ values of an orbital 'A' are 3 and 2, of another orbital 'B' are 5 and 0. The energy of 132. (1) B is more than A (2) A is more than B (3) A and B are of same energy (4) None 133. No. of all subshells of $n + \lambda = 7$ is :-(1)4(2)5(3) 6(4)7134. Electronic configuration 1111 111 (1) Hund's rule (2) Pauli's principle (3) Aufbau principle (4) $(n + \lambda)$ rule The total spin resulting from a d⁹ configuration is :-135. $(4) \frac{3}{2}$ $(1)\frac{1}{2}$ (2) 2(3)1Which of the following transition neither shows absorption nor emission of energy in case of 136. Hydrogen atom :-(2) $3d_{xy} \rightarrow 3d_{yz}$ (3) $3s \rightarrow 3d_{xy}$ (1) $3p_x \rightarrow 3s$ (4) All the above

	(1) 10	(2) 12	or o	(3) 15	(4) 18						
138.	For Na ($Z = 11$) set of quantum numbers for last electron is :-										
	(1) $n = 3$, $\lambda = 1$, r	$n = 1, s = +\frac{1}{-1}$		(2) $n = 3$ $\lambda = 0$ $m = 0$ $s = +\frac{1}{2}$							
	(1) 11 0,11 1,1	2		(_) 0, 0							
	(3) $n = 3, \lambda = 0, r$	$n = 1, s = +\frac{1}{2}$		(4) $n = 3, \lambda = 1$	$m = 1, s = -\frac{1}{2}$						
		-									
139.	Which of the foll	owing set quant	um numbe	ers is correct for t	he 19 th electron of Chromium						
	(1) 3	A 0	0	s 1/2							
	(1) 3 (2) 3	2	-2	$\frac{1}{2}$							
	(2) (3) (3) (3)	0	0	1/2							
	(4) 4	1	-1	1/2							
140.	Which set of quantum number is correct for an electron in 3p orbital										
	(1) $n = 3$, $\lambda = 2$, r	$m = 0, s = +\frac{1}{2}$		(2) $n = 3$, $\lambda = 0$	$m = +1, s = +\frac{1}{2}$						
	(1) 11 0, 77 2, 1	2		(2) 11 3, 11 3	2						
	(3) $n = 3$, $\lambda = -2$.	$m = -1$, $s = +\frac{1}{-1}$		$(4) n = 3, \lambda = 1$	$m = 0, s = +\frac{1}{2}$						
	(5) II 5, II 2,	2									
141.	An atom of Cr [Z	L = 24] loses 2 el	lectrons. H	Iow many unpair	ed electrons shall be there in Cr ⁺² :						
	(1) 4	(2) 3		(3) 2	(4) 1						
142	The atomic weig	ht of an element	t is double	its atomic numb	er. If there are three electrons in 2n						
172.	sub-shell, the element is :-										
	(1) C	(2) N		(3) O	(4) Ca						
143.	The atomic num	per of an element	nt is 17, tl	he number of orb	ital containing electron pairs in the						
	valance shell is :-			(2)							
	(1) 8	(2) 2		(3) 3	(4) 4						
144	A transition met	al 'X' has a con	figuration	$[Ar]3d^5$ in its $+3$	Soxidation state. Its atomic number						
111	is :-		ingulation		oxiduation state. Its atomic number						
	(1) 22	(2) 26		(3) 28	(4) 19						
145.	$4s^2$ is the configu	ration of the out	termost or	bit of an element.	Its atomic number would be :-						
	(1) 29	(2) 24		(3) 30	(4) 19						
114	Sum of the naire	d alastrons mass	ont in the	orbital with 1	2 in all the appealor E_{2}^{2+} m C_{2}^{2+} and						
140.	Ni ⁺² are :-	a electrons pres	ent m the	oronal with $I = 1$	2 in an ule species re in Co and						
	(1) 9	(2) 12		(3) 6	(4) 15						
	(-) >	(-) + -			(.)						
147.	What is the electr	onic configuration	ion of an e	element in its first	t excited state which is isoelectronic						
	with O ₂			_							
	(1) [Ne] $3s_1^1 3p_2^3 3$	³ d ¹		(2) [Ne] $3s^2$ 3p ²	(2) [Ne] $3s^2 3p^4$						
	(3) [Ne] $3s^1 3p^3 3$	3d ²		(4) [Ne] $3s^{1} 3p^{2}$	J						
Power by Website	y: VISIONet Info Solution : www.edubull.com	Pvt. Ltd	[ob no. : +91-9	0350679141							

- **148.** The quantum number of 20th electron of Fe (Z = 26) ion would be :-(1) 3, 2, -2, $-\frac{1}{2}$ (2) 3, 2, 0, $\frac{1}{2}$ (3) 4, 0, 0, $+\frac{1}{2}$ (4) 4, 1, -1, $+\frac{1}{2}$
- 149. The atomic number of the element having maximum number of unpaired 3p electrons is (in ground state)
 (1) 15
 (2) 10
 (3) 12
 (4) 8

- **151.** The electronic configuration of a dipositive metal ion M^{2+} is 2, 8, 14 and its ionic weight is 58 a.m.u. The number of neutrons in its nucleus would be :-(1) 30 (2) 32 (3) 34 (4) 42
- 152. In an atom having 2K, 8L, 8M and 2N electrons, the number of electrons with m = 0; $S = +\frac{1}{2}$ are (1) 6 (2) 2 (3) 8 (4) 16
- 153. The number of electrons in the M-shell of the element with atomic number 24 is :-(1) 24(2) 12(3) 8(4) 13

ANSWER KEY

EXERCISE-I (Conceptual Questions)													
1.	(3)	2.	(1)	3.	(1)	4.	(3)	5.	(2)	6.	(2)	7.	(4)
8.	(1)	9.	(3)	10.	(2)	11.	(2)	12.	(1)	13.	(3)	14.	(4)
15.	(3)	<u>16</u> .	(3)	17.	(3)	18.	(1)	19.	(3)	20.	(3)	21.	(4)
22.	(3)	23.	(4)	24.	(1)	25.	(3)	26.	(1)	27.	(1)	28.	(3)
29.	(2)	30.	(4)	31.	(4)	32.	(4)	33.	(1)	34.	(1)	35.	(2)
36.	(1)	37.	(4)	38.	(1)	39.	(3)	40.	(3)	41.	(1)	42.	(4)
43.	(1)	44.	(1)	45.	(4)	46.	(1)	47.	(2)	48.	(4)	49.	(4)
50.	(4)	51.	(3)	52.	(1)	53.	(1)	54.	(2)	55.	(1)	56.	(3)
57.	(1)	58.	(3)	59.	(4)	60.	(4)	61.	(1)	62.	(1)	63.	(2)
64.	(4)	65.	(1)	66.	(3)	67.	(4)	68.	(3)	69.	(4)	70.	(1)
71.	(2)	72.	(4)	73.	(2)	74.	(1)	75.	(2)	76.	(3)	77.	(3)
78.	(2)	79.	(1)	80.	(4)	81.	(1)	82.	(3)	83.	(1)	84.	(1)
85.	(4)	86.	(1)	87.	(1)	88.	(3)	89.	(2)	90.	(3)	91.	(1)
92.	(1)	93.	(1)	94.	(2)	95.	(1)	96.	(1)	97.	(3)	98.	(4)
99.	(1)	100.	(4)	101.	(4)	102.	(1)	103.	(4)	104.	(1)	105.	(3)
Power by: VISIONet Info Solution Pvt. Ltd													
Websit	e : www.ed	ubull.com			Mob	no.:+91-9	35067914	1	,				

												Edubull		
106.	(2)	107.	(1)	108.	(3)	109.	(1)	110.	(4)	111.	(1)	112.	(2)	
113.	(1)	114.	(3)	115.	(3)	116.	(4)	117.	(1)	118.	(2)	119.	(2)	
120.	(3)	121.	(4)	122.	(3)	123.	(2)	124.	(3)	125.	(3)	126.	(4)	
127.	(4)	128.	(2)	129.	(1)	130.	(3)	131.	(4)	132.	(1)	133.	(1)	
134.	(1)	135.	(1)	136.	(4)	137.	(3)	138.	(2)	139.	(3)	140.	(4)	
141.	(1)	142.	(2)	143.	(3)	144.	(2)	145.	(3)	146.	(2)	147.	(1)	
148.	(3)	149.	(1)	150.	(3)	151.	(2)	152.	(1)	153.	(4)			