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Edubull 

MAXIMA & MINIMA 

EXERCISE # 1 

 

Question 

based on   Local Minima & Maxima 
 

Q.1 If the function y = 
)1x)(4x(

bax




 has an  

extremum at P(2, –1), then the values of  

a and b are - 

 (A) a = 0, b = 1 (B) a = 0, b = –1 

 (C) a = 1, b = 0 (D) a = –1, b = 0 

Sol. [C]  

 
4x5x

bax
y

2 


  

 y ' = 
22

2

)4x()1x(

)5x2()bax()a4ax5ax(




 

 = 
22

2

)4x()1x(

b5bx2a4ax




  

 = y ' (2, –1) = 0  

 – 4a + 4a – 3b = 0 b = 0         

 &      2a + b = 2      

 Put b = 0 in above equations   

             a = 1, b = 0   
 

Q.2 f(x) = sin
p
 x cos

q
 x (p, q > 0 ; 0 < x < 

2


) has 

point of maxima at - 

 (A) x = tan
–1 










q

p
 (B) x = tan

–1 










p

q
 

 (C) no such point exist  (D) None of these 

Sol. [A]    

 f '(x) = sin
p
x . q cos

q–1
x (– sin x)   

 + cos
q
x . p sin

p–1
x cos x  

 = sin
p
x . cos

q
x (– q tan x + p cot x) 

 = 
xtan

xcosxsin qp

(p – q tan
2
x) 

 

 + – 

tan
–1

q

p
 

  

 

Q.3 The range of values of k for which the function 

 f(x) = (2k – 3)(x + tan 2) + (k – 1) (sin
4
x + cos

4
x) 

does not possess critical points, is-  

 (A) 









3

4
,–  (2, ) (B) 








2,

3

4
 

 (C) 







,

3

4
  (D) (2, ) 

Sol. [A]   

 f '(x) = (2k – 3) + (k – 1) 

 (4 sin
3
x cos x – 4cos

3
x sin x) 

 = 2k – 3 + (k – 1) 4 sin x cos x (sin
2
x – cos

2
x) 

 = 2k – 3 + (k – 1) (– sin 4x) 

 = 2k – 3 – k sin 4x + sin 4x 

   0  or   0 

 (1)  0 

 
x4sin2

x4sin3
k




  

     1
x4sin2

1



 

    2  

 (2)  0 

      1
x4sin2

1
k 


  

      
3

4
k          

 

Q.4 The function g(x) = 
x

)x(f
, x  0 has an  

extreme value when-  

 (A) g' (x) = f(x) (B) f (x) = 0 

 (C) x g' (x) = f(x) (D) g (x) = f' (x) 

Sol. [D]  

 g ' (x) = 
2x

)x(f)x('fx 
 

           = 
2x

)]x(g)x('f[x 
    

 

Q.5 Let f(x) = (x – a)
n
 g(x) , where  

 g
n
 (a)  0 ; n = 1, 2, 3....then  

 (A) f(x) has local extremum at x = a, 

       when n = 3 

 (B) f(x) has local extremum at x = a; 

       when n = 4 

 (C) f(x) has neither local maximum nor local 

minimum at x = a, when n = 2 
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 (D) f(x) has neither local maximum nor local 

minimum at x = a, when n = 4 

Sol. [B]  

 f '(x) = n(x – a)
n–1

 g(x) + g '(x) (x – a)
n
 

 = (x – a)
n












)x('g

)ax(

)x(ng
  

 = (x – a)
n–1

 [ng(x) + g '(x) (x – a)] 

 For extremum at x = a  

 (n – 1) must be odd 

  n is even   
 

Q.6 Let f (x) = (x
2
 –1)

n
 (x

2
 + x – 1) then f (x) has 

local extremum at x = 1 when -  

 (A) n = 2  (B) n = 3  

 (C) n = 1  (D) n = 5 

Sol. [A]   

 f(x) = (x – 1)
n
 (x + 1)

n
 (x

2
 + x + 1) 

 (n – 1) odd 

 n is even  

 

Q.7 If y = a  log |x| + bx
2
 + x has its extremum 

values at x = –1 and x = 2, then           

 (A) a = 2, b = –1 (B) a = 2, b = –1/2  

 (C) a = –2, b = 1/2 (D) None of these 

Sol. [B]   

 y = a log x + bx
2
 + x ; x  0 

 a log (– x) + bx
2
 + x ; x < 0 

 y ' = 
x

a
 + 2bx + 1 = 0 

 0
x

axbx2 2




 

 a + 2b = 1      .…(1) 

      8b + a = –2    ….(2) 

 Solving (1) & (2)   

      b = –
2

1
 

      a = 2   
 

Q.8 If h(x) = f(x) + f(–x), then h(x) has got an 

extreme value at a point where f'(x) is - 

 (A) even function (B) odd function 

 (C) zero  (D) None of these 

Sol. [A]  

 h '(x) = f '(x) – f '(– x)  
 

Q.9 Equation of a straight line passing through  

(1, 4) if the sum of its positive intercept on the 

coordinate axis is the smallest is 

 (A) 2x + y – 6 = 0   (B) x + 2y – 9 = 0 

 (C) y + 2x + 6 = 0 (D) None of these 

Sol. [A]   

 y – 4 = m(x – 1) 

 mx – y m – 4 

 f(m) = 
m

4m 
 + 4 – m 

         = 5 – m – 
m

4
 

 f '(m) = –1 + 
2m

4
 

           = 
2

2

m

m4 
 

           = 
2m

)m2()m2( 
 

 + – + – 

–2 0 2  

 m = ±2 

 (1) 2x – y + 2 = 0 

 (2) – 2x – y + 6 = 0  

 

 

Question 

based on   Global Minima & Maxima 
 

 

Q.10 f(x) = 1 + [cos x]x, in 0  x  
2


, where [.] G. I. F. 

 (A) has a minimum value 0 

 (B) has a maximum value 2 

 (C) is continuous in  






 

2
,0  

 (D) is not differentiable at x = 
2


  

Sol. [C]   

 

 

 

 f(x) = 1 ; 0  x 
2


 

 continuous   
 

Q.11 The greatest value of the function 

f(x) = tan
–1

x – 
2

1
 log x in  








3,

3

1
is - 

 (A) 
4

1

6



 log 3 (B) 

4

1

3



 log 3  
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 (C) 
4

1

6



 log 3 (D) 

4

1

3



 log 3 

Sol. [A]   

 f '(x) = 
x2

1

x1

1
2



 

 = 
)1x(x2

)1x(
2

2




 

 + – 

0  

 f(x) in x > 0 

 f(x)max = 









3

1
f  

 
3

1
log

2

1

63

1
f 











    

 

Q.12 Function f(x) , g(x) are defined on [–1, 3] and  

f  (x) > 0, g  (x) > 0 for all x  [–1, 3], then 

which of the following is always true? 

 (A) f(x) – g(x) is concave upwards on (–1, 3) 

 (B) f(x) g(x) is concave upwards on (–1, 3) 

 (C) f (x) g(x) does not have a critical point on (–1, 3) 

 (D) f(x) + g(x) is concave upwards on (–1, 3) 

Sol. [D]  

  Clearly   

 

Q.13 Let 
1x,

1x0,

x23
2

x
sin

)x(f















  then 

 (A) f(x) has local maxima at x = 1  

 (B) f(x) has local minima at x = 1 

 (C) f(x) does not have any local extrema at x =1 

 (D) f(x) has a global minima at x =1 

Sol. [A]  

 

 

x 
1 O 

y 

 
 cont. at x = 1 

 LHD = 0 

 RHD = –2 
 

Q.14 The difference between the greatest and the 

least value of  
2

x
cos)x(f 2  sin x, x  [0, ] is  

 (A) 
8

33
 (B) 

8

3
 (C) 

8

3
 (D) 

22

1
 

Sol. [A]   

 f '(x) = sin x . 









2

x
sin

2

x
cos2  + cos

2

2

x
 cos x 

 = cos x . cos
2

2

x
 – 

2

xsin 2

 

 = cos
2

2

x










2

x
cos

2

x
sin3 22  

 = cos
4

2

x










2

x
tan31 2  

 f (0) = 0 

 f () = 0 

 
2

3

4

3

3
f 







 
 

 Difference = 
8

33
  

 

 

Question 

based on   Point of Inflection 
 

 

Q.15 The cubic polynomial function passing through 

(1, 2) with origin as the point of inflection is-  

 (A) x
3
 + 2x

2
 + 3 (B) 2x

3   

 
(C) x

3
 + 7x

2
 + 2  (D) None of these 

Sol. [B]   

 y = 2x
3 
 

 

Q.16 If the point (1, 3) serves as the point of 

inflection of the curve y = ax
3
 + bx

2
 then  the 

value of ‘a’ and ‘b’ are 

 (A) a = 3/2 & b = – 9/2 (B) a = 3/2 & b = 9/2  

 (C) a = –3/2 & b = – 9/2 (D) a = –3/2 & b = 9/2  

Sol. [D]   

 y''(1, 3) = 0 

 6a (1) + 2b = 0 

 b = –3a     

 (A) & (D) any one can be ans.  

Q.17 The set of value (s) of ‘a’ for which the function 

)1a(x)2a(
3

ax
)x(f 2

3

 x + 2  possess a 

negative point of inflection- 

 (A) (–  , –2)  (0, ) (B) {–4/5} 
 (C) {–2, 0}  (D) empty set 

Sol. [A] 

 f ''(x) = 2ax + 2(a + 2) = 0 
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 x = – 0
a

2a



 a(–, –2) (0, 0)  

 

Question 

based on   Applications 
 

Q.18 In a submarine telegraph cable the speed of 

signaling varies as x
2
 log (1/x) where x is the 

ratio of the radius of the cable to that of 

covering. Then the greatest speed is attained 

when this ratio is  

 (A) 1 : e  (B) e  : 1 (C) e : 1 (D) 1 : e  

Sol. [A]   

 f(x) = x
2
 n 









x

1
 

 f '(x) = x
2
 . x . 







 
2x

1
 + 2x n 









x

1
 = 0 

 e
x

1
  

 
e

1
x      

 

Q.19 A cone of maximum volume is inscribed in a 

given sphere. Then the ratio of the height of the 

cone to the diameter of the sphere is  

 (A) 
4

3
  (B) 

3

1
 (C) 

4

1
 (D) 

3

2
  

Sol. [D]     

 

 

R 




 

 v = 
3

1
R

2
cos

2
.R(1 + sin) 

 
3

R

d

dv 3




 (cos
3
– 2 cossin(1 + sin )) 

 = 0 cos
2
= 2 sin + 2 sin

2


 (1 – sin ) (1 + sin ) = 2 sin (1 + sin ) 

 sin = 
3

1
 

 h = 
3

4
R 

3

2

R2

h
  

 

Q.20 Let f(x) = 1x   + x2  & g(x) = x
2
 + bx + c 

are two given functions such that f(x) and g(x) 

attain their maximum and minimum values 

respectively for same value of x then the value 

of b is  

 (A) 1 (B) 2 (C) 3 (D) –3 

Sol. [D]     

 f '(x) = 0
x22

1

1x2

1






 

 2 – x = x – 1  

 x = 
2

3
 

 Now, 

 g ' 








2

3
 = 0 

 2 








2

3
 + b = 0 

 b = –3    
 

Q.21 Let  x and y be real numbers satisfying the 

equation x
2
 – 4x + y

2
 + 3 = 0. If the  

maximum and minimum values of x
2
 + y

2
 are  

a and b respectively. Then the numerical value 

of a – b is- 

 (A) 1 (B) 2 (C) 7 (D) 8 

Sol. [D]   

 x
2
 + y

2
 – 4x + 3 = 0 

 Let x
2
 + y

2
 =  

 = 4x – 3 

 (x – 2)
2
 + y

2
 = 1 

 y = 
2)2x(1   

 Domain –1 x – 2  1 

 Alternate  

 (x – 2)
2
 + y

2
 = 1 

 

 

(x, y) 

(2, 0) (3, 0) (1, 0) 

 

 max = (3)
2
 = 9 = a 

 min = (1)
2
 = 1 = b 

 a – b = 8      
 

Q.22 In a regular triangular prism the distance from 

the centre of one base to one of the vertices of 

the other base is . The altitude of the prism 

for which the volume is greatest. 
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 (A) /2  (B) / 3  (C) /3 (D) /4 

Sol. [B]  

 

 

A 
B 

O 
C 



h 

  

 OB = 
22 h    

 AB = 2 OB cos 30° 

        = 3  22 h  

 V = (ABC) . h  

     = 
2

3
 × 3 (

2 
– h

2
) h 

 
dh

dV
 = 

2
 – 3h

2 

 

 + – 

3


 

  

 h = 
3


        

 

Q.23 Two sides of a triangle are to have lengths  

‘a’ cm and ‘b’ cm. If the triangle is to have the 

maximum area, then the length of the median 

from the vertex containing the sides ‘a’ and ‘b’ 

is 

 (A) 22 ba
2

1
  (B) 

3

ba2 
 

 (C) 
2

ba 22 
 (D) 

3

b2a 
 

Sol. [A]  

  

 

a b 


h 

 

 Area = 
2

1
 ab sin 

 Amax = 
2

1
ab  

  = 90° 

 

 

a 

b 
h 

 

 h = 22 ba
2

1
    

 

Q.24 The lateral edge of a regular rectangular 

pyramid is ‘a’ cm long. The lateral edge makes 

an angle  with the plane of the base. The 

value of  for which the volume of the pyramid 

is greatest, is 

 (A) 
4


  (B) 

3

2
sin 1   

 (C) 2cot 1  (D) 
3


 

Sol. [C]   

 
2

1
V   × (2a cos )

2
 × a sin  × 

3

1
 

     = 
3

2
a

3
 cos

2
sin 

 0
d

dV



 

 
3

2
a

3
 [cos

2
 . cos  – sin . 2 cos  . sin ] 

= 0 

 cot
2 
= 2  = cot

–1
2   

Q.25 A rectangle has one side on the positive y-axis 

and one side on the positive x-axis. The upper 

right hand vertex on the curve 
2x

nx
y


 . The 

maximum area of the rectangle is 
 (A) e

–1
 (B) e

–1/2
 (C) 1 (D) e

1/2 

Sol. [A]   

 Area A = 
2x

nx1

dx

dA

x

nx  
  

 0
dx

dA
 x = e  

 A = 
e

1
 = 0  

     
 True or false type questions 

 

Q.26 f(x) = (3 – x) e
2x

 – 4x · e
x
 – x has neither 

maxima nor minima at x = 0. 

Sol. [True] 

 f '(x) = 6x e
2x

 – e
2x 
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– 2x

2
 e

2x
 – 4e

x
  

 – 4x
2
 e

x
 – 1 

 neither maxima nor minima at x = 0  
 

Q.27 The greatest value of the function  

 logx(1/9) – log3 x
2 
, (x > 1) is –4. 

Sol. [True] 

 f(x) = 
3n

xn

xn

9

1
n

2




















 

 f '(x) = 
x

1

3n

2

x

1

)xn(

9

1
n

2 















 

          = 
































3n

2

)xn(

9

1
n

x

1
2 



 

 

Q.28 The shortest distance of the line y = x + 1 from 

y
2
 = x is 

4

33
. 

Sol. [False]   

 2y  y' = 1 

       y' = 
y2

1
 

 
y2

1
 = 1 

 













4

1
x

2

1
y

 

 Dist. = 
24

3

2

1
2

1

4

1





  

     
 Fill in the blanks type questions 

 

Q.29 The co-ordinates of the point on the  

parabola y
2
 = 8x which is at a minimum 

distance from the circle x
2
 + (y + 6)

2 
= 1 are    

...... 

Sol. (2, –4) 
 

Q.30 Let f(x) = 








1x,3x2

1x,a|1x|
  

 If f(x) has local minimum at x = 1 and a  5 

then a = ........... 

Sol.  

 

 

1 

  
 a = 5     
 

Q.31 The coordinates of the point on the curve  

x
3
 = y (x – a)

2
, (a > 0) where the ordinate is 

minimum is.............. 

Sol. 3x
2
 = 2  

 y = 
2

3

)ax(

x


 

 y ' = 
4

322

)ax(

)ax(2xx3)ax(




 

 x
2
 (x – a) [3x

2
 (x – a) – 2x

3
] 

 x
2
 (x – a) [x – 3a]   

 

 + + – + 

0 a 3a  
 x = 3a 

 y = 
2

3

a4

a27
   

 

Q.32 Suppose 

 f(x) = 








3x1;3x2

1x0;23x 23

 

 If f(x) is smallest at x = 1 then  ............... 

Sol. f(1) = 2 – 3 = –1 < f (1
+
) 

 f(1
–
) = – (1 – h)

3
 + 

2 
– 3+ 2 > –1 

 
2 
– 3 + 2 > –1 + (1 – h)

3
 

 
2 
– 3+ 2  0 

  (–, 1] [2, )   
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EXERCISE # 2 

     Only single correct answer type 

questions 
Part-A 

 
 

Q.1 If 
dx

dy
 = (x – a)

2n
 (x – b)

2p+1
, n, p  N, then the 

function y = f(x) attains a min. at x = .... 

 (A) a    (B) b  

 (C) 0   (D) a + b 

Sol. [B] 

 

 – + 

a 

– 

b  

 fmin   at  x = b  
 

Q.2 The greatest value of the function 

 f(x) = 8 – tan
4
x – 4 sec

2
x is-  

 (A) 4  (B) 2    

 (C) 6  (D) None of these 

Sol. [A] 

 f '(x) = – 4 tan
3
x sec

2
x – 8 sec

2
x tan x 

         = – 4 tan x sec
2
x (2 + tan

2
x) 

 

 + – 

n  

 f(x)max   at  x = n

 fmax = 4  
 

Q.3 Let f (x) =  

 



















0x,0

0x,
x

1
sin3|xsinx3xx| 23

 

 Then value of point where f (x) attains its  

minimum is - 

 (A) 0 (B) 1 (C) 3 (D) infinite 

Sol. [A] 

  f (x) > 0 

  for x = 0 + and x = 0 –  

   (3 + sin 1/x)  
 

ve ve 
 

   f (x) is  min = 0 

                   at x = 0 
 

Q.4 The minimum value of the function 

 
q

x

p

x
)x(f

qp 

 , where 1
q

1

p

1
 , p > 1 is- 

 (A) 1  (B) 0    

 (C) 2  (D) None of these 

Sol. [A]  

  f ' (x) = x
p–1

 – x
–q–1

   

  = x
–q–1

 (x
p+q

 –1)  

 – + 

1  

  fmin = f (1) = 
q

1

p

1
  = 1 

 

Q.5 If a < b < c < d & x  R then the least value of the 

function f(x) = |x – a| + |x – b| + |x – c| + |x – d| is 

 (A) c – d + b – a (B) c + d – b – a 

 (C) c + d – b + a  (D) c – d + b + a 

Sol. [B]  

 f(x) = 4x – (a + b + c + d) ; x  d 

        = 3x – (a + b + c + d) ; c  x < d 

        = – (a + b – c – d) ; b  x  c 

        = – 2x – (a – b – c – d) ; a < x < b  

        = (a + b + c + d) – 4x ; x < a 

  fmin = – a – b + c + d   
 

Q.6 The set of values of p for which the points of 

extremum of the function  

 f(x) = x
3
 – 3px

2
 + 3 (p

2 
– 1)x  + 1 lie in the 

interval (–2, 4), is  

 (A) (– 3, 5)  (B) (– 3, 3) 

 (C)  (– 1, 3) (D) (– 1, 5) 

Sol. [C] 

 f '(x) = 3x
2
 – 6px + 3(p

2
 – 1) 

 (1) D > 0 

 36p
2
 – 36 (p

2
 – 1) > 0 

  1 > 0 

  pR 

 (2) –2 < p < 4 

 (3) f(–2) > 0 

 –8 – 12p + 6p
2
 – 6 + 1 > 0 

      6p
2
 – 12p + 13 > 0 

     pR 

 (4) f(4) > 0 

 64 – 48p + 12p
2
 – 12 + 1 > 0 

 12p
2
 – 48p + 57 > 0 

  pR 

 p(–2, 4)  
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or 

 f ' (x) = 0 

 x = p – 1, p + 1 

 p – 1 (–2, 4) 

 p(–1, 5) 

 p + 1(–2, 4) 

 p(–3, 3) 

 p(–1, 3)  
 

Q.7 Number of solution (s) satisfying the equation, 

3x
2
 – 2x

3
 = log2 (x

2
 + 1) – log2 x is 

 (A) 1  (B) 2  

 (C) 3  (D) none 

Sol. [A]  

 f(x) = 3x
2
 – 2x

3
 

 f '(x) = 6x – 6x
2
 

 = 6x (1 – x) 

 

 – – 

0 

+ 

1  

 Domain x > 0 

 g(x) = log2(x
2
 + 1) – log2x 

 g' (x) = 
2nx

1

)1x(

x2

2n

1
2 




  

 = 
)1x(x

1x

2n

1
2

2







 

 

 – + 

–1 

– + 

0 1 
 

 

 

1 

1 

 

 One solution 

 

Q.8 The equation of the line through (3, 4) which 

cuts the first quadrant a triangle of minimum 

area is  

 (A) 4x + 3y – 24 = 0   (B) 3x + 4y – 12 = 0  

 (C) 2x + 4y – 12 = 0  (D) 3x + 2y – 24 = 0 

Sol. [A]   

 y – 4 = m (x – 3) 

 x-intercept = 3 – 
m

4
 

 y-intercept = 4 – 3m 

 A = 
2

1
 (4 – 3m) (3 – 

m

4
) 

 A = 
2

1
 (24 – 9m – 

m

16
) 

 for Amin 9m = 
m

16
 

 m = –
3

4
 

 4x + 3y – 24 = 0 
 

Q.9 The minimum value of a tan
2
x + b cot

2
x equals 

the maximum value of a sin
2
 + b cos

2
 where 

a > b > 0, when   

 (A) a = b  (B) a = 2b 

 (C) a = 3b  (D) a = 4b 

Sol. [D]    

 f(x) = a tan
2
+ b cot

2


 AM GM 

 f(x)  ab2  

 g(x) = a sin
2
+ b cos

2


 = (a – b) sin
2
+ b 

 g(x)max = a 

 Now,  

  a = ab2  

  a
2
 = 4ab 

  a(a – 4b) = 0 

  a = 4b 
 

Q.10 Let h be a twice continuously differentiable 

positive function on an open interval J. Let  

g(x) = ln(h(x)) for each x  J.  

 Suppose (h(x))
2
 > h(x) h(x) for each x  J. 

Then   

 (A) g is increasing on J  

 (B) g is decreasing on J 

 (C) g is concave up on J 

 (D) g is concave down on J 
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Sol. [D]  

 g'(x) = 
)x(h

)x('h
 

 g (x) = 
2

2

))x(h(

))x('h()x(h)x(h 
 = negative 

 g(x) concave down in J 
 

Q.11 If a differentiable function f(x) has a local 

minimum at x = 0, then the function y = f(x) + 

ax + b has a local minimum at x = 0 for 

 (A) all a > 0 (B) all b > 0  

 (C) all a and b (D) all b if a = 0 

Sol. [D]  

 y' = f '(x) + a 
 

Q.12 The graph of y = f(x) is shown. Let F(x) be an 

antiderivative of f(x). Then F(x) has  

 

 

/2

2/3



4/3

3/2 2
x

y = f(x)

y

 

 (A) points of inflexion at x = 0, 
3

2
, , 

3

4
 

and 2, a local maximum at x = 
2


, and a 

local minimum at x = 
2

3
 

 (B) points of inflexion at x = 0, 
3

2
, , 

3

4
 

and 2, a local minimum at x = 
2


 and a 

local maximum at x = 
2

3
   

 (C) point of inflexion at x = ,  a local maximum 

at x = 
2


, and a local minimum at x = 

2

3
 

 (D) point of inflexion at x = ,  a local minimum 

at x = 
2


, and a local maximum at x = 

2

3
 

Sol. [C]  

 Clearly from the graph 
 

Q.13 The value of the real number 'a' having the 

property f(a) = a, is a relative minimum of  

f(x) = x
4
 – x

3
 – x

2
 + ax + 1, is  

 (A) 1  (B) 2 (C) 3 (D) – 1 

Sol. [A]  

 f ' (a) = 4a
3
 – 3a

2
 – 2a + a = 0 

 a = 0, 1, 
4

1
  

 f '' (a) = 12a
2
 – 6a – 1 

 f '' (0) = –1, f '' (1) = +ve, f '' 









4

1
 = +ve 

 a = 0 not possible for minima 

 f(a) = a a = 1 
 

Q.14 For a  [, 2] and n  Z, the critical points of 

f(x) = 
3

1
sin a tan

3
x + (sin a – 1) tan x + 

a8

2a




 

are 

 (A) x = n  (B) x = 2n 

 (C) x = (2n + 1) (D) none of these 

Sol. [D] 

 f '(x) = sin a tan
2
x sec

2
x + (sin a – 1) sec

2
x 

 = sin a sec
4
x – sec

2
x 

 = sec
2
x (sin a – sec

2
x) 

 

Q.15 For 0 < a  1 and b  R, then in (–a, a) the 

function, f(x) = ax
3
 – 3ax + b   

 (A) has exactly 2 roots  

 (B) can not have a root 

 (C) has atmost one root 

 (D) more than two roots 

Sol. [C]   

 f '(x) = 3ax
2 
– 3a 

         = 3a (x + 1) (x – 1) 

 

 + + 

–1 

– 

1  

 

 

–1 1 
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     One or more than one correct 

answer type questions 
Part-B 

 

Q.16 The function f(x) =
)bxsin(

)axsin(




 has no maxima or 

minima if 

 (A) b – a = n, n  I  

 (B) b  –  a = (2n + 1), n  I 

 (C) b – a = 2n, n I  

 (D) none of these 

Sol. [A, B, C]  

        
)bx(sin

)bxcos()axsin()axcos()bxsin()x('f
2 


 

 = 
)bx(sin

)absin(
2 


 = 0 b – a = n 

 

Q.17 The coordinates of the point P on the graph of 

the function y = e
– | x |

 where the portion of the 

tangent intercepted between the coordinate axis 

has the greatest area, is 

 (A) 








e

1
,1   (B) 










e

1
,1  

 (C) (e, e
–e

)  (D) none of these 

Sol. [A, B] 

 y = e
–x

  

   y' = 1x
e
  

 tangent  y – 1x
e
  = – 1x

e
 (x – x1) 

 Area A = 1x
e

2

1  (x1 + 1)
2
 Amax  x1 = 1 

 P  








e

1
,1  curve is symmetric so other point 











e

1
,1  will also  

 

Q.18 The parabola y = x
2
 + px + q cuts the straight 

line y = 2x – 3 at a point with abscissa 1. If the 

distance between the vertex of the parabola and 

the x-axis is least then 

 (A) p = 0 & q = – 2 

 (B) p = – 2 & q =0 

 (C) least distance between the parabola and  

x-axis is 2 

 (D)  least distance between the parabola and 

 x-axis is 1 

Sol. [B]  

 (1, –1) 

 –1 = 1 + p + q 

 p + q = –2   …..(1) 

 Now. 

 Dist. = 
4

q4p2




 

 = 
4

p
q

2

  

 = – 2 – p – 
4

p2

 

 
4

2
1

dp

.)dist(d
  = 

2

1
  (2 + p) 

 

 + – 

–2  

 dist. max at p = – 2  
 

Q.19 The coordinates of the points on the curve,  

5x
2
 – 6xy + 5y

2
 = 4 which are the nearest to the 

origin are  

 (A) 
















5

2–
,0,

5

2
,0  (B) 

















2

1
,

2

1–
,

2

1–
,

2

1
  

 (C) 




















0,

5

2
,0,

5

2
 (D) None  of these 

Sol. [B] 

  

 



r 
p 

(rcos, rsin) 

 
  5r

2
 – 6r

2
 sin cos = 4  

  r
2
 = 

θ2sin3–5

4
 

  r
2

min = 
2

1

8

4
  

  rmin = 
2

1
 

  when 2 = 
2

π3
,

2

π–
 

   = 
4

π3
,

4

π–
 

 

Q.20 A particle is moving in a straight line such that 

its distance at any time t is given by 

 x = 
4

t 4

 – 2t
3
 + 4t

2
 + 7. Then 
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 (A) velocity is max. at t = (6 – 2 3 )/3 

 (B) acceleration is min. at t = 2 

 (C) min. distance is at t = 0, 4 

 (D) None of these 

Sol. [A, B, C]  

 v = t
3
 – 6t

2
 + 8t 

 a = 3t
2
 – 12t + 8 

 vmax at t = 
6

4812 
 = 

3

326 
 

 a' = 6t – 12 

 amin at t = 2 

 v = 0 

 t (t
2
 – 6t + 8) = 0 

 t (t – 2) (t – 4) = 0 

 

 – + 

0 

– + 

2 4  

 dmin at x = 0, 4 

 

Q.21 Let f(x) = log (2x – x
2
) + sin x/2. Then - 

 (A) graph of f is symmetrical about the line x =1 

 (B) graph of f is symmetrical about the line x = 2 

 (C) maximum value of f is 1 

 (D) minimum value of f does not exist 

Sol. [A, C, D] 

 2x – x
2
 in (0, 2) 

 is symmetric about x = 1 and also sin
2

x
 

 so (A) is true also for both at x = 1 point of 

maxima so C is true.  
 

Q.22 Let f(x) = 














1|x|,|x|1

1|x|,0

1|x|,xtan 1

 then - 

 (A) f(x) has no point of local minimum 

 (B) f(x) has one point of local maximum 

 (C) f(x) has two points of local maximum 

 (D) f(x) has one point of local minimum 

Sol. [A, B]  

 f '(x) = 
2x1

1


  ;    –1 < x < 1 

         = 0            ;    x = ± 1 

         = –1          ;    x > 1 

         = 1            ;    x < –1  

 

Q.23 If f(x) = sin
3
x +  sin

2
x, – 

2


 < x < 

2


 then- 

 (A) f(x) has a point of inflexion if  = 0  

 (B) f(x) has exactly one point of maximum & 

exactly one point of minimum if || < 3/2 

 (C)  f(x) has exactly one point of maximum 

and exactly one point of minimum if 

  (–3/2, 0)  (0, 3/2) 

 (D)  all above 

Sol. [A, C] 

 f '(x) = 3sin
2
x cos x + 2sin x cos x 

         = sin x cos x (3 sin x + 2)   

Q.24 Let f(x) = 








0x,x3xlogx

0x,)x1(x3

  then - 

 (A) there is no critical point 

 (B) f is continuous at x = 0  

 (C) x = e
–4

 is a point of minimum 

 (D) f'(x) is continuous at x = 0 

Sol. [B, C]  

 f '(x) = –x
3
 + 3x

2
 (1 – x) – 4x

3
 + 3x

2
 ; x  0 

                            4 + n x              ;                  x > 0 

 
 – + 

e
–4

 
 

 

Q.25 For the function f(x) = n (1 – n x) which of 

the following do not hold good ? 

 (A) increasing in (0, 1) and decreasing in (1, e) 

 (B) decreasing in (0, 1) and increasing in (1, e) 

 (C) x = 1 is the critical number for f(x) 

 (D) f has two asymptotes 

Sol. [A, B, C]  

 f ' (x) = 









 x

1

xn1

1


 

           = 
)1xn(x

1


 

 

 

1 
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Q.26 Let the function f(x) be defined as follows : 

 f(x) = 















x2/;xsin1

2/x0;xcos

0x1;x10xx 23

 

 Then which of the following statement(s) is/are 

correct  

 (A) Local maximum at x = 0 

 (B) Local maximum at x = /2

 (C) Absolute maxima at x = – 1 

 (D) Absolute minima at x = 

Sol. [A, B, C]  

 f ' (x) = 






















x
2

;xcos

2
x0;xsin

0x1;10x2x3 2

 

 f(0) = 1, f(0
–
) = 0 

 f(0
+
) < 1 A 

 f(–1) = 10 absolute maxima
 

     Assertion-Reason type questions Part-C 
   

  

 The following questions 27 to 29 consists of two 

 statements each, printed as Assertion and 

 Reason. While answering these questions you 

are to choose any one of the following four 

responses.  

 (A) If both Assertion and Reason are true 

and the Reason is correct explanation of 

the Assertion.  

 (B)  If both Assertion and Reason are true 

but Reason is not correct explanation of 

the Assertion. 

 (C)  If Assertion is true but the Reason is 

false. 

 (D)  If Assertion is false but Reason is true 
 

Q.27 Assertion : e

 > 

e
 

 Reason : The function x
1/x

 (x > 0) has a local 

maximum at x = e. 

Sol. [A]  

 To prove  

 (A) e
1/e

 > 
1/


 f(x) = x
1/x

  

 has maxima at x = e 
 

Q.28 Assertion : If a is positive rational number and 

b is irrational number then the maximum value 

of sin ax + sin bx cannot be 2. 

 Reason : The number 
a

b
 is irrational. 

Sol. [A]  

  sin bx + sin ax = 2 

  bx & ax both must be 2n + 
2


 form which 

is possible  

if both b & a are rational.  
 

Q.29 Assertion : The local maximum of the function 

x cos x will occur between /4 and /3. 

 Reason : The function g(x) = x tan x is  

increasing in 






 

2
,0  

 1 – g 






 

4
 > 0 and 1 – g 







 

3
 < 0. 

Sol. [A] 

 f(x) = x cos x 

 f '(x) = – x sin x + cos x 

         = cos x (– x tan x + 1)  

 f ' 






 

4
 +ve 

 f ' 






 

3
 –ve  

 

     Column Matching type questions Part-D 
    

 

Q.30 Four points A, B, C and D lie in the order on 

the parabola y = ax
2
 + bx + c and the 

coordinates of A, B and D are known A(–2, 3); 

B(–1, 1); D(2, 7). 

 Column I Column II 

 (A) The value of  a + b + c =   (P) –1 

 (B) If roots of the equation   (Q) 8 

  ax
2
 + bx + c = 0 are  &   

  then 
19

 + 
7
 = 

 (C) Least value of   (R) 3 

  (a + 2)x
2
 + c

x

)2b(
2




 = 

 (D) If area of quadrilateral ABCD  (S) 7 

  is greatest and co-ordinates  

  of C are (p, q) then 2p + 4q =   

Sol. [A  R, B  P, C  S, D  Q]  



 

       13 

       (A) 4a – 2b + c = 3 

 a – b + c = 1 

 4a + 2b + c = 7 

 b = 1 

 a = 1,    c = 1  

 a + b + c = 3  

       (B) x
2
 + x + 1  = 0 

 


2
 

 


19 
+ 

14 

 
 + 

2
 = – 1 

       (C) f(x) = 3x
2
 + 

2x

3
 + 1 

        = 3 









2

2

x

1
x  + 1 

  7                      (AM GM) 

       (D) A(–2, 3), D(2, 7) 

 B(–1, 1), C(p, q)  

 

32

72

qp

11

32







 

 Area = 
2

1
 – 2 – q + 7p + 6 + 3 – p – 2q + 14 |  

 A 
2

1
  | 6p – 3q + 21 |       

  q = p
2
 + p + 1 

 
dp

dA
 = 0 p = 

2

1
, q = 

4

7
 

 2p + 4q = 8   

 

Q.31  For the function f(x) = x
4
 (12 nx – 7), match 

the following 

  Column I Column II 

 (A) If (a, b) is the point of  (P) 3 

  inflection then  a – b is  

  equal to 

 (B) If e
t
 is  point of minima  (Q) 1 

 then 12t is equal to  

 (C) If graph is concave (R) 4  

      downward in (d, e) then  

        d + 3e is equal to 

 (D) If graph is concave upward   (S) 8 

  in (p, ), then p is equal to 

Sol. [A S, B R, C P, D Q]  

       (A) f '(x) = x
4
 









x

12
 + (12nx – 7) (4x

3
)  

 f '(x) = –16x
3
 + 48x

3
 nx 

 f (x) = – 48x
2
 + 48x

2
 + 48 n x . 3x

2
 

 x = 1, y = –7 

 a – b = 8 

       (B) f '(x) = 16x
3
 (3nx – 1)  

 

 + + 

0 

– 

e
1/3

  

 12 × 4
3

1
  

       (C) f (x) = 144x
2
nx 

 concave in (0, 1) 

 d + 3e = 3 

       (D) concave in (1, ) 

 p = 1  

 

Q.32 Let f(x) = (x – 1)
m
 (2 – x)

n
; m, n  N and  

m, n > 2 

 Column I Column II 

 (A) Both x = 1 and x = 2 are  (P) m is even 

  the points of minima if  

 (B) x = 1 is a point of minima  (Q) m is odd 

  and x = 2 is a point of  

  inflection if 

 (C) x = 2 is a point of minima    (R) n is even 

  and x = 1 is a point of  

  inflection if 

 (D) Both x = 1 and x = 2 are  (S) n is odd 

  the points of inflection if  (T) m and n  

     both are even 

Sol. [A P,R,T, B P,S, C R,Q, D Q,S] 

 at point of extrema f ' (x) 

 has odd power factor 

 i.e. f(x) has even power factor.  
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EXERCISE # 3 
 

     Subjective Type Questions Part-A 
 

Q.1  Let f(x) = 















0x;2x

0x;
5a

1a
x2x

4

2
2

 

 Find all possible real values of a such that f(x) 

possesses the smallest value at x = 0. 

Sol. f(x) = 

















0x;2x

0x;
5a

1a
x2x

4

2
2

 

 )x(f  = 2x + 2 + 0  put f(x) = 0 

 f(x) =2  x = –1 

 For minima, f(a)  f(a + h)  f(0) f(0 + h) 

  f(a)  f(a –h)  f(0)  f(0 –h) 

   f(0 + h)  f(0 – h) 

 (–1)
2
 + 2 (–1) + 

5a

1a
4

2




 0 + 2; a

4
 –5  0 

 1 – 2 +
5a

1a
4

2




2 ; a

4
 – 5  0 

 
5a

1a
4

2




 3 ; a

4
 – 5  0 

  3a
4
 – 15  a

2
 –1; a

4
 – 5  0 

  3a
4
 – a

2
 – 14  0; a

4
 – 5  0 

 Now, we have to find roots of 3a
4
 –a

2
 – 14 = 0 

 3a
4
 –a

2
 – 14 = 0  a

2
 =

32

16811




 

  a
2
 = 

32

1691




 

  a
2
 = 

32

131




= 

3

7
 

  a = ± 
3

7
 

  















3

7
a  
















3

7
a  0 

 a 














4

1
5

3

7
 














3

7
,

4

1
5  

 

Q.2 Find all the values of k for which the point of 

minimum of the function f(x) = 1 + k
2
x – x

3
 

satisfy the inequality 
6x5x

2xx
2

2




< 0. 

Sol. f(x) = 1 + k2x – x3 

 Differentiating w.r.t. x, we get 

 )x(f  = 0 + k
2
 = 3x

2
 

 Put )x(f   = 0  k
2
 –3x

2
 

   |x| =
3

k
 

   x = ±
3

k
 

 
)6x5x(

)2xx(
2

2




< 0 

  
)6x5x(

2
4

1

4

1
xx

2

2




< 0 

  
)6x5x(

4

7

2

1
x

2

2













 < 0 

 
2

2

1
x 








 + 

4

7
 always positive. 

 Hence, (x
2
 + 5x + 6) < 0 

 (x + 2) (x + 3) < 0 

  – 3 < x < –2 

 Put x = +
3

k
 in above inequality, we get 

 – 3 <
3

k
 < –2 

  –3 3 < k < –
3

2
 

  k  












3

2
,

3

3
 

 Put x = –
3

k
 involves inequality, we get 

 – 3 < –
3

k
< – 2 

  2 < 
3

k
< 3 

  2 3 < k < 3 3  

  k (2 3 , 3 3 ) 

 Hence, k  (–3 3 , –2 3 )  (2 3 , 3 3 ) 

  which is required. 
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Q.3  If f(x) = x
3
 + ax

2
 + bx + c has a local maximum 

at x = –1 and a local minimum at x = 3. 

Determine the constants a, b, c. 

Sol. f(x) = x3 + ax2 + bx + c 

 Differentiating above function w.r.t = x, we get 

 )x(f  = 3x
2
 + 2ax + b + 0 

 )x(f  = 3x
2
+ 2ax + b 

 
1x|)x(f  = 3 –2a + b = 0 

  2a – b = 3 

 
3x|)x(f  = 27 + 6a + b = 0 

  6a + b = –27 

 Solving above two equations for a and b. 

 2a – b = 3 

 6a + b = – 27  a = –3 

 ___________ 

 8a + 0 = – 24 b = 2a –3 = –6 –3 

   b = –a 

 Hence,    a = –3 

  b = – 9 and c  R 
 

Q.4 Show that 










 x

1
 (4 – 3x

2
) has just one 

maximum and one minimum value. Show also 

that the difference between them is 

3
1

9

4










 . What is the least value of this 

difference. 

Sol. Let f(x) = 










 x

1
 (4 – 3x2) 

 Differentiating w.r.t. x, we get 

 f(x) = (–1) (4 –3x
2
) + 











 x

1
(0 – 6x) 

 = (3x
2
 – 4) + 6x 




















1
x    

 = 3x
2
 – 4 + 6x

2
 – 6x 












1
– 4  … (i) 

 Again differentiating w.r.t. x, we get 

 f(x) = 18x – 6 











1
– 0  

 f(x) = 18x – 6 











1
  ….(ii) 

 from equation (1), put )x(f  = 0 

 9x
2
 –6x 












1
– 4 = 0 

  x =
92

916
1

36
1

6

2


























 

 x = 
92

4
1

6
1

6

2


























 

 x = 
18

1
6

1
6

2
























 

 x = 
18

1
6

1
6

2
























 

 Taking + ve sign 

 x = 
18

1
6

1
6 























 

 x = 
18

6
6

6
6







 

 x = 
18

12
= 

3

2
–  

 Taking – ve sign 

 x = 
18

1
6

1
6 























 

 x = 
18

6
6

6
6







 

 x = 
18

12
× 



1
= 

3

2
× 



1
 

 Hence, x = 
3

2



1
, 

3

2
 

 From equation (2),  

 f(x) = 18x – 6 











1
 

 







 1

3

2
x
|)x(f = 18 × 












3

2
– 6 +



6
 

 = – 


12
– 6+ 



6
 

 = – 6 –


6
 = – ve 
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 Hence, at x = 
3

2



1
, f(x) would be maximum. 

 




3

2
x
|)x(f = 18 ×

3

2
 – 6 












1
 

 = 12 – 6 +


6
 

 = 6 +


6
 

 = 6 











1
 

 = +ve 

 Hence, at x = 
3

2
, f(x) will be minimum 

 


3

2
x
|)x(f  = 
















3

2
x

2 )x34(x
1

 

 = )
9

4
x34(

3

21 2










  

 fmin = 











 1

3








 2

3

4
4  

 




1

3

2
x
|)x(f = fmax = 















3

21
 

                











2

1

9

4
34  

   = 











3

1












2

1

9

12
4  

   = 4 











3

1












2

1

3

1
1  

 Hence, fmax– fmin = 

 4 











3

1
 












23

1
1 – 4 












 1

3 











 


3
1

2

 

 = 4 





















39

1

3

1

3

1
–




















 








39

1

3

2 3
 

 = 4 










 











92

1

3

2

9

1

3

2 3

3
 

 = 4 























3

1

39

1

9 3
 

 = 
9

4















3
3

1
3

3 = 
9

4
3

1










  

  fmax– fmin =
9

4
3

1










 . proved. 

 Let f() =
9

4
3

1










  

 Differentiating f() w.r.t.= , we get 

 f() = 
9

4
× 3

2
1










 . 












2

1
 

 Again differentiating w.r.t 1, we get 

 f() = 
3

4
× 2 × 












1












2

1
1 












2

1
1  

  + 
3

4
× 

2

2

1










 × 









3

2
 

 f() = 
3

8
× 












1
 

2

2

1
1 










 + 

3

8
×                                

2

2

1










  ×

3

1


 

 Put )(f  = 0 

  
9

4
× 3 × 

2
1












2

2

1
1 










 × 

3

1


 

 Put )(f  = 0 

  
9

4
× 3 × 

2
1












2

2

1
1 










 = 0 

 = ±1 

 At  = +1, f() = 
3

8
× 2 × (0) + 

3

8
× 4 × 

1

1
 

 = 
3

32
> 0 

 At  = –1, f() = 
3

8
× 2 × (0) +

3

8
× 4 × 

1

1
 

 = 
3

32
> 0 

 At  = –1, f() = 0 + 0 

 Hence, f() would be least at  = +1 

 Least value of f() = 
9

4
3

1

1
1 








 = 

9

32
  

 

Q.5 If b > a find the minimum value of 

 f(x) =  |(x – a)
3
| + |(x – b)

3
| , x  R.  

Sol. b > a 
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 f(x) =  |(x – a)3| + |(x – b)3| , x  R. 

  

 

a b  

 when x < a, 

 f(x) = – (x – a)
3
 – (x – b)

3
 

 Differentiating w.r.t.x, we get 

 f (x) = –3 (x – a)
2
 – 3(x – b)

2
 

 Again differentiating w.r.t. x, we get 

 f  (x) = –6 (x – a) – 6 (x – b). 

 Now, put  xf  = 0 

  – 3(x – a)
2
 –3(x – b)

2
 = 0 

  (x – a)
2
 = – (x – b)

2
 

 which is not possible due to negative sign. 

 when a < x < b, then 

 f(x) = (x –a)
3
 – (x – b)

3
 

 Differentiating w.r.t. x, we get 

  xf  = 3(x – a)
2
 – 3(x – b)

2
 

 Again differentiating w.r.t.x, we get 

 f  (x) = 6(x –a) – 6 (x –b) 

 Now put,  xf   = 0 

  3(x – a)
2
 – 3(x – b)

2
 = 0 

  (x – a)
2
 = (x – b)

2
 

  (x – a) = ±(x – b) 

  x – a = – (x – b) 

  x – a = – x + b 

  2x = a + b 

  x = 
2

ba 
 

 f  (x) = 6(x – a) – 6(x – b) 

 f  (x) = 6x – 6a – 6x + 6b 

 f  (x) = 6(b –a) 

 = +ve 

 Hence f(x) would be minimum 

 







 


2

ba
x

)x(f =







 




2

ba
x

33 ])bx()ax[(  

 =  
3

a
2

ba











– 

3

b
2

ba











 

 = 
3

2

a2ba







 
– 

3

2

b2ba







 
 

 = 
3

2

ab







 
– 

3

2

b2ba







 
 

 = 
3

2

ab







 
–

3

2

ba







 
 = 

3

2

ab







 
+ 

3

2

ab







 
 

 = (b – a)
3
/4 

 f(x)|min = (b –a)
3
/4 

 When, x > b 

 f(x) = (x – a)
3
 + (x – b)

3
 

 Differentiating w.r.t.x, we get 

  xf  = 3(x –a)
2
 + 3(x – b)

2
 

 Again differentiating w.r.t.x, we get 

 f  (x) = 6(x – a) + 6 (x – b) 

 Now, put  xf  = 0 

  3(x – a)
2
 + 3 (x – b)

2
 = 0 

  (x – a)
2
 = – (x – b)

2
 

 which is not possible.  
 

Q.6 Find the range of the function,  

 f(x) = n((cos x)
cos x 

+ 1),  x  






 

2
,0   

Sol. g(x) = (cos x)
cos x

 + 1 

 g ' (x) = (cos x)
cos x

 .  

                







 )xsin(.xcosn)xsin(

xcos

xcos
  

 = – sin x . (cos x)
cos x

 (1 + n cos x) 

 

 + – 

cos
–1

e

1
 

  

 g(0) = 2 

 g 






 

e

1
cos 1  = 1 + 

e/1

e

1








 

 Range  

 f(x)



































 2n,

e

1
1n

e/1

      
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Q.7  A function y = f(x) is given by the parametric 

equations x = t
5
 – 5t

3
 – 20t + 7 and 

  y = 4t
3
 – 3t

2
 –18t + 3, where – 2 < t < 2. 

Investigate the maxima and minima.   

Sol. 
20t15t5

18t6t12

dx

dy
24

2




   

       = 
)4t3t(5

)3tt2(6
24

2




 

       = 
)4tt4t(5

)3t2t3t2(6
224

2




 

       = 
)2t()2t()1t(5

)3t2()1t(6
2 


 

 

 + – 

–2 

+ – + 

–1 3/2 2 
 

 Min.     at       t = –1 

 Max.    at        t = 
2

3
    

 

Q.8  Find the point of local maxima/minima of 

following functions 

 (a) f(x) = 2x
3
 – 21x

2 
+ 36x –20 

 (b) f(x) = – (x – 1)
3
 (x + 1)

2 

 
(c) f(x) = xnx 

Sol.  (a) f ' (x) = 6x
3
 – 42x + 36 

 = 6(x
2
 – 7x + 6) 

 = 6(x – 1) (x – 6) 

 

 + – 

1 6 

+ 

 

 Min.     x = 6 

 Max.     x = 1 

       (b) f '(x) = – (x – 1)
3
 = (x + 1)  

             – (x + 1)
2
 3(x – 1)

2
 

         =  – (x + 1) (x – 1)
2
 (2x – 2 + 3x + 3)    

         =  – (x + 1) (x – 1)
2
 (5x + 1) 

 – + 

–1 

– – 

–1/5 1 
 

 Min.       x = –1 

 Max.       x = –
5

1
 

      (c) f '(x) = 1 + n x 

 

 – 

e

1
 

+ 

 

 Min. x = 
e

1
   

 

Q.9  Let 













1x

1x0

nbx

x3
)x(f

2 
. Find the set of 

value of b such that f(x) has a local minima at 

x = 1 

Sol.  

 

 
2 

1 

  

 f (1)  2 

 1 + n b  2 

 0 < b  e   
 

Q.10  Find the absolute maxima/minima value of 

following functions 

 (a) 
2

x
x4)x(f

2

  ; 









2

9
,2x  

 (b) f(x) = 3x
4
 – 8x

3
 + 12x

2
 – 48x + 25; x  [0, 3] 

 (c) x2cos
2

1
xsin)x(f  ; 







 


2
,0x  

 (d)  xx)x(f  ;  x  (0, 4) 

 (e) f(x) = 12x
4/3

 – 6x
1/3

, x  [–1, 1]

Sol. (a) f ' (x) = 4 – x   

 

 + – 

4  

 Max.    at    x = 4 

 f(4) = 16 – 
2

16
 = 

2

16
 

 f(–2) = – 8 – 2 = –10 

 f 








2

9
 = 18 – 

8

63

8

81
  

 f  min. = – 10 

 f  max. = 8 

      (b) f ' (x) = 12x
3
 – 24x

2
 + 24x – 48 

           = 12 (x
3
 – 2x

2
 + 2x – 4) 

           = 12 (x – 2) (x
2
 + 2)  

 

 – + 

2  

 min.  x = 2  
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 f (0) = 25 

 f (3) = 16 

 f (2) = –39 

      (c)  f ' (x) = cos x – sin 2x 

           = cos x (1 – 2 sin x) 

           = –2 cos x 









2

1
xsin  

 

 + – 

/6  

 max. at x = 
6


 

 f 






 

6
 = 

4

3

4

1

2

1
  

 f (0) = 
2

1
 

 f 






 

2
 = 1 –  

2

1
 = 

2

1
  

       (d) f ' (x) = 1 + 
x2

1
 > 0  

 f (x) 




















624

)4(f)x(f

0

)0(f)x(f

max

min

 

       (e) f ' (x) = 16x
1/3 

– 
3/2x

x2
 

 = 
3/2x

16
 










8

1
x     

 

 – + 

1/8    

 min.  x = 
8

1
 

 f (1) = 6 

 f (–1) = 18         
 

 

Q.11  For a given curved surface of a right circular 

cone when the volume is maximum, prove that 

the semi vertical angle is  
3

1
sin 1– . 

Sol. 

 



r 


 

 s = r

 v = 
3

1
r

2
h  

    = 
3

1
r

2 22 r  

    = 
3

1
r

2 2

2

2

r
r

s



 

    = 
3

1
r 422 rs   

 



















422

32
422

rs2

)r4(r
rs

3

1

dr

dv
 

 = 
422

42422

rs3

)r2rs(1




  

 

 + – 

r
3

1s



 

 

  = sin
–1












r
 

 s = 3
1/2

 r
2
 = r



3

1r



 

 

Q.12  Prove that the area of a right angled triangle of 

given hypotenuse is maximum when the 

triangle is isosceles. 

Sol. x
2
 + y

2
 = a

2
 

   
A 

90° 

(90°–) 

x 
a 



B 

y C 

 

 a is given as hypotenuse 

 Area of triangle, A = 
2

1
x. y 
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 A = 
2

1
× x × 22 xa   

 A = 
2

1
x × 22 xa   

 Differentiating above expression w.r.t. x, we 

get 

 
dx

dA =
2

1
(1)× 22 xa  + 

2

x
×

22 xa2

1



×(–2x) 

 
dx

dA =
2

xa 22 
– 

22

2

xa2

x



 

 = 
2

1
[a

2
 –x

2
 – x

2
]/ 22 xa   

 
dx

dA =
2

1

22

22

xa

)x2a(




 

 Again differentiating w.r.t. x, we get 

 
2

2

dx

Ad
=

2

1

)xa(

xa2

)x2(1
)x2a(xa)x40(

22

22

2222








 

 
2

2

dx

Ad
= 

2

1

)xa(

xa

x)x2a(
xa)x4(

22

22

22
22








 

 = 
2

1

2222

2222

xa)xa(

x)x2a()xa()x4(




 

 
2

2

dx

Ad
= 

2

1
2/322

3232

)xa(

]x2xax4xa4[




 

 
2

2

dx

Ad
= 

2

1
[2x

3
 –3xa

2
]/(a

2
 –x

2
)

3/2
 

 Put 
dx

dA
= 0  

2

1

22

22

xa

)x2a(




= 0; but x  ±a 

  x
2
 =

2

a 2

 

  |x| =
2

a
 

 

2

a
|x|

2

2

dx

Ad



=
2

1

  2/32

2
3

2/a

a
2

a
3

22

a
2














 

 = 
2

1

 32

33

2/a

2

a3

2

a














 

 = 
2

1

22/a

2

a2

3

3














 

 = 
22

a2 3

 × 
3a

22
 

 = –2 

 Hence, A would be maximum 

 from y
2
 = a

2
 –x

2
 = a

2
 –a

2
/2 

  = a
2
/2 

  |y| = a/ 2  |x| = |y| 

  = 45° 

  triangle will be  isosceles. 

 Amax = 
2

1
× x × 22 xa   

 = 
2

1
× 

2

a
× 

2

a
 

 = 
4

a 2

 

 Amax = a
2
/4 

 

Q.13 A closed rectangular box with a square base is 

to be made to contain 1000 cubic feet. The cost 

of the material per square foot for the bottom is 

15 Rs. the top is 25 Rs. and for the sides 20 Rs. 

The labour charges for making the box are  

Rs.3/-. Find the dimensions of the box when 

the cost is minimum. 

Sol.  

   

C 

C 

D 
A 

B 

A 
D 

x 
x 

x 

x 

x 

x 
x 

x 

y 
X X 

B x 
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C 

C 

A 

x 
x 

x 

x 

x 
x 

x 

y 
X X 

D 

D 

B 

x 

A 

B 

 

 Let squares ABCD & ABCD have dimensions of  

x & AA = BB = CC = DD = y foot 

 Material cost for bottom square = 15x
2
 paise 

 Material cost for top square = 25x
2
 paise 

 Material cost for side rectangle = (20xy) × 4 

   = 80xy paise 

 labour charges = Rs.3/- = 300 paise 

 Total cost, c = (15x
2 

+ 25x
2
 + 80xy + 300) 

paise 

 Also, x
2
 × y = 1000 (feet)

3
 

  y = 
2x

1000
 

 Put value of y in the expression of total cost, 

 c = 40x
2
 + 80xy + 300 

 c = 40x
2
 + 80x × 

2x

1000
+ 300 

 c = 40x
2
 + 

x

80000
+ 300 

 Differentiating w.r.t. x, we get 

 
dx

dc
= 80x – 

xz

80000
+ 0 

 Again differentiating w.r.t x, we get 

 
2

2

dx

cd
= 80 + 

3x

160000
 

 Put
dx

dc
= 0 800x = 

2x

80000
 

  x
3
 = 1000  

  x = 10 feet 

 Also, y = 
2x

1000
= 

100

1000
= 10 

 From, 
2

2

dx

cd
= 80 + 

1000

160000
 

 = 80 + 160 = 240 = +ve 

 Hence cost will be minimum 

 Cmin = minimum cost 

 = (40x
2
 + 80xy + 300)|x =10 paise 

 = 40 × 100 + 80 × 100 + 300 

 = 4000 + 8000 + 300 

 = 12000 + 300 

 = 12300 paise 

 Dimension will be 10, 10, 10 feet respectively. 

 

Q.14  A box is constructed from a square metal sheet 

of side 60 cm by cutting out identical squares 

from the four corners and turning up the sides. 

Find the length of the side of  the square to be 

cut so that the box is of maximum volume. 

Sol. Hence, volume of box = x × (60 –2x)
2
 

 V = x × (60 –2x)
2
 

 Differentiating w.r.t. x, we get 

 

 

6
0

cm
 

6
0

cm
 

(60 – 2x) 

(60 – 2x) 

x 

x x 

x 

x 

x x 

x 

60cm 

60cm 

 

 
dx

dv
= x × 2x (60 –2x) (–2) + 1. (60 –2x)

2
 

 
dx

dv
= (60 –2x) [60 – 2x –4x] 

 
dx

dv
= (60 –2x) (60 –6x) 

 Again differentiating w.r.t. x, we get 

 
2

2

dx

vd
= (–2) (60 –6x) + (60 –2x) (–6) 

 
2

2

dx

vd
= –120 + 12x –360 + 12x 
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2

2

dx

vd
= 24x –480 

 Put, 
dx

dv
= 0 

  (60 – 2x) (60 –6x) = 0  

  x = 10, 30 

 

cm10x

2

2

dx

vd



= 240 –480 = –240 

 

cm30x

2

2

dx

vd



= 24 × 30 –480 = 720 –480 = +ve 

 Hence, volume would be maximum when  

x = 10 cm  

 

Q.15  Given the sum of surfaces of a cube and a 

sphere. Show that the edge of the cube is equal 

to the diameter of the sphere, if the sum of their 

volumes is minimum. 

Sol. Surface of cube = 6x
2
 

 Volume of cube = x
3
 

 

 

x 

x 

x 

 

 

 

R 

 

 Surface of sphere = 4R
2
 

 Volume of sphere = 
3

4
R

3
 

 Given, sum of surface of cube and sphere, 

 6x
2
 + 4R

2
 = 5   …(i) 

 sum of volume = x
3
 + 

3

4
R

3
  ….(ii) 

 from (i), x
2
 = 













 

6

R4S 2

 x = 
6

R4S 2
 

 Put value of x in equation (ii), we get 

 V = 

2/3
2

6

R4S













 
+ 

3

4
R

3
  

 Differentiating w.r.t. R, we get 

 
dR

dV
= 4R

2
 +

2/36

1









2

3
(S –4R

2
)
1/2

 (–8R) 

 = 4R
2
 +

2/36

1
(–12R) (S –4R

2
)

1/2
 

 Again differentiating w.r.t. R, we get 

 
2

2

dR

Vd
= 8R + 

2/36

)12( 
 

   



















2

2/12

R4S

)R8(1
RR4S.1  

 = 8R – 
2/36

12  



















2

2
2/12

R4S

R4
R4S  

 Put, 
dR

dV
= 0 

  4R
2
 + 

2/36

)R12( 
(S – 4R

2
)

1/2
 = 0 

  4R
2
 = 

2/36

R12
(S –4R

2
)

1/2
 

  R = 
2/36

3
(S –4R

2
)

1/2
  

  6
3/2

R = 3(S –4R
2
)

1/2
 

 Squaring both sides, we get 

  6
3
R

2
 = 9(S –4R

2
) 

  36 × 6 × R
2
 = 9(S– 4R

2
) 

  24 × R
2
 = (S –4R

2
) 

  4R
2
 (6 + ) = S 

  R
2
 = S/4(+ 6) 

  R = )6(4/S   

  2R = D = )6/(S   
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 Put value of R in 
2

2

dR

vd
 

 
2

2

dR

vd
= 8

)6(4

S


– 

2/36

12
 

  

































)6(4

S
4S

)6(4

S
4

)6(4

s4
S  

 = 
2

8

6

S


– 

2/36

12
 

                 




























6

S6

6

S

)6(4

S
 

 = 
2

8

)6(

S


– 

2/36

12



















 6

S

6)6(4

S6  

 = 4
)6(

S


– 

2/36

12


















 6

S

66

S

2

6  

 = 4 
6

S


– 

2/36

12

)6(

S









 

62

26
 

 = 4
6

S


– 

236

12





)6(

S


 [6 –2] 

 
2

2

dR

vd
= 

)6(

S


× 4 







 


24

26
1  

 = 4 × 
6

S

 






 

24

2624
 

 = +ve. 

 Hence, sum of their volumes will be minimum 

from 

 6x
2
 + 4R

2
 = S 

 6x
2
 + 4× 

)6(4

S


= S 

 6x
2
 = S – 

)6(

S




 

 6x
2
 = 

)6(

SS6S




 

 x
2
 = 

)6(

S


 x = 

)6(

S


 

  2R = Diameter = x =  
6

S


 

 Hence proved.  

 

Q.16 One corner of long rectangular sheet of paper 

of width 1m, is folded over so as to reach the 

opposite edge of the sheet. Find the minimum 

length of the crease. 

Sol. Let length of crease to be x m. 

 i.e. AB = x metre 

 when point disfolded over opposite edge at 

point C. 

                 

C 
B 

x 



D 
A 

P 
(– 2) 

 

 Angle BAD = CAB =  

 CAP = (p –2) 

  AD = AC 

 From ABD, cos  = 
x

AD
 

  AD = x cos  = AC 

 Also, from PAC, cos ( –2) = 
AC

PA
 

  PA = –AC cos 2 

  PA = –x cos  cos 2 

 Hence, PD = PA + AD 

 1 = x cos  – x cos . cos 2 

  x = 
)2cos1(cos

1


 

 Differentiating w.r.t. , we get 

 
d

dx
= 

2))2cos1((cos

)2cos1(sin

2sin2..(cos1)2cos1(cos.0







 

 
d

dx
= 

22 )2cos1(cos

)2cos1(sin2sin2.cos




 

 Since cos 2 = 2 cos
2
  –1 = 1 –2 sin

2
  

  2 sin
2
  = (1 – cos 2) 

 
d

dx
= 




42

2

sin4cos

sin2sincossin4cos
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 = 



32

22

sincos4

sin2cos4
 

 Again differentiating w.r.t. , we get 

2

2

d

xd


=

232

23422

32

)sincos4(

]sincos12sincos8[)cos4sin2(

)sincos4)(cossin4cossin8(







 

Now, put 
d

dx
= 0 

  



32

22

sincos4

cos4sin2
= 0 

  2 sin
2
  = 4 cos

2
 

  tan
2
 = 2 

  
 



3 
2 

1 
 

  tan  = ± 2  

 sin  = 2 / 3  

 cos  = 1/ 3  

 

2tan

2

2

1d

xd




=  

 
2

33

22

3

1
.4

3

2

33

1
12

9

4

3

1
8

3

1
4

3

2
2

3

2

3

1
4

3

1

3

2
4

3

1

3

2
8




























































= 
2)39/28(

0
9

8

3

2
12 

= +ve 

 Hence, x to be minimum. 

 When, tan  = – 2 , 

 sin  = – 2 / 3  

      cos  = +1/ 3  

 
2

2

d

xd


= 

 
2

33

22

3

1
4

0
33

22

3

1
4

3

1

3

2
12


























































 


 

 = +ve but sin  0 and cos  0 

 Hence, only possible value, tan = + 2  

 (x)min = 

2tan
)2cos1(cos

1




 

 = 

2tan
2

1sin2cos

1


 

 = 

3

2
2

3

1

1



 

 (x)min = 
4

33
 

 

Q.17 Two cars are travelling along two roads which 

cross each other at right angles at A. One car is 

travelling towards A at 21 meter/h, while the 

other is travelling towards it at 28 meter/h.  

If initially their distances from A are 1500 

meter and 2100 meter respectively, prove that 

the least distance between them is 60 meter. 

Sol. AB = 1500 feet 

 AC = 2100 feet   

 

 

y 

B 

B 

C C A 

1500 feet 

x 

VB= 21 miles/hr 

VC = 28 miles/hr 

2100 feet 

 

 Let least distance is x feet i.e. 

 x = BC 

 Let in time t, car B travels to B and car C 

travels to C 

 Then BB = 21 × t  BB = 21 × 
28

CC 
 

 CC = 28 × t  CC = BB × 
3

4
 

 Hence, x
2
 = (AB)

2
 + (AC)

2
 

 x
2
 = (1500 – BB)

2
 + (2100– 4/3 BB)

2
 

 Differentiating x
2
 w.r.t. (BB), we get 
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)BB(d

)x(d 2


= 2(1500 – BB) (–1)  

   + 2 (2100 – 4/3 BB) × (–4/3) 

 Again differentiating w.r.t. (BB), we get 

 
2

22

)BB(d

)x(d


= 2 + 2 × 

9

16
= 

9

3218
= 

9

50
= +ve 

 Hence, distance x to be least. 

 Now, put 
)BB(d

)x(d 2


= 0 

  2(1500 – BB) (–1) +  

     2 (2100 – 4/3 BB) (–4/3) = 0  

  2(1500 – BB) = 2(4/3 BB –2100) × 4/3 

  1500 – BB = 16/9 BB – 2800 

  4300 = 25/9 BB 

  BB = 43 × 36 

 BB = 1548 feet 

 Hence, x
2
 = (1500 –1548)

2
 + 

  (2100 – 4/3 × 1548)
2 

 
= (–48)

2
 + (2100 – 2064)

2
 

 = (48)
2
 + (36)

2
 

 x
2
 = 2304 + 1296 

 x
2
 = 3600 

 x = 60 feet proved.  
 

Q.18 Let  p(x) be a polynomial of degree 4 having 

extremum at x = 1, 2 and 2
x

)x(p
1lim

20x












 

then the value of p(2) is 

Sol. p(x) = ax
4
 + bx

3
 + cx

2
 + dx + e 

 2
x

)x(p
1lim

20x












 

 

























 


 2

234

0x x

edxcxbxax
1lim  = 2 

 d = 0, e = 0 

 c = 1 

 Now, 

 p ' (x) = 4ax
3
 + 3bx

2
 + 2x 

 4a + 3b = –2   …(1) 

 32a + 12b = – 4   ….(2) 

 16a = 4  

           a = 
4

1
 

           b = –1 

 p(x) = 
4

1
x

4
 – x

3
 + x

2
 

 p(2) = 0       
 

Q.19  Find the intervals of monotonicity of the 

function f(x) = 2sinx + cos2x ; (0 x 2).  

Also find the point of local maxima & minima. 

Sol. f(x) = 2 sin x + cos 2x ; (0 x 2) 

 Differentiating w.r.t.x, we get 

 f  (x) = 2 cos x –2 sin 2x 

 = 2 cos x – 2 × 2 sin x × cos x 

 = 2 cos x (1 –2 sin x) 

 Put cos x = 0 = cos /2 

  x = 2n ±/2; n = 0, ±1, ±2 

 n = 0, x = /2 (only) 

 n = 1, x = 3/2 (only) 

 Put (1 – 2 sin x) = 0  sin x = 1/2 = sin /6 

  x = n + (–1)
n
 /6; n Integer 

 Only acceptable values  

 x = /6, 5/6 

 

 

0 2 3/2 5/6 /2 /6 
| | | | | | 

+ve +ve +ve –ve –ve 

 

 Hence, monotonically increasing function in 

 x  (0, /6)  (/2, 5/6)  (3/2, 2) 

 monotonically decreases function in 

 x  






 

2
,

6
 







 

2

3
,

6

5
 

 

Q.20 A cylinder is obtained by revolving a rectangle 

about the x-axis, the base of the rectangle lying 

on the x-axis and the entire rectangle lying in 

the region between the curve y = 
1x

x
2 

 & the 

x-axis. Find the maximum possible volume of 

the cylinder. 

Sol. 

 
(x, y) 

(x2, y) 

x2 x 
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 xx2 = 1 

 v =  


















x

x

1

1x

x
2

2
 

 v =  
22

3

)1x(

)xx(




 

 
dx

dv
 =  . 

42

2222

)1x(

x2)1x(2)1x()x31(




 

 
dx

dv
= 0 (1 – 3x

2
) (x

2
 + 1) = 4x

2
 – 4x

4
 

 x = 12   volume = 
4


  

 

Q.21 Find the area of the largest rectangle with lower 

base on the x-axis & upper vertices on the 

curve y = 12 – x
2
. 

Sol. 

 

(t,12–t) (–t,12–t) 

12 

(–t, 0) (t, 0) 

 

 Area = 2t × 12 – t 

          = 24t – 2t
2
 

 
dt

dA
 = 24 – 4t 

 

 + – 

6  

 max.   at  t = 6 

 Amax = (24 × 6) – 72 

          = 144 – 72 = 72    
 

Q.22 A beam of rectangular cross section must be 

sawn from a round log of diameter d. What 

should the width x and height y of the cross 

section be for the beam to offer the greatest 

resistance (a) to compression, (b) to bending. 

Assume that the compressive strength of a 

beam is proportional to the area of the cross 

section and the bending strength is proportional 

to the product of the width of section by the 

square of its height. 

Sol. (a) c = kxy 

 

 

x 

d y 

 

 c = kx 22 xd   

 c' = 22

22
xdk

xd2

)x2(kx





 

     = 
22 xd

k



 (– 2x
2
 + d

2
) 

      = 



















2

d
x

xd

k2 2
2

22
    

 

 – – 

– d 

+ 

2

d
 

 

 x = 
2

d
 = y  

       (b) B = kxy
2
  

     = kx (d
2
 – x

2
) 

 B' = k(d
2
 – 3x

2
) 

 

 – – 

–
3

d
 

+ 

3

d
 

 

 x = 
3

d
    y = d

3

2
    

 

Q.23 The value of 'a' for which f(x) = x
3
 + 3(a – 7)x

2
 

+ 3(a
2
 – 9)x – 1 have a positive point of 

maximum lies in the interval (a1, a2)  (a3, a4). 

Find the value of a2 + 11a3 + 70a4.  

Sol. f '(x) = 3x
2
 + 6(a – 7)x + 3(a

2
 – 9) 

 x > 0 

 roots are > 0 

 
a2

b
 > 0      

a

c
 > 0 

 –2(a – 7) > 0 

 a < 7 

 (a + 3) (a – 3) > 0 

 a(– , –3) (3, ) 

 a(– , –3) (3, 7)  

            a1    a2     a3   a4  

 a2 + 11a3 + 70a4 

 –3 + 33 + 490 

 = 520     
 

Q.24 The mass of a cell culture at time t is given by, 

M(t) = 
te41

3

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 (a) Find )t(MLim
–t 

 and )t(MLim
t 

 

 (b) Show that 
dt

dM
 = 

3

1
M(3 – M) 

Sol.  (a) 
–t

Lim
te41

3


 

 
–t

Lim
4e

e3
t

t


 = 0 

 
t

Lim
te41

3


 = 3 

        (b) 
2t )e41(

)te4(3

dt

dM



  

         = 
2t

t

)e41(

e12





  

         = M
2








 te
3

4
 

 






 


M

M3

3

M

dt

dM 2

 

         = 
3

M
 (3 – M)    

 

Q.25 From a fixed point A on the circumference of a 

circle of radius 'a', let the perpendicular AY fall 

on the tangent at a point P on the circle, prove 

that the greatest area which the APY can have 

is 
8

a
33

2

 sq. units. 

Sol.  

 

 

a 
A 

2 

a E 
90– 





y 

 

 AP = )2cos(a2a2 22   

       = )2cos1(a2 2   

        = 2a sin 

 AY = 2a sin cos 

 PY = 2a sin
2


 Area = 2a
2
 (sin

3
cos ) 

 
d

dA
 = 2a

2
 [– sin

4
+ cos

2
 . 3 sin

2
] 

         = 2a
2
 sin

2
[– sin

2
+ 3cos

2
] 

         = –2a
2
 sin

2
cos

2
[tan

2
 – 3] 

 for Amax = 
3


 

 Amax = 2a
2
 × 

2

1

8

33
  

         = 
8

33
a

2
            

Q.26 A given quantity of metal is to be casted into a 

half cylinder i.e.  with a rectangular base and 

semicircular ends. Show that in order that total 

surface area may be minimum, the ratio of the 

height of the cylinder to the diameter of the 

semi circular ends is /( + 2). 

Sol. v = h
2

r2




 

 A = rh + r
2 
+ 2rh 

     =  × 
r

v2


 + r

2  
+ 2 × 

r

v2


 

     = 
r

v2
 + r

2 
+ 

r

v4


 

 
dr

dA
 = 

2r

v2
 + 2r+ 

2r

v4


 

 –
2r

v2
 + 2r– 

2r

v4


 = 0 

 2r= 



v4

r

v2
2

 

 r
3
 = 

2

v2v





 

 r
3 
= 




hr

2

hr 22

 

 





2

h

r2
 

 
2r2

h




     

 

Q.27 Consider the function y = f(x) = n (1 + sin x) 

with – 2  x  2. Find  

 (a) the zeroes of f(x) 

 (b) inflection points if any on the graph 

 (c) local maxima and minima of f(x) 

 (d) asymptotes of the graph 
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 (e) sketch the graph of f(x 

Sol. (a) n (1 + sin x) = 0 

 sin x = 0  

 x = –2, , 0, , 2 

        (b) f '(x) = 
xsin1

xcos


  [sin x  1] 

 f (x) = 
2)xsin1(

)x(cosxcos)xsin()xsin1(




 

 f (x) = 
2)xsin1(

)xsin1(




 

 No. inflection pt.    

        (c)  + – 

2

3
 

+ – + 

2


 

2


 

2

3
 

  

 Max  at   x = –
2

3
, 

2


 

 f(x)max = n 2  

        (d) x = – 
2


, 

2

3
  

        (e) 

 

–2 2 

2


 

2


 

  

 

Q.28 The graph of the derivative f  of a continuous 

function f is shown with f(0) = 0. If  

 

 

1 2 3 4 5 6 7 8 0 9 

1 

2 

3 

4 

–1 

–2 

x 

y 

f (x)

 
  (i) f is monotonic increasing in the interval  

       [a, b)  (c, d)  (e, f] and decreasing in  

(p, q)  (r, s). 

  (ii) f has a local minima at x = x1 and x = x2. 

  (iii) f is concave up in (, m)  (n, t] 

  (iv) f has inflection point at x = k 

  (v) number of critical points of y = f(x) is 'w' 

  Find the value of (a + b + c + d + e) + (p + q     

   + r + s) + ( + m + n) + (x1 + x2) + (k + w). 

Sol. a = 0     c = 4 

 b = 2 d = 6 

 e = 8 p = 2 

 f = q q = 4 

 r = 6 x1 = 4 

 s = 8 x2 = 8 

  = 3 n = 6 

 m = 6 t = 9 

 k = 3 w = 4 
 

Q.29 The graph of the derivative f  of a continuous 

function f is shown with f (0) = 0 
 

1 2 3 4 5 6 7 8 0 9 

1 

2 

3 

–1 

–2 

x 

y 

f (x)

 
  (i) On what intervals is f increasing or 

decreasing? 

  (ii) At what values of x does f have a local 

maximum or minimum ? 

  (iii) On what intervals is f concave upward or 

downward ? 

  (iv) State the x-coordinate(s) of the point(s) of 

inflection. 

  (v) Assuming that f (0) = 0, sketch a graph of f. 

Sol.  (i) f [1, 6] [8, 9] 

                 [0, 1] [6, 8]   

  (ii) max  6 

   min 1, 8   

  (iii) cu [0, 2] [3, 5] [7, 9] 

   (i) [2, 3] [5, 7]    

  (iv) x = 2, 3, 5, 7  

  (v) 

 

1   2   3   4   5   6   7   8   9 
 

 

Q.30 The function f(x) defined for all real numbers x 

has the following properties 
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  f(0) = 0, f(2) = 2 and f (x) = k(2x – x
2
)e

–x
 for 

some constant k > 0. Find  

  (a) the intervals on which f is increasing and 

decreasing and any local maximum or 

minimum values. 

  (b) the intervals on which the graph f is 

concave down and concave up. 

  (c) the function f(x) and plot its graph. 

Sol.  (a) f ' (x) = k (2x – x
2
) e

–x
 

            = ke
–x

 x(2 – x) 

   

 – – 

0 

+ 

2  

   f [0, 2] 

     [– , 0] (2, )   

  (b) f (x) = – k (2x – x
2
) e

–x 
+ ke

–x
 (2 – 2x) 

            = ke
–x

 [– 2x + x
2
 + 2 – 2x] 

                  = ke
–x

 [x
2
 – 4x + 2] 

   

 + + 

2

84 
 

– 

22   

 

   at (– , 22  ) [ 22  , ] 

   CD [ 22  , 22  ]   

  (c) 

 

 

 

Q.31 Use calculus to prove the inequality,  

  sin x  2x/ in 0  x  /2 

  Use this inequality to prove that,  

  cos x  1 – x
2
/ in 0  x  /2 

Sol. f(x) = sin x – 


x2
 

 f ' (x) = cos x – 


2
 

 

 + 












 2
cos 1  

– 

  

 fmax at 










 2
cos 1  

 f(0) = 0 

 f 






 

2
 = 0  

 f(x)  0 

 Now,  

 g(x) = xcos
x

1
2




  

 g'(x) = –


x2
 + sin x 

      (using above result) 

 g(x) 

 gmin 

 = g(0) = 0 

 g(x)  0 
 

     Passage based objective questions Part-B  
 

Passage I (Q.32 to 34) 

 Suppose f(x) is a real valued function of degree 

 6 satisfying the following condition 

 (A) ‘f ’ has minimum value at x = 0 & 2   

 (B) ‘f ’ has maximum value at x = 1 

 (C) for all x, 2

x/101

1x/10

01)x(f

n
x

1
lim 2

0x



  

 On the basis of above information, answer the 

 following questions. 
 

Q.32  Number of solutions of the equation  

 8f(x) – 1 = 0 is  

 (A) one  (B) two  

 (C) three  (D) four 

Sol. [D] 21
x

f(x)
n

x

1
lim

30x












  

  f(x) = ax
6
 + bx

5
 + gx

3
 + cx

4
 + dx

2
 + ex + f 

  here  

  d = e = f = 0 = g  

  2
x

1)axbxn(cx
lim

32

0x







 

  
0x

lim
 )axbxx(c

1)axbxn(cx
2

32




 

  (c + bx + ax
2
) = 2 

  c = 2  

  f (x) = ax
6
 + bx

5
 + 2x

4
  

  f ' (x) = 6ax
5
 + 5bx

4
 + 8x

3
  

  6a + 5b + 8 = 0 

  24 a + 10b + 8 = 0 

  a = 2/3, b = 
5

12
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  f (x) = 456 x2x
5

12
x

3

2
  

 

–1 1 2 

 
 

Q.33  Range of f(x) is - 

 (A)  







 ,

15

32
 (B) 








 ,

15

4
  

 (C) 









15

2
,–  (D) None of these 

Sol. [A]     

 f(2) = 
5

3

3

8
  . 128 + 32 

 = 128 
15

32
32

5

3

3

1









  

 Range 







 ,

15

32
 

 

Q.34 If the area bounded by y = f(x), x-axis, x = ± 1; 

is 
b

a
, where a & b are relatively prime then the 

value of tan
–1

 (a – b) is - 

 (A) /4  (B) –/4 

 (C) /3  (D) /6 

Sol. [B]  

 




1

1
b

a

105

104

5

4

21

4
dx)x(f  

 tan
–1

(–1) = – 
4


   

 

Passage II (Q. 35 to 37) 

 Let there is a cylindrical capacitor whose cross 

sectional area is as shown in the figure. The 

thickness of the wall of capacitor is 1 cm. and 

volume is 27 cm
3
. Let x and h are the radius 

and height of the cylinder respectively and  

v(x) = 









2

2

x

c

x

b
)ax( , where v(x) shows 

the volume of the material required to form the 

cylinder, which is expressed as a function of 

radius of the cylinder. 

 

h 

1cm x 



 On the basis of above passage, answer the 

following questions : 

 

Q.35 The value of 
c

ab
 is  

 (A) prime but not even (B) even but not prime 

 (C) even prime (D) irrational 

Sol. [C] 27= x
2
h 

v(x) = 









2

2

x

c

x

b
a)x(  

   v = h]x1)(h1)π[(x 22   

          = 








 27)1x(

x

27
)1x( 2

2

2  

  = 









2

2

x

27

x

54
1)(xπ  

 a = 1,  b = 54,  

 c = 27 
 

Q.36 If the cost of the material to form the cylinder 

is minimum, then which of the following 

relation in x and h is true 

 (A) x = h   (B) 2x = h 

 (C) x = 2h  (D) none of these 

Sol. [A]  

  









32 x

54

x

54
1)2(xπ

dx

dV
  

    27x27xx
x

π2 34

3
   

   
3x

π2
(x

3
 – 27) (x +1)  

 – + – + 

–1 0 3  
   Vmin at x = 3  

   Now,  

   27  = x

h  

   h = 3  
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    x = h 
 

Q.37  If function v(x) is redefined such that  

 v : R0  R then the number of solutions of  

v(x) = 0 will be

 (A) 1  (B) 2 

 (C) 3  (D) 4 

Sol. [B]  

  v =  









2

2

x

27

x

54
)1x(  

  vmin = (–27) 

  v(x) = 0 

  2 roots     
 

–1 0 3 

 

 

Passage III (Q. 38 to 40) 

 Two functions are defined as follows 

 f(x) = ax
2
 + bx + c, a, b, c  R, a  0 

 g(x) = dx
2
 + ex + f, d, e, f  R, d  0 

 Real part of complex roots of both the 

equations f(x) = 0 and g(x) = 0 are same. 

Minimum value of f(x) is same as negative of 

maximum value of g(x). 

 On the basis of above passage, answer the 

following questions : 

 

Q.38 Which statement is correct - 

 (A) bd = e
2
  (B) bd = ea 

 (C) bc = ef  (D) None of these 

Sol. [B]  

  b
2
 – 4ac < 0  

  e
2
 – 4fd < 0  

  
d2

3

a2

b
f   

  bd = ae 
 

Q.39 If y = f(|x|) has only one critical point, then- 

 (A) minimum value of y is same as minimum 

value of f(x) 

 (B) minimum value of y is greater than 

minimum value of f(x) 

 (C) minimum value of y is smaller than 

minimum value of f(x) 

 (D) (A) or (B) is correct 

Sol. [D]     

  a > 0  

  d < 0  

  

 
f (x) 

 

  

 f (|x|) 

 

 

 f (|x|) 

 
 

Q.40  If y = |g(|x|)| has three critical points, then - 

 (A) maximum value of y can be evaluated 

 (B) minimum value of y is same as minimum 

value of f(x). 

 (C) minimum value of y can be same as 

minimum value of f(|x|) 

 (D) (B) and (C) are correct 

Sol. [D]  

 Small cases as above  
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EXERCISE # 4 
 

     
 Old IIT-JEE Questions   

 

Q.1 Let f (x) = (1 + b
2
) x

2
 + 2bx + 1 and m (b) is 

minimum value of f (x). As b varies, the range 

of m (b) is-               [IIT Scr. 2001] 

 (A) [0, 1] (B) (0, 1/2] (C) [1/2, 1] (D) (0, 1] 

Sol. [D]  

 f(x) = (1 + b
2
)x

2
 + 2bx + 1 

 Differentiating w.r.t.x, we get 

 f(x) = (1 + b
2
)× 2x + 2b + 0 

 Again differentiating w.r.t. x, we get 

 )x(f  = 2 (1 + b
2
) 

  = +ve for all b  R 

 Now, put f(x) = 0  (1 + b
2
) × 2x + 2b = 0 

  (1 + b
2
) × 2x = –2b  x = 

)b1( 2b


  

 Hence, 
)b1(

b
x

2

)x(f





= fmin  

 = (1+ b
2
). 

22

2

)b1(

b


 + 2b 1

b1

b
2













 

 =  
)b1(

b
2

2


– 

2

2

b1

b2


+ 1 

 = 
)b1(

b1b2b
2

222




 = 

)b1(

1
2

 

  m(b) =
2b1

1


  1 + b

2
 =

)b(m

1
 

  b = 1
)b(m

1
  b = 

)b(m

)b(m1
 

 b = 
)b(m

)b(m1
; m(b)  0  

 For b to be exist, 1 – m(b)  0 

   m(b)  1  

   m(b)  (0, 1]   

  option [D] is correct answer. 
 

Q.2 The max. value of (cos 1) · (cos 2)...(cos n), 

under the restrictions  0  1, 2,.....n  /2 

and (cot 1)·(cot 2).....(cot n) = 1 is :  

    [IIT 2001] 

 (A) 
2/n2

1
 (B) 

n2

1
 (C) 

n2

1
 (D) 1 

Sol. [A]  

 f() = cos 1. cos 2 …….cos n 

 under the restrictions 

 0 1. 2.3 ………n /2 

 and (cot 1) . (cot 2) …..(cot n) = 1 

  cos 1. cos 2 ……cos n = sin 1. sin 2…. 

     sin n 

 Differentiating above function f() w.r.t.1, 

2……,  n 

 f() = ((– sin 1). cos 2.cos 3…..cos n) + 

 (cos 1. (–sin 2). cos 3……cos n) + 

 (cos 1. cos 2(–sin 3) ….cos n) +……….+ 

 (cos 1. cos 2. cos 3………(–sin n))  

 = cos 1. cos 2.cos 3……cos n 

  [–tan 1 – tan 2 –………– tan n] 

 = f() [–tan 1 –tan 2 –…….–tan n] 

 f() = f() [–tan 1 – tan 2– …..–tan n] 

 Again differentiating w.r.t. 1, 2,….., n we get 

 f() = f() [– tan 1 – tan 2 –…..– tan n] 

 + f() [–sec
2
 1 – sec

2
 2 – ……– sec

2
n] 

 = f() [–tan 1 – tan 2 – tan 3 – ……–tan n]
2
 

 + f() [–sec
2
 1 – sec

2
 2 – ……– sec

2
n] 

 Now, put f() = 0 

  f()[–tan 1 – tan 2 –……..– tan n] = 0 

  tan 1+ tan 2 + …+ tan n = 0 but f()  0 

 This is only possible when 

 tan 1 = 0  1 = 0 

 tan 2 = 0 2 = 0 

 tan 3 = 0 3 = 0 

  

  

 tan n = 0 n = 0 

 But, we use restrictions 

 cot 1, cot 2, cot 3,……., cot n = 1  

  cot (0). cot (0)……cot (0) = 1 doesn't exist 

 Hence, cos 1. cos 2. cos 3 …….cos n 

 = sin 1. sin 2. sin 3……..sin n 

 holds only for 

 1= 2 = 3 =………= n = /4 

 Hence, 

 
)4/(

)x(f


 = –ve 

 f() would be maximum. 

 
)4/(

)(f


 = f()max 

 =cos
4


.cos

4


.cos

4


…..cos

4


 

 = 
2

1
. 

2

1
.

2

1
………

2

1
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 = 
2/n2

1
 

  option [A] is correct answer. 
 

Q.3 A straight line L with negative slope passes 

through the point (8, 2) and cuts the positive 

coordinate axes at points P and Q. Find the 

absolute minimum value of OP + OQ, as L 

varies, where O is the origin.   [IIT-2002] 

Sol. L : (y – 2) = m(x – 8), m < 0 

 The points P and Q are 







 0,

m

2
8  and  

(0, 2 – 8m) respectively. 

 Then OP + OQ = 









m

2
8  + (2 – 8m) 

                      = 10 + 







 )m8(

m

2
 

 A.M.  G.M.  

  








m

2
 + (– 8m)  162     

 (as – 
m

2
 and – 8m are +ve) 

  – 







 m8

m

2
  8 

  10 – 







 m8

m

2
  10 + 8 

 OP + OQ  18 

 Minimum value of OP + OQ is 18, which 

occurs only when – 8m = 
m

2
 i.e. 

  m = 
2

1
           (as m < 0) 

 

Q.4 The value of ‘’ [0, ]  for which the sum 

of  intercepts on coordinate axes cut by tangent 

at point (3 3 cos , sin ) to ellipse  

27

x2

 + y
2
 = 1 is minimum is :     [IIT Scr. 2003] 

 (A) 
6


  (B) 

3


      (C)  

4


   (D)  

8


 

Sol. [A]  

 
27

x 2

+ y
2
 = 1 

 Equation of tangent at P(3 3 cos , sin ) 

 
27

)cos33(x 
+ y sin  = 1 

 
9

cos3 
x + y sin  = 1 

  










cos3

9

x
 + 










sin

1

y
= 1 

 

 

y 

B 

P 

O A 
x 

(3   3 cos , sin ) 

 

 sum of intercept, S =
cos3

9
+

sin

1
 

 Differentiating w.r.t. , we get 

 
d

ds
=

3

9
sec . tan  –cosec cot  

 Again differentiating w.r.t. , we get 

 
2

2

d

sd


=

3

9
[sec . tan

2
 + sec

3
] 

– [–cosec  cot
2
 –cosec

3
] 

 =
3

9
[sec . tan

2 
 + sec

3 
] 

       + [cosec  cot
2
 + cosec

3
] 

 Now, put
d

ds
= 0  

 
3

9
sec. tan – cosec  cot = 0  

 
3

9

cos

1
×





cos

sin
=

sin

1
×





sin

cos
 

 3 3  sin
3
  = cos

3
 

 tan
3
 = 

33

1
 = 

3)3(

1
 

 tan =
3

1
 = /b  

 
2

2

d

sd


=

3

9










33

8

3

1

3

2
+ [2 × 3 + 8] = +ve 

 Hence, s to be minimum. 

 [A] is correct answer. 
 

Q.5 Find the point on x
2
 + 2y

2
 = 6 nearest to the 

line x + y = 7.   [IIT 2003] 
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Sol. Let us taken a point P( 6  cos, 3  sin ) on 

3

y

6

x 22

  = 1. 

 Now to minimize the distance from P to given 

straight line x + y = 7, shortest distance exists 

along the common normal. 

 

x+y=7 

X 

y 

O 

P 

N 
y 

 

 Slope of normal at P = 2
eccos6

sec6





tan = 1 

 So,   cos  = 
3

2
     and    sin  = 

2

1
 

 Hence, P(2, 1)    
 

Q.6 For the circle x
2
 + y

2
 = r

2
, find the value of r for 

which the area enclosed by the tangents drawn 

from the point P(6, 8) to the circle and the 

chord of contact is maximum.   [IIT 2003] 

Sol. x
2
 + y

2
 = r

2
 

 Equation of chord QR : 6x + 8y = r
2
 

   

y 

Q 

R 

M 
x 

P(6, 8) 

 
 Let PM be perpendicular on QR 

 |PM| = 
6436

r6436 2




= 

10

r100 2
 

 Now, solving x
2
 + y

2
= r

2
 and 6x + 8y = r

2
 

    x = 
6

y8r2 
 

 

2
2

6

y8r













 
+ y

2
 = r

2
 

 (r
2
 – 8y)

2
 + 36y

2
 = 36r

2
 

 r
4
 + 64y

2
 – 16yr

2
 +36y

2
 = 36r

2
 

 100 y
2
 – 16r

2
y + (r

4
 – 36r

2
) = 0 

 sum of roots, 

 y1 + y2 = 
100

r16 2

 

 product of roots, = 
100

r36r 24 
= y1y2 

 (y1– y2)
2
 = (y1 + y2)

2
 – 4y1y2 

 (y1 – y2)
2
 = (y1 + y2)

2
 – 4y1y2 

 = 

2
2

100

r16














– 4 × 

100

)r36r( 24 
 

 = 
100100

r256 4


– 

100

)r36r(4 24 
 

 = 
100100

)r36r(400r256 244




 

 = 
100100

r144r36400 42




 

 = 
100100

)r100(r144 22




 

 (y1 – y2) = 
100

r12
× 2r100  

 Now, from 6x + 8y = r
2
 

 6x1 + 8y1 = r
2
 

 6x2 + 8y2 = r
2
 

  6x1 + 8y1 = 6x2 + 8y2 

  6(x1 – x2) = 8(y2 – y1) 

  (x1 – x2) = 
6

8
(y1– y2) = 

3

4
(y1– y2) 

  (x1 – x2) =
3

4
(y1 – y2)  

  (x1 – x2)
2
 = 

9

16
× (y1 – y2)

2
 

 = 
9

16
× 

100100

r144 2


(100 – r

2
) 

 Hence, QR
2
 = (x1 – x2)

2
 + (y1 – y2)

2
 

 = 
9

16
× 

100100

r144 2


× (100 – r

2
) + 

100100

r144 2


 

    (100 – r
2
) 

 = 
100100

r144 2


(100 – r

2
) × 








1

9

16
 

 = 
100100

r144 2


(100 – r

2
) ×

9

25
  

 |QR| = 
100

r12
× 

3

5
× 2r100  

 Hence, Area of PQR, A = 
2

1
× QR × PM 
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 = 
2

1
× 













 

10

r100 2

× 
100

r12
× 

3

5
(100 – r)

1/2
 

 = 
106100

512




r (100 – r

2
)
3/2

 

 Differentiating w.r.t. r, we get 

 
dr

dA
= 

100

1
× 






2

3
.r)r100.(1 2/32  

   



 )r2()r100( 2/12  

 
dr

dA
=

100

1
× 

2

3
.r)r100( 2/32  .(100 – r

2
)
1/2

(–2r)] 

 = 
100

1
× [(100 – r

2
)
3/2

 –3r
2
 (100 – r

2
)

1/2
 

 Again differentiating w.r.t.r, we get 

 
2

2

dr

Ad
= 

100

1
× 3)r2()r100(

2

3 2/12 



  

                    

 










 )r2(

r1002

1
rr100(r2

2

22/12  

= 
100

1
× 



 3)r100(r3 2/12  

                 























2

3
2/12

r100

r
)r100(r23

 

  = 
100

1
× 



 3)r100(r3 2/12  

           
























2

32

r100

r)r100(r2
3  

  = 
100

1
× 



 3)r100(r3 2/12
























2

3

r100

r3r200
 

  = 
100

1
× 




















2

3
2/12

r100

r600r9
)r100(r3  

  = 
100

1
× 



















2

32

r100

r600r9)r100(r3
 

  = 
100

1
× 



















2

33

r100

r600r9r3r300
 

  = 
100

1
× 



















2

3

r100

r900r12
 

  Now,  put 
dr

dA
= 0 

   (100 – r
2
)
3/2

 = 3r
2
 (100 – r

2
)
1/2

 

   100 – r
2
 = 3r

2
   4r

2
 = 100 

    r
2
 = 25 |r| = 5 

  

5|r|

2

2

dr

Ad



= 
100

1
× 

5|r|
2

3

r100

r900r12



















 

  = 
100

1
× 







 

75

45001500
= –ve 

  Hence, area would be maximum. 

 

Q.7 If p(x) be the cubic polynomial satisfying  

p (–1) = 10, p(1) = – 6 and p(x) has maximum 

at x = –1 and p(x) has minima at x = 1. Find 

the points of local maxima and minima, also 

find the distance between these two points. 

     [IIT 2005] 

Sol. Let P(x) = ax
3
 + bx

2
 + cx + d 

 P(–1) = –a + b – c + d = 10 

  b + d = 10 + a + c   …(i) 

 P(1) = a + b + c  + d = – 6 

  a + b + c + d = –6   …(ii) 

  )x(P = 3ax

 + 2bx + c = 0 

  
)1x(

)x(P


 = 3a –2b + c = 0 

   c = 2b –3a     …(iii)     

  )x(P  = 6ax + 2b + 0  

 
)1x(

)x(P


 = 6a + 2b = 0 

 b = 3a = 0    ….(iv) 

Now solving equations (i), (ii), (iii) and (iv), 

we get 

b =–3a 

c = 2b –3a = –6a –3a 

 c = –99 

b + d = 10 + a + c 

a + b + c + d = –6 

(b + d) + (a + c) = –6 

 10 + (a + c) + (a + c) = –6 

 2 (a + c) = –16  (a + c) = – 8 

   (a – 9a) = – 8 

   a = 1 

  b = – 3 

  c = – 9 

  d = 10 + 1 – 9 + 3 

  d = 5 

 Hence, P(x) = x
3
 –3x

2
 – 9x + 5 

 )x(P = 3x
2
 – 6x – 9 + 0 

 Now, put )x(P = 0 

  3x
2
 –6x – 9 = 0 

  x
2
 –2x – 3 = 0 

 x
2
 –2x – 3 = 0 
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  x
2
 – 3x + x – 3 = 0 

  x (x – 3) + 1(x – 3) = 0 

  (x – 3) (x + 1) = 0 

  x = –1, 3 

)x(P  = 6x – 6 + 0 

 )x(P  = 6(x –1) 

 
)1x(

)x(P


 = 6(–2) = –12 

 x = –1 give maxima 

 from, P(x) = x
3
 –3x

2
 – 9x + 5 

 
)1x(

)x(P


= –1 –3 + 9 + 5 = 10 

 Hence, point of maxima (–1, 10) 

 
)3x(

)x(P


 = 6(3 –1) = 12 

 x = 3 gives minima 

 
)3x(

)x(P


= 27 – 27 – 27 + 5 = –22 

Hence, point of minima (3, –22) 

 (–1, 10) = (3, – 22) 

 Distance = 22 )1022()13(   

  = 102416  = 1040  

  = 4 65 unit. 

 

Q.8 f(x) is a cubic polynomial such that f(3) = 18,  

f(–1) = 2 and f(x) has local maximum at x = –1. 

If f (x) has local maximum at x = 0, then  

    [IIT 2006] 

 (A) f(x) is increasing for x  [1, 2 5 ] 

 (B) the distance between (–1, 2) and (a, f(a)) 

where x = a is the point of local  minimum 

is 2 5  

 (C) f(x) has local minima at x = 1  

 (D) the value of f(0) = 5     

Sol. [A, B,C] 
 

Q.9  The total number of local maxima and local 

minima of the function     [IIT 2008] 

 ƒ(x) = 









2x1,x

1x3,)x2(
3/2

3

 is - 

 (A) 0 (B) 1 (C) 2 (D) 3 

Sol. [C] 

 

0 

1 

x = –1 x = –2 

 

Q.10  The maximum value of the function  

f(x) = 2x
3
 – 15x

2
 + 36x – 48 on the set  

 A = {x|x
2
 + 20  9x} is ..... [IIT 2009] 

Sol.    [7] 

  f(x) = 2x
3
 –15x

2
 + 36x – 48 

 f (x) = 6(x –2) (x –3) 

  A = {x |x
2
 + 20 –9x  0} 

 4  x  5 

 so f(x) is increasing for x  [3, ) 

 so (f (x))max at x  [4, 5] is f(5) 

 so (f(x))max = f(5) = 7  

 

Q.11  Let f , g and h be real-valued functions defined 

on the interval [0, 1] by f(x) = 
2x2x ee  ,  

g(x) =
2x2x exe  and h(x) = 

2x2x2 eex  . If 

a, b and c denote, respectively, the absolute 

maximum of f, g and h on [0, 1], then  

    [IIT 2010] 

 (A) a = b and c  b (B) a = c and a  b  

 (C) a   b and c  b (D) a = b = c 

Sol. [D]   

f '(x) = 2x( 




   22 xx ee  

 g'(x) =  1x2x2e 2x2

  

 h'(x)  = 
2x3ex2    

   all f'(x) , g'(x), h'(x) are positive so all 

attains absolute maxima at x = 1  

 So   f (1) = g(1) = h(1) = e + e
–1 

= a = b = c 
 

Q.12 Let f be a function defined on R (the set of all 

real numbers) such that f (x) = 2010 (x –2009) 

(x –2010)
2
 (x –2011)

3
 (x –2012)

4
, for all x  R. 

 If g is a function defined on R with values in 

the interval (0, ) such that f(x) = n {g(x)}, 

for all x  R, then the number of points in R at 

which g has a local maximum is   [IIT 2010] 

Sol. g(x) = e
f(x)
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 g(x) = e
f(x)

 f  (x) 

 g(x) = 0  f  (x) = 0  x = 2009, 2010, 2011, 

2012 

 Points of local maxima = 2009,  only one 

point 

 

Q.13 Let f : IR  IR be defined as f(x) = |x| + |x
2
 – 1|. 

The total number of points at which f attains 

either a local maximum or a local minimum is  

         [IIT 2012] 

Sol.[5] 

   f(x) = | x | + | x – 1| | x + 1| 

 x  1  f(x) = x
2
 + x – 1   f '(x) = 

2x + 1                         +ve 

 0  x < 1 f(x) = 1 – x
2
 + x   f '(x) = 1 

– 2x  x > 
2

1
 –ve 

 – 1 < x < 0 f(x) = 1 – x
2
 – x   f '(x) = – 

2x – 1  x > –
2

1
 –ve ; x < –

2

1
 +ve 

 x  –1  f(x) = x
2
 – x – 1   f '(x) = 

2x – 1                            –ve 

 

–1 –1/2 0 1/2 1  

 

Q.14 Let p(x) be a real polynomial of least degree 

which has a local maximum at x = 1 and a local 

minimum at x = 3. If p(1) = 6 and p(3) = 2, 

then p (0) is      [IIT 2012] 
Sol. [9] P'(1) = 0, P'(3) = 0 

 

 

 P'(x) = K(x – 1) (x – 3) 

         = K(x
2
 – 4 x + 3)  P'(0) = 3K 

 P(x) = 
3

K
x

3
 – 2K x

2
 + 3K x +  

 
3

K
 – 2K + 3K +  = 6, K – 18 K + 9K +  = 2 

 
3

4
K +  = 6,   

3

4
K = 4 

 K = 3 

 P'(0) = 9 
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EXERCISE # 5 
 

Q.1  The function f(x) = 3 + 2(a + 1)x + (a
2
 + 1)x

2
 – x

3
 

has a local minimum at x = x1 and local 

maximum at x = x2 such that x1 < 2 < x2, then a 

belongs to interval(s) 

 (A) 









2

3
,  (B) 








 1,

2

3
 

 (C) (0, )   (D) (1, )

Sol. [A, D]   

f ' (x) = 2 (a + 1) + 2 (a
2
 + 1) x –3 x

2
  

 Clearly it is opening downward graph (coeff of 

x
2
 – ve) 

 f ' (2) = 2 (a + 1) + 4 (a
2
 + 1) –12 > 0  

 

 

+ – – 

2 x2 x1 

m m 
 

 4a
2
 + 2a – 6 > 0 

 2a
2
 + a – 3 s> 0 

 2a
2
 + 3a – 2a – 3> 0 

 (a + 1)  (2a + 3) > 0   a  (– , –3/2)  (1, 

)  

 

Q.2 Let g(x) > 0 and f (x) < 0  x  R, then   

 (A) f(f(x + 1)) > f(f(x – 1)) 

 (B) f(g(x – 1)) > f(g(x + 1))   

 (C) g(f(x + 1)) < g(f(x – 1))  

 (D) g(g(x + 1)) > g(g(x – 1))  

Sol. [A, B, C, D]  

g (x)  and f (x)  

 then fog and gof will be   

 while fof and gog will be  Hence A, B, C, D 

all the true   
 

Q.3  A housing corporation wants to build some 

flats. The ground plane of a flat consists of a 

semicircle with a rectangle constructed on its 

diameter. Given that the perimeter of the flat is 

50 meter, find its dimensions in order that the 

area covered is maximum. 

Sol. Let radius of semi circle be x meter and 

dimensions of rectangle be y meter and 2x 

metres. 

   

y 

x 

2x • 

y 
 

 Given perimeter of plate, 

 x + 2y + 2x = 50 

 y + x +
2


x = 25 

 y = 25 – x 






 


2
1  

 Area of flat, A = 
2

x 2
+ 2xy 

 A = 
2

x 2
+ 2x [25 – x (1 + /2)] 

 A = 
2

x 2
+ 50x –2x

2
 (/2+1) 

 A = 
2

x 2
+ 50x –x

2
 –2x

2
 

 A = 
2

x 2
+ 50x –x

2
 –2x

2
 

 A = 50x – 2x
2
 –x

2
/2 

 Differentiating above function w.r.t. x, we get 

 
dx

dA
= 50 – 4x – x 

 = 50 – (4 + )x 

 Again differentiating w.r.t. x, we get 

 
2

2

dx

Ad
= 0 – (4 + ) 

 = – (4 + ) 

 = –ve 

 Put 
dx

dA
= 0  50 – (4 + )x = 0 

  x = 50/(4 + ) 
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  x = 

7

22
4

50



 = 
7/50

50
 

  x = 7 meters  

 y = 25 – 
2

x
( +2) 

 = 25 – 
2

7








 2

7

22
 

 = 25 –
2

7







 

7

1422
= 25 – 

2

7
× 

7

36
= 25 – 18 

 = 7 meters. 

 x = 7 meters and y = 7 meters. 
 

Q.4 Let f(x) = sin
3
 x + sin

2
x, –

2


< x <

2


. Find 

the intervals in which  should lies in order that 

f(x) has exactly one minimum and exactly one 

maximum.   [IIT 1985] 

Sol. The given function is,  

              f(x) = sin
3
x +  sin

2
x for – /2 < x < 

/2 

            f (x) = 3 sin
2
x cos x + 2 sin x cos x 

                 = 
2

1
 sin 2x (3 sin x + 2) 

 So, from f  (x) = 0, we get x = 0 or 3 sin x + 2 = 0 

 Also, f  (x) = cos 2x (3 sin x + 2) + 
2

3
 sin 2x 

cos x 

 Therefore, for  = 
2

3
 sin x, we have 

  f (x) = 3 sin x cos
2
x = –2 cos

2
x 

 Now, if 0 < x < /2, then –3/2 <  < 0 and 

therefore f (x) > 0, 

 f(x) has one minimum for this value of . 

 Also for x = 0, we have f  (0) = 2 < 0, That 

is, f(x) has a maximum at x = 0 

 Again, if –/2 < x < 0, then 0 <  < 3/2 and 

therefore f (x) = –2 cos
2
x < 0. 

 So that f(x) has a maximum. 

 Also for x = 0, f (a) = 2 > 0 so that f(x) has a 

minimum. 

 Thus, for exactly one maximum and minimum 

value of f(x),  must lie in the interval 

 –3/2 <  < 0     or     0 <  < 3/2  

 i.e.,   (–3/2, 0)  (0, 3/2).    
 

Q.5 Let P(x) = a0 + a1x
2
 + a2x

4
 + ......+ anx

2n
 be a 

polynomial in a real variable x with 

 0 < a0 < a1 < a2 < .....< an. The function P(x) 

has-   [IIT-1986] 

 (A) neither a maximum nor a minimum 

 (B) only one maximum 

 (C) only one minimum 

 (D) only one maximum and only one minimum 

Sol. [C] 

 The given polynomial is 

      p(x) = a0 + a1x
2
 + a2x

4
 +…..+ anx

2n
, x  R 

 and     0 < a0 < a1 < a2 < …. < an.  

 Method 1 : Here we observe that all 

coefficients of different powers of x, i.e., a0, a1, 

a2, …… an are positive. 

 Also only even powers of x are involved. 

   P(x) can not have any max. value. 

 More over P(x) is minimum, when x = 0, i.e., 

a0. 

  P(x) has only one minimum. 

  ‘C’ is the correct answer. 

 Method 2 : We have P (x) = 2a1x + 4a2x
3
 

+…..+ 2nanx
2n–1

 clearly P(x) increases for all  

                        x > 0 and decreases for all x < 0. 

 P (x) has no max. value and min. value at x = 0  

  ‘C’ is the correct answer.  

 Method 3 : We have P  (x) = 2a1x + 4a2x
3
  

                                                                +….+ 2nanx
2n–1

 

 P  (x) = 0  x = 0 

 P  (x) = 2a1 + 12a2x
2
 +…..+ 2n (2n – 1) anx

2n–2
 

 P  (x) | x = 0 = + ve as a1 > 0 

  P(x) has only one minimum at x = 0. 

  ‘C’ is the correct answer.        
 

Q.6 Let A (p
2
, –p), B(q

2
, q), C(r

2
, –r) be the vertices 

of the triangle ABC. A parallelogram AFDE is 

drawn with vertices D, E and F on the line 

segments BC, CA and AB respectively. Using 

calculus, show that maximum area of such a 

parallelogram is 
4

1
 (p + q) (q + r) (p – r). 

    [IIT 1986] 
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Sol. 

 

A M F B 

(p
2
, –p) 

y 

E x 

b–y 

C (r
2
, –r) 

(q
2
, –q) 

D 
 

  AEDF is a parallelogram. 

 Let                         AF = x = ED 

 and AE = y = FD 

 Then from similar 's CED and CAB, we have 

  
AB

CA

ED

CE
   or   

c

b

x

yb



    …..(1) 

 Let P denote the area of | |
gm

 AFDE. 

 Then    P = 2 AEF = 2 . 
2

1
 xy sin A 

 = y . 
b

c
 (b – y) sin A [Using eq. (1)] 

 P = 
b

c
 sin A (by – y

2
)  

b

c

dy

dP
  sin A (b – 2y) = 0 

 Above gives y = 
2

b
 and 

2

2

dy

Pd
 = 

b

c
 sin A(–2) = –ve 

 Hence area is maximum when y = b/2 and its 

value is  

 P = 









2

b
b

b

c
.

2

b
 sin A = 

4

1
 bc sin A = 

2

1
 . ABC 

 Now,                  = 
2

1

1rr

1qq

1pp

2

2

2





 

 Operating R2 – R1 and R3 – R1, we get 

                 = 
2

1
 

0rppr

0pqpq

1pp

22

22

2







 

                  = 
2

1
 (q + p) (p – r) 

1)pr(

1pq




 

                  = 
2

1
 (q + p) (p – r) (q + r) 

 Thus max. area of | |
gm

 AFDE is 

  = 
2

1
 = 

4

1
 (p + q) (q + r) (p – r)      

 

Q.7 The smallest positive root of the equation,  

tan x – x = 0 lies in-  [IIT-1987] 

 (A) 






 

2
,0  (B) 











,

2
  

 (C) 






 


2

3
,  (D)  











2,

2

3
 

Sol. [C] 

 Let f(x) = tan x – x  

 (A) If x  (0, /2) then 

 f  (x) = sec
2
x – 1 > 0, 0 < x < /2 

 f(x) is monotonically increasing in (0, /2)  

 Also f(0) = 0 and f(x) > 0 for 0 < x < /2 

 [Keeping in mind that tan x > x for x  (0, 

/2)] 

   f(x) = 0 has no root in (0, /2) 

 (B) If x  (/2, ) i.e. /2 < x < then consider  

           x = /2 + 

 /2 < /2  +  <  0 <  < /2 

 f(x) = tan (/2 + ) – (/2 + )  

                                 = – [cot  + /2 + ] < 0 

 As the above is true for any   (/2, ) 

   f(x) = 0 has no root in (/2, ). 

 (C) If x  (, 3/2) then f(x + 0)  

 = 
0h

lim


f( + h) = 
0h

lim


[tan ( + h) – ( + h)] 

 = 
0h

lim


 [tan h –  h] = –  < 0 

 And           f(3/2 – 0) = 
0h

lim


 f(3/2 – h) 

 = 
0h

lim


 [tan (3/2 – h) – (3/2 – h)] 

 = 
0h

lim


 [cot h – 3/2 + h]  

 = + 

 i.e. sign of f(x) changes from –ve to +ve in the 

interval (, 3/2) 

 x (, 3/2) such that f(x) = 0 

 Hence the root of f(x) = 0 lies in (, 3/2) 

 Thus the smallest +ve root of the given 

equation lies in (, 3/2) 

   (C) is the correct answer. 
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y
1
 

O x x
1
 

y 
x=/2 x= 

P c=3/2 

y=x 

 
 Alternative 

 It is clear from the graph that the curves 

  y = tan x and y = x intersect at P in (, 3/2) 

 Thus the smallest +ve interval in which tan x 

has solution is (, 3/2) 

   (C) is the correct answer.   
 

Q.8 Find the point on the curve 4x
2
 + a

2
y

2
 = 4a

2
,  

4 < a
2
 < 8 that is farthest from the point  

(0, –2).   [IIT 1987] 

Sol.  

 

 

O 

P(a cos, 2 sin) 

Y 

X 
(a, 0) 

(0, –2) 

 

 The equation of given curve can be expressed 

as 

  
4

y

a

x 2

2

2

  = 1 

 where 4 < a
2
 < 8  

 Clearly it is the equation of an ellipse 

 Let us consider a pt P (a cos , 2 sin ) on the 

ellipse. 

 Let the distance of P (a cos , 2 sin ) from  

(0, –2) is L 

 Then,    L
2
 = (a cos  – 0)

2
 + (2 sin  + 1). cos 

 Differentiating with respect to , we have 

  
d

)L(d 2

 = 0 cos [–2a
2
 sin + 8 sin + 8 ] 

 For max or min value of L we should have 

 
d

)L(d 2

 = 0 cos [–2a
2
 sin + 8 sin + 8] = 0 

   either cos = 0  or  (8 – 2a
2
) sin  + 8 = 0 

  = 
2


  or  sin = 

4a

4
2 

 

 Since    a
2
 < 8  a

2
 – 4 < 4 

  
4a

4
2 

 > 1 sin  > 1   

   where is not possible 

 Also   
2

22

d

)L(d


 = cos [– 2a

2
 cos  + 8 cos ] +             

                                   (– sin ) [– 2a
2
 sin  + 8 sin  + 8] 

 At   = 
2


, 

2

22

d

)L(d


 = 0 – [16 – 2a

2
] = 2 (a

2
 – 8)  

                   < 0    as  a
2
 < 8 

 L is max. at  = /2 and the farthest pt is (0, 

2)   
 

Q.9 A point P is given on the circumference of a 

circle of radius r. Chords QR are parallel to the 

tangent at P. Determine the maximum possible 

area of the triangle PQR. [IIT-1990] 

Sol.  

 
A R Q 

X P Y 

r 

r 

r 
O 

2 

 

 
 As  QR   | |   XY diameter through P is  QR. 

 Now area of PQR is given by 

   A = 
2

1
 QR . AP 

 But                              QR = 2 . QA  

        = 2r sin 2

 and  PA = OA + OP  

         = r cos 2  + r 

  A = 
2

1
. 2r sin 2. (r + r cos 2) 

 = r
2
 . 2 sin  cos  . 2 cos

2
 = 4r

2
 sin  

cos
3


 For max. value of area  
d

dA
 = 0 

   4r
2
 [cos

4
 – 3 sin

2
 cos

2
] = 0 
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   cos
2
 (cos

2
 – 3 sin

2
) = 0 

                     tan  = 
3

1
 

                            = 30° 

 Also 
2

2

d

Ad


 = 4r

2
[– 4 cos

3
 sin  – 6 sin  cos

3
  

                                                                + 6 sin
3
 cos ] 

 = 4r
2
[– 10 sin  cos

3
 + 6 sin

3
 cos ] 

 
2

2

d

Ad


| = 30° = 4r

2














2

3
.

8

1
.6

8

33
.

2

1
.10  

                    = 4r
2
















8

33

8

315
 

                = 4r
2
 













 

8

312
 = –ve 

  A is max. at  = 30° 

 And    Amax = 4r
2
 sin 30° cos

3
30° 

                = 4r
2
 × 

2

1
 × 

4

33

8

33
  r

2
  

 

Q.10 A window of perimeter P (including the base of 

the arch) is in the form of a rectangle 

surmounted by a semi circle. The semi circular 

portion is fitted with coloured glass while the 

rectangular part is fitted with clear glass 

transmits three times as much light per square 

meter as the coloured glass does. What is the 

ratio for the sides of the rectangle so that the 

window transmits the maximum light? 

    [IIT-1991] 

Sol.  

 

D 

A B 

C 

E 

 
 Let ABCEDA be the window as shown in the 

figure and let  

   AB = x m 

   BC = y m 

 Then its perimeter including the base DC of 

arch 

   = 






 


2

x
y2x2  m 

                               P = 






 


2
2 x + 2y   ….(1) 

 Now area of rectangle ABCD = xy 

 and area of arch           

   DCED = 

2

2

x

2








 

 Let  be the light transmitted by coloured glass 

per sq. m, Then 3 will be the light transmitted 

by clear glass per sq. m 

 Hence the area of light transmitted 

 = 3 (xy) + 





















2

2

x

2
 

 A = 










 


8

x
xy3

2

     …(2) 

 Substituting the value of y from (1) in (2), we 

get 

  A = 










 
















 


8

x
x

2

4
P

2

1
x3

2

 

           = 










 





8

x
x

4

)4(3

2

Px3 2
2  

   
dx

dA
 =  







 





4

x
x

2

)4(3

2

P3
 

 For A to be maximum 
dx

dA
 = 0 

     x = 
















 













2

312

4

2

P3

 

  x = 
2

P3
 × 

245

4


      x = 

245

P6


 

 Also      
2

2

dx

Ad
 =  







 




42

)4(3
 < 0 

   A is max when x = 
245

P6


 

 5x + 24x = 6 















 
y2x

2

4
 

                           [Using value of P from (1)] 

 (5 + 24 – 12 – 3) x = 12y 

             (2 + 12) x = 12y   
6

6

x

y 
    
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 The required ratio of breadth to length of 

the rectangle    = 






 

6

6
  

 

Q.11 What normal to the curve y = x
2
 forms the 

shortest chord?  [IIT-1992] 

Sol. The given curve is  y = x
2
      ….(1) 

 Consider any pt. A(t, t
2
) on (1) at which normal 

chord drawn is shortest.  

 Then eq. of normal to (1) at A (t, t
2
) is  

  y – t
2
 = – 

)t,t( 2dx

dy

1









(x – t) 

                               [where 
dx

dy
 = 2x from (1)] 

  y – t
2
 = – 

t2

1
(x – t) 

 x + 2ty = t + 2t
3
    ….(2) 

 This normal meet the curve again at pt B which 

can be obtained by solving (1) and (2) as 

follows : 

 Putting y = x
2
 in (2), we get 

  2t x
2
 + x – (t + 2t

3
) d = 0 

  D = 1 + 8t (t + 2t
3
) = 1 + 8t

2
 + 16t

4 
= (1 + 4t

2
)
2
 

  x = 
t4

t411
,

t4

t411 22 
 

            = t, – 
t2

1
 – t 

  y = t
2
, t

2
 + 

2t4

1
 + 1 

 Thus,    B 







 1

t4

1
t,

t2

1
t

2

2  

  Length of normal chord 

  AB = 
2

2

2

1
t4

1

t2

1
t2 

















  

 Consider   Z = AB
2
 = 

2

2

2

1
t4

1

t2

1
t2 

















  

 Z = 
24 t4

3

t16

1
  + 3 + 4t

2
, 

dt

dz
 = 0 

    – 
35 t2

3

t4

1
  + 8t = 0 – 1 – 6t

2
 + 32t

6
 = 0 

 32 (t
2
)
3
 – 6t

2
 – 1 = 0 (2t

2
 – 1) (16t

4
 + 8t

2
 + 1) = 

0 

 t
2
 = 

2

1
 (leaving –ve values of t

2
) 

 t = 
2

1
,

2

1
   8

t2

9

t4

5

dt

Zd
462

2

  

        

2

1
t

2

2

dt

Zd



 = + ve also 

2

1
t

2

2

dt

Zd



 = +ve 

 Z is min at t = 
2

1
    or    –

2

1
 

 For t = 
2

1
 normal chord is (from (2)) 

 x + 2y2   

 For t = – 
2

1
 normal chord is 

                        x – 2y2      
 

Q.12 Let f(x) = 
















3x1,3x2

1x0,
)2b3b(

)1bbb(
x

2

23
3

 

 Find all possible real values of b such that f(x) 

has the smallest value at x = 1. [IIT-1993] 

Sol. We have f(x) =
















3x1,3x2

1x0,
2b3b

1bbb
x

3

23
3

 

 We can see from definition of the function, that 

   f(1) = 2(1) – 3 = – 1 

 Also f(x) is increasing on [1, 3], f (x) being 

2>0 

  f(1) = – 1 is the smallest value of f(x) 

 Again f (x) = – 3x
2
 for x  [0, 1) s.t. f (x) < 0 

  f(x) is decreasing on [0, 1) 

 For fixed value of b, its smallest occur at 

x1 

 i.e., 
0h

lim


 f(1 – h) = 
0h

lim


– (1 – h)
3 

+ 

2b3b

1bbb
2

23




 = – 1 + 

2b3b

1bbb
2

23




 

 As given that the smallest value of f(x) occur at x = 

1 

  Any other smallest value  f(1) 

  –1+
2b3b

1bbb
2

23




–1

2b3b

1bbb
2

23




  0     

   
)1b()2b(

)1b()1b( 2




  0 

   (b – 1) (b + 1) (b + 2)  0 

 
 + + – – 

–2 –1 1 

 

  b (– 2, – 1)  (1, )  
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Q.13 If f(x) = 








3x2,x37

2x1,1x12x3 2

 then; 

    [IIT-1993] 

 (A) f(x) is increasing on [–1, 2] 

 (B) f(x) is continuous on [–1, 3] 

 (C) f (2) does not exist 

 (D) f(x) has the maximum value at x = 2 
Sol. [A, B, C, D] 

 We are given that  

 f(x) = 










3x2,x37

2x1,1x12x3 2

 

 Then on [–1, 2], f (x) = 6x + 12 

  for             –1  x  2, – 6  6x  12 

                 6  6x + 12  24 

  f  (x) > 0,  x  [–1, 2] 

   f is increasing on [–1, 2]  

 Also f(x) being polynomial for x[–1,2)  (2, 

3] 

 f(x) is cont. on [–1, 3] except possibly at 

 At x = 2,    LHL = 
0h

lim


 f(2 – h) = 
0h

lim


3(2 – h)
2
  

          + 12 (2 – h) – 1 = 35 

      RHL =
0h

lim


 f(2 + h) = 
0h

lim


 37 – (2 + h) = 35 

 and  f(2) = 3.2
2
 + 12.2 – 1 = 35 

 LHL = RHL = f(2)  f(x) is continuous at x = 

2 

 Hence f(x) is constinuous on [–1, 3] 

 Again at      x = 2 

 RD = 
0h

lim
 h

)2(f)h2(f 
  

 =
0h

lim
 h

35)h2(37 
 = 1 

 LD = 
0h

lim
 h

)h2(f)2(f 
  

 =
0h

lim
 h

1)h2(12)h2(335 2 
 

 = 
0h

lim
 h

1h1224)hh44(335 2 
 

 = 
0h

lim


 
h

h1223h3h121235 2 
 

 =
0h

lim


24
h

h24h3 2




 

 As       LD  RD 

   f  (2) does not exist. Hence f(x) can not 

have max. value at x = 2 

 Thus (A), (B), (C) are the correct options. 
 

Q.14 The circle x
2
 + y

2
 = 1 cuts the x-axis at P and 

Q. Another circle with centre at Q and variable 

radius intersects the first circle at R above the  

x-axis and the line segment PQ at S. Find the 

maximum area of the triangle QSR. [IIT-1994] 

Sol.  

 y 

R 

Q 

(1,0) 

x 

y
1
 

O S P x
1
 

(–1,0) 

 
 The given circle is    x

2
 + y

2
 = 1    ….(1) 

 which intersect x-axis at P(–1, 0) and Q(1, 0). 

 Let radius of circle with centre at Q(1, 0) be r, 

where r is variable. 

 Then equation of this circle is, (x – 1)
2
 + y

2
 = r

2
  

    ….(2) 

 Subtracting (1) from (2) we get,  

   (x – 1)
2
 – x

2
 = (r

2
 – 1) 

 –2x + 1 = r
2
 – 1  x = 1 – 

2

r 2

 

 Substituting this value of x in (2), we get 

  
4

r 2

 + y
2
 + r

2   
y = ± r 

4

r
1

2

  

    R 















4

r
1r,

2

r
1

22

 pt. above x-axis. 

 Area of QRS = 
2

1
 SQ × ordinate of pt. R 

  A = 
2

1
 × r × r 

4

r
1

2

  

 A will be max. if A
2
 is max.  

  A
2
 = 

16

r

4

r

4

r
1

4

r 6424















  

 Differentiating A
2
 w.r. to r, we get 

  
8

3
r

dr

dA 2
2

 r
5
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 For A
2
 to be max. 

dr

dA 2

 = 0  r
3
 








 2r

8

3
1 = 0 

  r = 
3

22
 

 
2

22

dr

)A(d
 = 3r

2
 – 

8

15
 r

4
  

        
9

64

8

15

3

8
3

dr

)A(d

3

8
r

2

22

2





 = –ve 

  A
2
 and hence A is max. when, r = 

3

22
 

 Max. area = 

64

3

22

16

1

3

22

4

1





























 

                 = 
27

32

9

16

27

512

16

1

9

64

4

1
  

                 = 
9

34

33

4
  sq. units. 

 

Q.15 Let P be a variable point on the ellipse 

2

2

2

2

b

y

a

x
 = 1 with foci F1 and F2. If A is the 

area of the triangle PF1F2 then the maximum 

value of A is..............  [IIT-1994] 

Sol.  

 

 

F2 (– ae, 0) F1 (ae, 0) 

P(a cos , b sin ) 

Let P (a cos, b sin) be any point on the 

ellipse 

 1
b

y

a

x
2

2

2

2

  with foci F1 (ae, 0) and F2 (– ae, 0) 

 Then area of P F1 F2 is given by 

 A = 
2

1
 

10ae

10ae

1sinbcosa





 

      = 
2

1
 | – b sin  (ae + ae) | = abe | sin  |  

  | sin  |  1    Amax = abe 

 

Q.16  Let (h,k) be a fixed point, where h > 0, k  > 0, 

A straight line passing through this point cuts 

the positive direction of the coordinates axes at 

the points P and Q. Find the minimum area of 

the triangle OPQ, O being the origin.    

    [IIT 1995] 

Sol. Let equation of line be y = mx + c 

 k = mh + c  c = (k –mh) 

 y = mx + (k – mh)  – mx + (k –mh) 

 

 

Q 

(h, k) 

P 
O 

• 

 

  

m

)kmh(

x


+ 

)mhk(

y


= 1 

 Hence, OP = 






 

m

kmh
 

  OQ = (k – mh) 

 Area of triangle OPQ, A =
2

1
× OP × OQ 

 A =
2

1
× 







 

m

kmh
× (k – mh) 

 A =
2

1
× 

m

1
× (–1) × (mh – k)

2
 

 A = –
m2

1
[m

2
h

2
 + k

2
 – 2mhk] 

 A = 
2

1
[–mh

2 
–

m

k 2

+ 2hk] 

 A =
2

1
[2hk –

m

k 2

– mh
2
] 

 Differentiating w.r.t.m, we get 

 
dm

dA
=

2

1
[0 +

2

2

m

k
– h

2
]  

 Again differentiating w.r.t m, we get 

 
2

2

dm

Ad
=

2

1
[–

3

2

m

k2
–0] 
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2

2

dm

Ad
= –k

2
/m

3
 

 Now put, 
dm

dA
= 0 

2

2

m

k
= h

2
 

   m
2
 = (k/h)

2
 

   m = ± k/h 

 











h

k
m

2

2

dm

Ad
= –k

2
/(k/h)

2
 

  = – ve 

 











h

k
m

2

2

dm

Ad
= –k

2
/(k/h)

3
 

  = + ve 

 Hence, area will be minimum at m = –k/h 

 Amin =
2

1












 2

2

h
h

k
h

k

k
hk2 = 2hk        

 

Q.17 The function f(x) = |px – q| + r |x|,  x  (–, ) 

where p > 0, q > 0, r > 0, assumes its minimum 

value only at one point if  [IIT 1995] 

 (A) p  q  (B) r  q 

 (C) r  p  (D) p = q = r 

Sol. [C]  

 f(x) = |px – q| + r |x|; x  R 

 p > 0, q > 0, r > 0 

 when, 0 < x < q/p  |x| = x 

     |px –q| = –(px –q) 

 f(x) = – (px –q) + rx 

 f(x) = (r –p)x + q 

 f(x) = (r – p) 

 (r –p) may be either positive or negative. 

 When x > q /p  |px –q| = (px –q) 

 f(x) = (px – q) + rx 

 f(x) = (p + r)x –q 

 f(x) = (p + r) = +ve 

 f(x) = 0 

 Hence, f(x) would be minimum when p + r = 0 

  p = –r   p  r 

  option [C] is correct answer. 
 

Q.18 Determine the points of maxima and minima of 

the function f (x) = 
8

1
 logx – bx + x

2
, x > 0, 

where b  0 is a constant.     [IIT 1996] 

Sol. f(x) =
8

1
log x – bx + x

2
; x > 0 

 Differentiating w.r.t. x, we get 

 f(x) =
x8

1
– b + 2x 

 Again differentiating w.r.t.x, we get 

 )x(f  = –
2x8

1
–0 + 2  

 )x(f  =  2 –
2x8

1
 

 Now, put f(x) = 0 
x8

1
– b + 2x = 0 

 1 – 8bx + 16x
2
 = 0 

  16x
2
 – 8bx + 1 = 0 

 x = 
162

bb64b8 42




 

 x = 
162

1b8b8 2




 

 x = 
4

1bb 2 
; b  0  b > 1 

 
4

1bb
x

2)x(f 


 = 2 –
8

1
× 

22 )1bb(

16


 

 
4

1bb
x

2)x(f 


  

 = 2 –
8

1

)1bb21bb(

16

222 
   

 = 2 – 
)11bb2b2(

2

22 
 

 = 
)11bb2b2(

]111bb2b2[2

22

22




 

 = 

)11bb2b2(

]11bbb[4

22

22




= +ve for b > 1 

 
4

1bb
x

2)x(f 


 = 2 – 
8

1
× 

2
2 1bb

16






 

 

 = 2 – 
)1bbx21bb(

2

222 
 

 = 2


















11bb2b2

1
1

22
   

 = 2 


















11bb2b2

11bb2b2

22

22
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 = 
]11bb2b2[

]11bbb[4

22

22




= –ve for b > 1  

 Hence maxima at x = 
4

1bb 2 
 

 minima at x = 
4

1bb 2 
 

 

Q.19 Find a point (, ) on the ellipse 4x
2
 + 3y

2
 = 12 

 in the first quadrant, so that the area enclosed 

by the lines y = x, y = , x =  and the x-axis is 

maximum.    [IIT-1997] 

Sol. (3/2, 1) 

 

Q.20 Suppose f(x) is a function satisfying the  

following conditions - 

 (i) f (0) = 2, f (1) = 1 

 (ii) f has a minimum value at x = 5/2 and   

 (iii) for all x 

 f'(x) =

bax21b2ax2)bax(2

11bb

1bax21ax2ax2







 

 where a, b are some constants. Determine the 

constants a, b and the function f (x).  

    [IIT 1998] 

Sol. Applying R3  R3 – R1 – 2R2 we get 

 

100

11bb

1bax2aax2ax2

)x(f 



  = 

                           
1b

1ax2

1bb

1ax2ax2 





 

 f (x) = 2ax + b 

 Integrating, we get, f(x) = ax
2
 + bx + C 

 where C is an arbitrary constant. Since f has a 

maximum at x = 5/2,  

 f (5/2) = 0  5a + b = 0    ….(1)    

 Also   f(0) = 2 C = 2 and f(1) = 1a + b + c = 

1 

  a + b = –1 

 Solving (1)&(2) for a,b we get, a = 1/4, b = –

5/4 

    ….(2) 

 Thus,  f(x) = 
4

1
x

2
 – 

4

5
x + 2.     

 

Q.21 The number of values of x where the function 

 f(x) = cosx + cos  x2  attains its maximum is 

           [IIT 1998] 

 (A) 0  (B) 1       (C) 2 (D) infinite 

Sol. [B]  

 f(x) = cos x + cos ( 2 x) 

 Differentiating w.r.t. x, we get 

 f(x) = – sin x – 2 sin ( 2 x) 

 Again differentiating w.r.t.x, we get 

 f(x) = – cos x – 2 cos 2 x 

 f(x) = –[cos x + 2 cos 2 x] 

 Now, put f(x) = 0 

  – (sin x + 2 sin ( 2 x)) = 0 

  sin x = – 2 sin ( 2 x) 

 It holds only at x = 0 

 
0x

)x(f


 = –[1 +2.1] = –3 

 Hence, f(x) would be maximum. 

  option [B] is correct answer. 

Q.22 If f(x) = 
1x

1x
2

2




, for every real number x, then 

the minimum value of f : [IIT 1998] 

 (A) does not exist because f is unbounded 

 (B) is not attained even though f is bounded 

 (C) is equal to 1 

 (D) is equal to –1 

Sol. [D]  

 f(x) = 
1x

1x
2

2




 

 Differentiating w.r.t. x, we get 

 f(x) = 
22

22

)x1(

x2).1x()1x(x2




 

 = 
22

323

)x1(

x2x2x2x2




 f(x) = 

22 )x1(

x4


 

 Again differentiating w.r.t. x, we get 

 )x(f  = 
42

222

)x1(

x2).x1(2.x4)x1(1.4




 

 = 
42

2222

)x1(

)x1(x16)x1(4




 

 Now, put f(x) = 0 

 
22 )x1(

x4


 = 0 x = 0 
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0x

)x(f


 = 
1

0.4 
 = 4 

 Hence, f(x) would be minimum 

 
)0x(

)x(f


= fmin = 

)0x(

2

2

1x

1x




















= –1 

 

Q.23 Let f(x) =








0xfor1

2|x|0for|x|
 , then at  

 x = 0, f has -             [IIT Scr. 2000] 

 (A) a local maximum (B) no local maximum  

 (C) a local minimum (D) no extremum 

Sol. [A] 

 f(x) = 








0xfor1

2|x|0for|x|
 

 = 














0xfor1

0x2forx

2x0forx

 

 For local maximum, f(a)  f(a – h) 

                           f(a)  f(a + h) 

   f(0)  f(0 – h) 

   f(0)  f(0 + h) 

   1  0 which is true.  

      1  0 

 For local minimum, 

     f(a)  f(a – h) 

     f(a) f(a + h) 

     f(0) f(a – h) 

     f(0)  f(a + h) 

 1  0 which is not true 

 1  0 

 Hence, option [A] is correct answer. 
 

Q.24 If ' f '  is differentiable and 'g' is a double 

differentiable function such that f (x)  [–1, 1] 

and f ' (x) = g(x).  If f 
2
 (0) + g

2
 (0) = 9 then prove 

that there exist some c  (–3, 3) such that  

g(c) g ''(c) < 0.                          [IIT 2005] 

Sol. Given that f(x) is a differentiable function such 

that 

 f (x) = g(x), then 

                     
3

0

3

0

3
0)]x(f[dx)x(fdx)x(g = f(3) – f(0) 

 But   | f(x) | < 1  –1 < f(x) < 1, x R 

     f(3) = f(0)  (–2, 2) 

 Similarly   


0

3

0

3
)x(fdx)x(g dx = [f(0) – f(3)] 

 (–2, 2) 

 Also given [f(0)]
2
 + [g(0)]

2
 = 9 

  [g(0)]
2
 = 9 – [f(0)]

2
 

 [g(0)]
2
 > 9 – 1       [ | f(x) | < 1 ] 

 | g(0) | > 22  

 g(0) > 22   or   g(0) < – 22  

 First let us consider g(0) > 22  

 Let us suppose that g (x) be positive for all x 

 (–3, 2) 

 Then g (x) > 0 the curve y = g(x) is open 

upwards. 

 Now one of the two situations are possible. 

 (i) g(x) is increasing 

 

O 

C 

A 

B 

x=3 

y=g(x) 

22  

 

  
3

0
dx)x(g  > area of rect. OABC 

 i.e.  
3

0
dx)x(g  > 26  > 2 

 a contradiction as 
1

0
)x(g  dx  (–2, 2) 

 

O 

C 

A 

B 

x= –3 

y=g(x) 

22  

 

 at least at one of the pt. C (–3, 3)  

 g (x) < 0. But g(x) > 0 on (–3, 3) 

 Hence g(x) g (x) < 0 at some x  (–3, 3). 

 (ii) g(x) is decreasing 

  
0

3
dx)x(g  > ar of rect. OABC 
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 i.e.  22622.3dx)x(g
0

3
  

 a contradiction as 
0

3
)x(g  dx  (–2, 2) 

   at least at one of the pt C  (–3, 3)  

 g (x) should be –ve. But g(x) > 0 on (–3, 3). 

 Hence g(x) g (x) < 0 at some x  (–3,  3) 

 Secondly let us consider g(0) < – 22 . 

 Let us suppose that g () be –ve on (–3, 3). 

 then g (x) < 0 the curve y = g(x) is open 

downward 

 
O 

C 

A 

B 

x= –3 

)0,22(  

 

 Again one of the two situations are possible 

 (i) g(x) is decreasing then 

  
3

0
dx)x(g   > At of rect. OABC =  

              22622.3   

 a contradiction as 
3

0
)x(g dx  (–2, 2) 

  At least at one of the pt. C  (–3, 3) g (x) is 

+ve. But g(x) < 0 on (–3, 3). 

 Hence g(x) g (x) < 0 for some x (–3, 3). 

 (ii) g(x) is increasing then 

 dx)x(g
3

0


 > Ar of rect. OABC . 

22622.3   

 a contradiction as 
0

3
)x(g dx  (–2, 2) 

  At least at one of the pt. C  (–3, 3)  

 g (x) is +ve. But g(x) < 0 on (–3, 3).  

 Hence g(x) g (x) < 0 for some x  (–3, 3). 

 Combining all the cases, discussed above, we 

can conclude that at least at one point in (–3, 3) 

g(x) g (x) < 0.     
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ANSWER KEY 

 

EXERCISE # 1 
 

Q.No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ans. C A A D B A B A A C A D A A B

Q.No. 16 17 18 19 20 21 22 23 24 25

Ans. D A A D D D B A C A  

26.  True 27. True  28. False 29. (2, – 4)  30. 5           31. (3a, 27a/4)     32.  (–, 1]  [2,) 

EXERCISE # 2 

PART-A 

Q.No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ans. B A A A B C A A D D D C A D C  

PART-B 

Q.No. 16 17 18 19 20 21 22 23 24 25 26

Ans. A,B,C A,B B B A,B,C A,C,D A,B A,C B,C A,B,C A,B,C  

PART-C 

Q.No. 27 28 29

Ans. A A A  

PART-D 
30. A  R;  B  P;  C  S;  D  Q      31. A  S;   B  R;  C  P; D  Q 

32. A  P,R,T ;   B  P, S;   C  Q,R, D  Q,S     

EXERCISE # 3 

1.  a 













 4

1

5,
3

7
  















3

7
,5 4

1

 2.  k (2 3 , 3 3 ) 3. a = –3, b = –9, c  R 

4.  The least value of the difference is 32/9. 5. 
 

4

ab
3


 6. 




































 2n,

e

1
1n

e/1

    

7.   Max. at t = –1 or x = 31 ; y max. = 14 ; Min at t = 3/2 or x = –1033/32 ; y min = –69/4   

 

8. (a) Local maxima at x = 1; Local minima at x = 6 ,  (b)  Local maxima at x = –1/5; Local minima at x = 1 

     (c)  Local minima at x = 1/e ; No local maxima   

9.  b (0, e]   

10.   (a) maximum = 8; minimum = –10   (b) maximum = 25; minimum = –39  

        (c) maximum = 3/4 at x = /6; minimum = 1/2 at x = 0 & /2   

        (d)  Not defined    (e) maximum f(–1) = 18,  minimum f(1/8) = –9/4  
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13.  Dimensions are 10, 10,  10, ft 14. 10 cm   16.  
4

33 m  18.  0 

19.  Increasing in (0, /6]  [/2, 5/6]  [3/2, ] and decreasing in [/6, /2]  [5/6, 3/2]  20.  

21.  32 sq units  22.  (a) x = y = 
2

d
,  (b) x = 

3

d
, y = 

3

2
d  23. 320 

24.  (a) 0, 3    (c)  3/4,  t = n 4   

27.  (a) x = –2, –, 0, , 2,    (b) no inflection point,     (c) maxima at x = /2 and –3/2 and no minima, 

       (d) x = 3/2 and x = –/2   

28.  74   

29.  (i) I in (1, 6)  (8, 9) and D in (0, 1)  (6, 8); 

       (ii) L.Min. at x = 1 and x = 8; L.Max. x = 6 

       (iii) CU in (0, 2)  (3, 5)  (7, 9) and CD in (2, 3)  (5, 7);  

        (iv) x = 2, 3, 5, 7 

30. (a) increasing in (0, 2) and decreasing in (– , 0)  (2, ), local min. value = 0 and local max. value = 2 

       (b) concave up for (–, 2 – 2 )  (2 + 2 , ) and concave down in (2 – 2 ), (2 + 2 ) 

      (c) f(x) = 
2

1
e

2 – x 
.x

2
 

 

   

Q.No. 32 33 34 35 36 37 38 39 40

Ans. D A B C A B B D D  
 

EXERCISE # 4 
 

1. (D) 2. (A)  3. 18  4. (A)    5.  (2, 1)     6. 5 units    

7. Point of local max. (3, –22) ; point minima (–1, 10), distance = 4 65  unit  8. (A, B, C)  9. (C)  10. 7 

11. D     12. 1   13. 5     14. 9 
 

EXERCISE # 5 
 

1.  (A, D)  2.  (A, B, C, D) 3.   Radius = 7m, length = 7m   4.  

















2

3
,00,

2

3
 5.  (C)  

7.  (C)   8.  (0, 2)   9. 
4

33
r
2  

10.  6 +  : 6  11.   x + 2  y = 2  or x – 2  y = – 2  

12.  b   (–2, –1)  (1, )   13.  (A, B, C, D) 14. 
9

34
 sq. units 15.   abe   16.  2 hk 17.  (C)  

18.  Minima at 





  1bb
4

1
x 2  and maxima at x = 1/4 [b – 1b2  ] ; b > 1 

19. 







1,

2

3
   20.  f(x) =

4

1
x

2
 – 

4

5
x + 2  21.  (B)   22.  (D)    23.  (A) 

            

            

  


