EXERCISE-I					
	Limits	5	9.	$\lim_{x \to \infty} \sqrt{x} \left(\sqrt{x+5} - \sqrt{x} \right)$) =
1.	$\lim_{x\to 0} \frac{\log \cos x}{x} =$			(A) 5 (C) 5/2	(B) 3 (D) 3/2
	(A) 0(C) ∞	(B) 1(D) None of these	10.	$\lim_{x \to 1} \frac{x - 1}{2x^2 - 7x + 5} =$	
2.	$\lim_{x\to 0} \frac{\sin 2x}{x} =$			(A) 1/3 (C) -1/3	(B) 1/11(D) None of these
	(A) 0 (C) 1/2	(B) 1 (D) 2	11.	$\lim_{x \to \pi/6} \frac{\cot^2 \theta - 3}{\csc \theta - 2} =$	
3.	If $f(9) = 9$, $f'(9) = 4$	`,		(A) 2 (C) 6	(B) 4 (D) 0
	then $\lim_{x \to 9} \frac{1}{\sqrt{x-3}} =$ (A) 2	(B) 4	12.	$\lim_{x \to 0} \frac{(1+x)^5 - 1}{(1+x)^3 - 1} =$	
	(C) -2	(D) –4		(A) 0 (C) $5/2$	(B) 1 (D) $\frac{2}{5}$
4.	$\lim_{x \to 0} \frac{ X }{x} =$ (A) 1	(B) –1	13.	If $\lim_{x \to a} \frac{x^9 + a^9}{x + a} = 9$, th	(D) 5/5 en a =
5.	(C) 0 $\lim \frac{\sqrt{x+h} - \sqrt{x}}{h} = \frac{1}{2}$	(D) Does not exist		(A) 9 ^{1/8} (C) ±3	(B) ±2(D) None of these
	$h \to 0$ h (A) $\frac{1}{2\sqrt{x}}$	(B) $\frac{1}{\sqrt{2}}$	14.	$\lim_{x \to 0+} \frac{x e^{1/x}}{1 + e^{1/x}} =$	
	(C) $2\sqrt{x}$	(D) \sqrt{x}		$(A) 0 (C) \infty$	(B) 1(D) None of these
6.	$\lim_{x \to 0} \frac{2^{x} - 1}{\left(1 + x\right)^{1/2} - 1} =$		15.	$\lim_{x \to 1} [x] =$	(D) 1
	(A) $\log 2$	(B) log 4		(A) 0 (C) Does not exist	(B) I (D) None of these
7.	$\lim_{x \to \infty} \frac{1 - \cos mx}{1 - \cos mx} =$	(D) None of these	16.	$\lim_{x \to 0} \frac{\sin 2x + \sin 6x}{\sin 5x - \sin 3x} =$	(D) $1/4$
	(A) m/n	(B) n / m		(C) 2	(D) 4
	(C) $\frac{m^2}{n^2}$	(D) $\frac{n^2}{m^2}$	17.	The value of $\lim_{\theta \to 0} \left(\frac{\sin \theta}{\theta} \right)$	$\left(\frac{\theta}{4}\right)$ is
8.	$\lim_{x \to 0} \frac{e^{-1} - 1}{x} =$ (A) 1	(B) <i>e</i>		(A) 0) (B) 1/4 (D) N 4 i i
	(C) 1/ <i>e</i>	(D) None of these		(\mathbf{C}) I	(D) Not in existence

18.	The value of $\lim_{x\to\infty} \left(\frac{x^2}{x^2}\right)$	$\frac{+bx+4}{+ax+5}$ is
	(A) <i>b/a</i>	(B) 1
	(C) 0	(D) 4/5
19.	If $f(r) = \pi r^2$, then $\lim_{h \to \infty} f(r) = \pi r^2$	$\int_{0}^{h} \frac{f(r+h) - f(r)}{h} =$
	(A) πr^2	(B) 2πr
	(C) 2π	(D) $2\pi r^2$
20.	$\lim_{x\to 0} x \log(\sin x) =$	
	(A) –1	(B) $\log_{e} 1$
	(C) 1	(D) None of these
21.	$\lim_{x \to 0} \frac{y^2}{x} = \dots, \text{ where }$	$y^2 = ax + bx^2 + cx^3$
	(A) 0	(B) 1
	(C) <i>a</i>	(D) None of these
22.	$\lim_{x \to 0} \frac{(1+x)^{1/2} - (1-x)^{1/2}}{x}$	/2 — =
	(A) 0	(B) 1/2
	(C) 1	(D) –1
23.	$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 5x - 6} =$	
	(A) 0	(B) $\frac{3}{7}$
	(C) $\frac{1}{2}$	(D) $-\frac{1}{6}$
24.	$\lim_{x \to a} \frac{\sqrt{a+2x} - \sqrt{3x}}{\sqrt{3a+x} - 2\sqrt{x}} =$	
	(A) $\frac{1}{\sqrt{3}}$	(B) $\frac{2}{3\sqrt{3}}$
	(C) $\frac{2}{\sqrt{3}}$	(D) $\frac{2}{3}$
25.	$\lim_{x \to 1} \frac{1 - x^{-1/3}}{1 - x^{-2/3}} =$	
	(A) $\frac{1}{3}$	(B) $\frac{1}{2}$
	(C) $\frac{2}{3}$	(D) $-\frac{2}{3}$

26.	$\lim_{x\to 0}\frac{(1+x)^n-1}{x} =$	
	(A) <i>n</i>	(B) 1
	(C) –1	(D) None of these
27.	$\lim_{x \to 0} \left(\frac{\tan 3x}{x} + \cos x \right) =$	=
	(A) 3	(B) 1
	(C) 4	(D) 2
28.	$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{\sin^{-1} x} =$	
	(A) 2	(B) 1
	(C) –1	(D) None of these
29.	$\lim_{y\to 0} \frac{(x+y)\sec(x+y)}{y}$	$-x \sec x =$
	(A) $\sec x(x \tan x \pm 1)$	(B) $x \tan x \perp \sec x$
	(A) Set $X(X \tan X + 1)$	(D) $X \tan X + \sec X$
	(C) $x \sec x + \tan x$	(D) None of these
30.	$\lim_{x \to 0} \frac{x \cdot 2^{x} - x}{1 - \cos x} =$	
	(A) 0	(B) log 4
	(C) log 2	(D) None of these
31.	$\lim_{x \to \infty} \frac{(2x+1)^{40}(4x-1)}{(2x+3)^{45}}$	5 — =
	(A) 16	(B) 24
	(C) 32	(D) 8
32.	$\lim_{x \to 0} \left[\frac{x}{\tan^{-1} 2x} \right] =$	
	(A) 0	(B) $\frac{1}{2}$
	(C) 1	(D) ∞
33.	$\lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} =$	
	$(\Lambda) \frac{1}{2}$	(B) $-\frac{1}{2}$
	$(\Lambda) \frac{1}{2}$	$(B) = \frac{1}{2}$
	(C) 2	(D) None of these

				Limit, Continuity & Differentiability
34	$\lim \frac{\sin 3x + \sin x}{\sin 3x + \sin x} =$			Continuity
54.	$\begin{array}{c} \min_{x \to 0} & X \end{array}$		41.	The points at which the function
	(A) $\frac{1}{3}$	(B) 3		$f(x) = \frac{x+1}{x^2 + x - 12}$ is discontinuous, are
	(C) 4	(D) $\frac{1}{4}$		(A) -3, 4 (B) 3, -4 (D) 1, 3, 4
35.	$\lim \frac{1+\cos 2x}{2} =$			$(C)^{-1}, -5, +$ $(D)^{-1}, 5, +$
	$x \to \pi/2 (\pi - 2x)^2$ (A) 1	(B) 2	42.	If $f(x) = \begin{cases} e^{-x} + ax, & x < 0\\ b(x-1)^2, & x \ge 0 \end{cases}$ then
	(C) 3	(D) $\frac{1}{2}$		(A) $\lim_{x \to 0^+} f(x) \neq 2$
26	$1 - \cos 6x$	2		(B) $\lim_{x \to 0^{-}} f(x) = 0$
36.	$\lim_{x\to 0} \frac{1}{x} =$			(C) $f(x)$ is continuous at $x=0$
	(A) 0	(B) 6		(D) None of these
	(C) $\frac{1}{3}$	(D) None of these	43.	If $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{when } x \neq 0 \\ & \text{, then} \end{cases}$
37.	$\lim_{n \to 0} \frac{\sin mx}{\tan mx} =$			$0, \text{ when } \mathbf{x} = 0$
	$x \to 0$ tan nx	m		(A) $f(0+0) = 1$
	(A) $\frac{m}{m}$	(B) $\frac{m}{n}$		(B) $f(0-0) = 1$
	(C) mn	(D) None of these		(C) f is continuous at $x = 0$
38.	$\lim \frac{3\sin x - \sin 3x}{2} =$:	4.4	(D) None of these
	$x \rightarrow 0$ X^{3}	(D) 4	44.	The value of k so that the function $(1, (2, \dots, 2))$
	(A) 4	(B)4		$f(x) = \begin{cases} k(2x - x^2), & \text{when } x < 0 \\ & \text{is} \end{cases}$
	(C) $\frac{1}{4}$	(D) None of these		$\left(\begin{array}{c}\cos x, & \text{when } x \ge 0\end{array}\right)$
20	\mathbf{x}^{3}			$(A) 1 \qquad (B) 2$
39.	$\lim_{x\to 0} \frac{1}{\sin x^2} =$			(C) 4 (D) None of these
	(A) 0	(B) $\frac{1}{3}$	45.	If $f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, \text{ when } x \neq 0 \end{cases}$, then
	(C) 3	(D) $\frac{1}{2}$		$\begin{bmatrix} 0, \text{ when } x = 0 \end{bmatrix}$
	$\left(\mathbf{x}, \mathbf{w} \right)$	1 x >1		(A) $\lim_{x \to 0+} f(x) = 1$
40.	If $f(x) = \begin{cases} x^2, & \text{when} \end{cases}$	u x <1'		(B) $\lim_{x\to 0^-} f(x) = 1$
	then $\lim_{x \to 1} f(x) =$			(C) $f(x)$ is continuous at $x=0$
	(A) x^2	(B) x		(D) None of these
	(C) -1	(D) 1		

46. If
$$f(x) = \begin{cases} (1+2x)^{1/x}, \text{ for } x \neq 0 \\ e^2, \text{ for } x = 0 \end{cases}$$
, then
(A) $\lim_{x \to 0^+} f(x) = e$
(B) $\lim_{x \to 0^-} f(x) = e^2$
(C) $f(x)$ is discontinuous at $x = 0$
(D) None of these
47. If $f(x) = \begin{cases} 2^{1/x}, \text{ for } x \neq 0 \\ 3, \text{ for } x = 0 \end{cases}$, then
(A) $\lim_{x \to 0^+} f(x) = 0$
(B) $\lim_{x \to 0^-} f(x) = \infty$
(C) $f(x)$ is continuous at $x = 0$
(D) None of these
48. If $f(x) = \begin{cases} \frac{1}{x} \sin x^2, x \neq 0 \\ 0, x = 0 \end{cases}$, then
 $0, x = 0$
(A) $\lim_{x \to 0^+} f(x) \neq 0$
(B) $\lim_{x \to 0^+} f(x) \neq 0$
(C) $f(x)$ is continuous at $x = 0$
(D) None of these
49. If $f(x) = \begin{cases} x - 1, x < 0 \\ \frac{1}{4}, x = 0, \text{ then} \\ x^2, x > 0 \end{cases}$
(A) $\lim_{x \to 0^+} f(x) = 1$
(B) $\lim_{x \to 0^+} f(x) = 1$
(C) $f(x)$ is discontinuous at $x = 0$
(D) None of these
50. Which of the following statements is true for graph $f(x) = \log x$
(A) Graph shows that function is continuous
(B) Graph shows that function is discontinuous
(C) Graph finds for negative and positive values of x
(D) Graph is symmetric along x -axis

51. If
$$f(x) = \begin{cases} \frac{|x-a|}{x-a}, \text{ when } x \neq a \\ 1, \text{ when } x = a \end{cases}$$
, then
(A) $f(x)$ is continuous at $x = a$
(B) $f(x)$ is discontinuous at $x = a$
(C) $\lim_{x \to a} f(x) = 1$
(D) None of these
52. If $f(x) = \begin{cases} x^2, \text{ when } x \neq 1 \\ 2, \text{ when } x = 1 \end{cases}$
(A) $\lim_{x \to 1} f(x) = 2$
(B) $f(x)$ is continuous at $x = 1$
(C) $f(x)$ is discontinuous at $x = 1$
(D) None of these
53. If $f(x) = \begin{cases} 1+x, \text{ when } x \leq 2 \\ 5-x, \text{ when } x \leq 3 \end{cases}$, then
(A) $f(x)$ is continuous at $x = 2$
(B) $f(x)$ is discontinuous at $x = 2$
(C) $f(x)$ is continuous at $x = 3$
(D) None of these
54. If $f(x) = \begin{cases} 1, \text{ when } 0 < x \leq \frac{3\pi}{4}, \\ 2\sin\frac{2}{9}x, \text{ when } \frac{3\pi}{4} < x < \pi \end{cases}$, then
(A) $f(x)$ is continuous at $x = 0$
(B) $f(x)$ is continuous at $x = \pi$
(C) $f(x)$ is continuous at $x = \frac{3\pi}{4}$
(D) $f(x)$ is discontinuous at $x = \pi/2$
(B) $f(x)$ is continuous at $x = \pi/2$
(B) $f(x)$ is continuous at $x = \pi/2$
(C) $f(x)$ is continuous at $x = \pi/2$
(D) None of these

56. If
$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & \text{when } x < 0 \\ a, & \text{when } x = 0, \\ \frac{\sqrt{x}}{\sqrt{(16 + \sqrt{x})} - 4}, & \text{when } x > 0 \end{cases}$$

is continuous at $x = 0$, then the value of 'o

(

is continuous at x = 0, then the value of 'a' will be

(C) 4 (D) None of these
$$ax^2 - b$$
, when $0 \le x < 1$

57. If
$$f(x) =\begin{cases} 2, \text{ when } x = 1 & \text{ is } \\ x + 1, \text{ when } 1 < x \le 2 \end{cases}$$

continuous at x = 1, then the most suitable value of *a*, *b* are (A) a = 2, b = 0 (B) a = 1, b = -1(C) a = 4, b = 2 (D) All the above

58. If
$$f(x) = \begin{cases} \frac{x - |x|}{x}, & \text{when } x \neq 0 \\ 2, & \text{when } x = 0 \end{cases}$$
, then

(A) f(x) is continuous at x = 0

(B)
$$f(x)$$
 is discontinuous at $x = 0$

(C)
$$\lim_{x\to 0} f(x) = 2$$

(D) None of these

59. If
$$f(x) = \begin{cases} \frac{x^4 - 16}{x - 2}, & \text{when } x \neq 2\\ 16, & \text{when } x = 2 \end{cases}$$
, then
(A) $f(x)$ is continuous at $x = 2$
(B) $f(x)$ is discountinous at $x = 2$

(C)
$$\lim_{x \to 0} f(x) = 16$$

(c)
$$\min_{x \to 2} r(x) = ro$$

(D) None of these (2^{2})

60. If
$$f(x) = \begin{cases} x^2, \text{ when } x \le 1 \\ x + 5, \text{ when } x > 1 \end{cases}$$
, then
(A) $f(x)$ is continuous at $x = 1$
(B) $f(x)$ is discontinuous at $x = 1$

(C)
$$\lim_{x \to 1} f(x) = 1$$

61. If
$$f(x) = \begin{cases} x \sin \frac{1}{x}, x \neq 0 \\ k, x = 0 \end{cases}$$
 is continuous at
k, x = 0
x = 0, then the value of k is
(A) 1 (B) -1
(C) 0 (D) 2

62. If $f(x) = \begin{cases} \frac{\sin[x]}{[x]+1}, \text{ for } x > 0 \\ \frac{\cos \frac{\pi}{2}[x]}{[x]}, \text{ for } x < 0 ; \text{ where } [x] \\ k, \text{ at } x = 0 \end{cases}$

63.

denotes the greatest integer less than or equal to x, then in order that f be continuous at x = 0, the value of k is (A) Equal to 0 (B) Equal to 1 (C) Equal to -1 (D) Indeterminate $\begin{cases} x+2 , 1 \le x \le 2\\ 4 , x=2 \end{cases}$ The function $f(x) = \begin{cases} 4 , x=2 \end{cases}$ is

$$\begin{array}{l} \left(3x-2 \ , \ x>2 \right. \\ (A) \ x=2 \ only \end{array}$$
 (B) $x\leq 2$

(C)
$$x \ge 2$$
 (D) None of these
64. If the function

$$f(x) = \begin{cases} 5x - 4 & , & \text{if } 0 < x \le 1 \\ 4x^2 + 3bx & , & \text{if } 1 < x < 2 \end{cases}$$

is continuous at every point of its domain, then the value of b is

$$\begin{array}{ccc} (A) - 1 & (B) \ 0 \\ (C) \ 1 & (D) \ None \ of \ these \end{array}$$

65. The values of *A* and *B* such that the function

$$f(x) = \begin{cases} -2\sin x, & x \le -\frac{\pi}{2} \\ A\sin x + B, & -\frac{\pi}{2} < x < \frac{\pi}{2}, \\ \cos x, & x \ge \frac{\pi}{2} \end{cases}$$

is continuous everywhere are

(A) A = 0, B = 1 (B) A = 1, B = 1(C) A = -1, B = 1 (D) A = -1, B = 0

If $f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ for $x \neq 5$ and *f* is 66. continuous at x = 5, then f(5) =(A) 0 (B) 5 (D) 25 (C) 10 In order that the function $f(x) = (x + 1)^{\cot x}$ 67. is continuous at x = 0, f(0) must be defined as (A) $f(0) = \frac{1}{e}$ (B) f(0) = 0(D) None of these (C) f(0) = eThe function $f(x) = \sin |x|$ is **68**. (A) Continuous for all x(B) Continuous only at certain points (C) Differentiable at all points (D) None of these **69**. If f(x) = |x|, then f(x) is (A) Continuous for all x(B) Differentiable at x = 0(C) Neither continuous nor differentiable at $\mathbf{x} = \mathbf{0}$ (D) None of these If $f(x) = \begin{cases} \frac{1 - \sin x}{\pi - 2x}, & x \neq \frac{\pi}{2}, \\ \lambda, & x = \frac{\pi}{2}, \end{cases}$ 70. be continuous at $x = \pi / 2$, then value of λ is (A) - 1**(B)** 1 (C) 0(D) 2 71. The function defined by $f(x) = \begin{cases} \left(x^{2} + e^{\frac{1}{2-x}}\right)^{-1} & , x \neq 2 \\ k & , x = 2 \end{cases}$

> is continuous from right at the point x = 2, then *k* is equal to

(A) 0	(B) 1/4
(C) –1/4	(D) None of these

72.	For the function		
	$f(x) = \log_{e}(1+x) - \log_{e}(1-x)$		
	$f(x) = \frac{x}{x}$		
	to be continuous at $x = 0$, the value of		
	f(0), should be		
	(A) –1	(B) 0	
	(C) –2	(D) 2	
73.	If		
	$f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x} \end{cases}$	$\frac{\overline{\mathbf{kx}}}{\mathbf{kx}}$, for $-1 \le \mathbf{x} < 0$,	
	$\left(2x^2 + 3x - 2 \right)$, for $0 \le x \le 1$	
	is continuous at $x =$	0, then $k =$	
	(A) – 4	(B) – 3	
	(C) - 2	(D) – 1	
74.	The function $f(x) =$	$\frac{1-\sin x + \cos x}{1+\sin x + \cos x}$ is not	
	defined at $x = \pi$. T	The value of $f(\pi)$, so	
	that $f(x)$ is continue	bus at $x = \pi$, is	
	(A) $-\frac{1}{2}$	(B) $\frac{1}{2}$	
	(C) – 1	(D) 1	
75.	If $f(x) = \begin{cases} \frac{1 - \cos x}{x} \\ k \end{cases}$	$x \neq 0$ is continuous at x = 0	
	x = 0 then $k =$		
	(A) 0	(B) $\frac{1}{2}$	
	(C) $\frac{1}{4}$	(D) $-\frac{1}{2}$	
76.	A function f on R int	o itself is continuous at	
	a point a in R, iff	for each $\in > 0$, there	
	exists, $\delta > 0$ such that	ıt	
	$(A) f(x) - f(a) < \in$	$\Rightarrow x - a < \delta$	
	(B) $ f(x) - f(a) \ge =$	$\Rightarrow x - a > \delta$	

- (C) $|x-a| > \delta \Rightarrow |f(x) f(a)| > \in$
- (D) $|x-a| < \delta \Rightarrow |f(x) f(a)| < \epsilon$

Limit, Continuity & Differentiability Differentiability

81.

82.

83.

84.

85.

77. For the function
$$f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

which of the following is correct
(A) $\lim_{x \to 0} f(x)$ does not exist
(B) $f(x)$ is continuous at $x = 0$
(C) $\lim_{x \to 0} f(x) = 1$
(D) $\lim_{x \to 0} f(x)$ exists but $f(x)$ is not
continuous at $x = 0$
78. The function $\frac{1}{2}$ is defined by
 $f(x) = 2x - 1$, if $x > 2$, $f(x) = k$ if $x = 2$
and $x^2 - 1$, if $x < 2$ is continuous, then the
value of k is equal to
(A) 2 (B) 3
(C) 4 (D) -3
79. In the function
 $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}, (x \neq 0)$ is continuous
at each point of its domain, then the value
of $f(0)$ is
(A) 2 (B) $\frac{1}{3}$
(C) $\frac{2}{3}$ (D) $-\frac{1}{3}$
80. The function $f(x) = |x| + \frac{|x|}{x}$ is
(A) Continuous at the origin
(B) Discontinuous at the origin because $|x|$
is discontinuous there
(C) Discontinuous at the origin because
 $\frac{|x|}{x}$ is discontinuous there
(D) Discontinuous at the origin because
 $\frac{|x|}{x}$ are discontinuous there

There exists a function f(x) satisfying f(0) = 1, f'(0) = -1, f(x) > 0 for all x and (A) $f(x) < 0, \forall x$ (B) $-1 < f''(x) < 0, \forall x$ (C) $-2 < f''(x) \leq -1, \forall x$ (D) f''(x) < -2, $\forall x$ The function $f(x) = \begin{cases} x, \text{ if } 0 \le x \le 1 \\ 1, \text{ if } 1 < x \le 2 \end{cases}$ is (A) Continuous at all x, $0 \le x \le 2$ and differentiable at all x, except x = 1 in the interval [0,2] (B) Continuous and differentiable at all x in [0,2](C) Not continuous at any point in [0,2] (D) Not differentiable at any point [0,2] The function f(x) = |x| at x = 0 is (A) Continuous but non-differentiable (B) Discontinuous and differentiable (C) Discontinuous and non-differentiable (D) Continuous and differentiable Consider $f(x) = \begin{cases} \frac{x^2}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$ (A) f(x) is discontinuous everywhere (B) f(x) is continuous everywhere (C) f'(x) exists in (-1,1)(D) f'(x) exists in (-2, 2)At the point x = 1, the given function $f(x) = \begin{cases} x^3 - 1; \ 1 < x < \infty \\ x - 1; \ -\infty < x \le 1 \end{cases}$ is (A) Continuous and differentiable (B) Continuous and not differentiable (C) Discontinuous and differentiable

(D) Discontinuous and not differentiable

- 86. Let [x] denotes the greatest integer less 91. than or equal to x. If $f(x) = [x \sin \pi x]$, then f(x) is (A) Continuous at x = 0(B) Continuous in (-1,0) (C) Differentiable in (-1,1) (D) All the above 87. The function defined by $f(x) = \begin{cases} |x-3|; & x \ge 1 \\ \frac{1}{4}x^2 - \frac{3}{2}x + \frac{13}{4}; x < 1 \end{cases}$ 92. (A) Continuous at x = 1(B) Continuous at x = 3(C) Differentiable at x = 1
 - (D) All the above $\int a^{x} + ax$

88. If
$$f(x) = \begin{cases} e^x + ax, & x < 0 \\ b(x-1)^2, & x \ge 0 \end{cases}$$
 is

differentiable at x = 0, then (a, b) is

(A) (-3, -1) (B) (-3, 1)(C) (3, 1) (D) (3, -1)

- 89. The function $y = |\sin x|$ is continuous for any x but it is not differentiable at
 - (A) x = 0 only
 - (B) $x = \pi$ only
 - (C) $x = k \pi (k \text{ is an integer})$ only
 - (D) x = 0 and $x = k \pi (k \text{ is an integer})$

90. The function $y = e^{-|x|}$ is

- (A) Continuous and differentiable at x = 0
- (B) Neither continuous nor differentiable at x = 0
- (C) Continuous but not differentiable at x = 0
- (D) Not continuous but differentiable at x = 0

Which of the following is not true (A) A polynomial function is always continuous (B) A continuous function is always differentiable (C) A differentiable function is always continuous (D) e^x is continuous for all x 92. The function $f(x) = x^2 \sin \frac{1}{x}, x \neq 0, f(0) = 0 \text{ at } x = 0$ (A) Is continuous but not differentiable (B) Is discontinuous (C) Is having continuous derivative (D) Is continuous and differentiable If $f(x) = \begin{cases} \frac{x-1}{2x^2 - 7x + 5} & \text{for } x \neq 1 \\ -\frac{1}{3} & \text{for } x = 1 \end{cases}$, 93. then f'(1) =(A) - 1/9(B) -2/9(C) - 1/3(D) 1/3 If $f(x) = \frac{x}{1+|x|}$ for $x \in \mathbb{R}$, then f'(0) =94. (A) 0 **(B)** 1 (C) 2(D) 3 The value of m for which the function 95. $f(x) = \begin{cases} mx^2, x \le 1 \\ 2x, x > 1 \end{cases}$ is differentiable at x = 1, is (A) 0 **(B)** 1 (C) 2(D) Does not exist $f(x) = \begin{cases} \sin x, & \text{for } x \ge 0\\ 1 - \cos x, & \text{for } x \le 0 \end{cases}$ 96. Let and $g(x) = e^x$. Then (gof)'(0) is (A) 1 (B) - 1(C) 0(D) None of these

97.	Suppose $f(x)$ is differentiable at $x = 1$ and		
	$\lim_{h\to 0}\frac{1}{h}f(1+h) = 5$, then f'(1) equals		
	(A) 5	(B) 6	
	(C) 3	(D) 4	
98.	If f is a real-valued	differentiable function	
	satisfying $ f(x) - f(x) = f(x) - f(x)$	$\mathbf{y}) \mid \leq (\mathbf{x} - \mathbf{y})^2, \mathbf{x}, \mathbf{y} \in \mathbf{R}$	
	and	1	
	f(0) = 0, then $f(1)$ e	qual	
	(A) 2	(B) 1	
	(C) - l	(D) 0	
99.	Let f be different	table for all x. If	
	$f(1) = -2$ and $f'(x) \ge -2$	≥ 2 for $x \in [1, 6]$, then	
	(A) $f(6) < 5$	(B) $f(6) = 5$	
	(C) $f(6) \ge 8$	(D) $f(6) < 8$	
100.	f(x) = x - 1 is not d	ifferentiable at	
	(A) 0	(B) ±1,0	
	(C) 1	(D) ±1	
101.	If $f(x) = x^2 - 2x + 4$	and	
	$\frac{f(5) - f(1)}{5 - 1} = f'(c)$ the	en value of c will be	
	(A) 0	(B) 1	
	(C) 2	(D) 3	
102.	Let $f(x + y) =$	f(x) + f(y) and	
	$f(x) = x^2 g(x)$ for all	$x, y \in R$, where $g(x)$	
	is continuous function	n. Then $f'(x)$ is equal	
	to		
	(A) g'(x)	(B) g(0)	
	(C) $g(0) + g'(x)$	(D) 0	
103.	The function		
	$f(x) = (x^2 - 1) x^2 -$	$3x + 2 + \cos(x)$ is	
	not differentiable at		
	(A) –1	(B) 0	
	(C) 1	(D) 2	
104.	The function which	is continuous for all	
	real values of x and c	differentiable at $x = 0$	
	1S	(D) 1	
	$(\mathbf{A}) \mid \mathbf{X} \mid$	(B) log X	
	(C) $\sin x$	(D) $x^{\frac{1}{2}}$	

105.	Which of the following is not true		
	(A) Every differen	ntiable function is	
	continuous		
	(B) If derivative of a	function is zero at all	
	points, then the function	on is constant	
	(C) If a function has	maximum or minima	
	at a point, then the fun	ction is differentiable	
	at that point and its de	rivative is zero	
	(D) If a function is	s constant, then its	
	derivative is zero at all	l points	
	(x+2,-1<)	x < 3	
106.	If $f(x) = \{5, x =$	3 , then at $x = 3$,	
	8-x, x>	3	
	f'(x) =		
	(A) 1	(B) – 1	
	(C) 0	(D) Does not exist	
105	$\int \mathbf{x} (\mathbf{x}, \mathbf{x}) d\mathbf{x}$	$x \leq 1$	
107.	If $f(x) = \begin{cases} 2x - 1, 1 < x \end{cases}$, then x	
	(A) f is discontinuous	at $x = 1$	
	(B) f is differentiable a	at $x = 1$	
	(C) f is continuous bu	t not differentiable at	
	x = 1		
	(D) None of these		
	1, x <	: 0	
108.	If $f(x) = \begin{cases} 1 + \sin x & 0 \end{cases}$	$\leq x \leq \pi$	
		$\frac{1}{2}$	
	then $f'(0) =$		
	(A) 1	(B) 0	
	(C) ∞	(D) Does not exist	
100	$\int ax^2 + b$; $x \leq 0$	
109.	If $f(x) = \begin{cases} x^2 \end{cases}$	x > 0 possesses	
	derivative at $\mathbf{x} = 0$ th	en	
	$(\Delta) a = 0 b = 0$	(B) $a > 0 - 0$	
	(f) $a = 0, b = 0$	(D) $u \neq 0, = 0$ (D) None of these	
110	(C) $a \in \mathbb{N}, -0$	(D) None of these	
110.	The set of all those	e points, where the	
	function $f(x) = \frac{x}{1+ x }$	- is differentiable, is	
	(A) $(-\infty,\infty)$	(B) [0,∞]	
	(C) $(-\infty, 0) \cup (0, \infty)$	(D) (0,∞)	