SOLVED EXAMPLES

Ex. 1	Which of the	following has	minimum gol	d number?
--------------	--------------	---------------	-------------	-----------

- (A) Potato starch
- (B) Gum arabic
- (C) Gelatin

(D) Albumin

Sol. (C

Gelatin has minimum gold number.

Therefore, (C) is correct option.

- **Ex. 2** Which of the following are correctly matched?
 - (A) Butter-gel
- (B) Milk-emulsion
- (C) Fog-aerosol
- (D) Dust-solid sol

- **Sol.** (A, B, C) are correct matches.
- **Ex.3** Explain the adsorption of nitrogen on iron.
- Sol. When nitrogen gas is brought in contact with iron at 83 K, it is physisorbed on iron surface as nitrogen molecules, N2. As the temperature is increased the amount of nitrogen adsorbed decreases rapidly and at room temperature, practically there is no adsorption of nitrogen on iron. At 773 K and above, nitrogen is chemisorbed on the iron surface as nitrogen atoms.
- **Ex.4** Which of the following is (are) lyophobic colloids?
 - (A) Gold sol
- (B) As, S, sol
- (C) Starch sol
- (D) Fe(OH), sol

Sol. (ABD)

Gold sol, As, S, and Fe(OH), are lyophobic colloid.

Therefore, (A, B, D) are correct options.

- Ex. 5 The presence of colloidal particles of dust in air imparts blue colour to the sky. This is due to
 - (A) Absorption of the light

(B) Scattering of the light

(C) Reflection of the light

(D) None of these

Sol. (B)

Due to scattering of the light.

Therefore, (B) is correct option.

- Ex. 6 The volume of nitrogen gas U_m (measured at STP) required to cover a sample of silica gel with a mono-molecular layer is 129 cm³ g⁻¹ of gel. Calculate the surface area per gram of the gel if each nitrogen molecule occupies 16.2×10^{-20} m².
- **Ans.** 561.8 cm³
- Sol. $22400 \text{ cm}^3 \text{ of N}_2 \text{ at STP contain} = 6.022 \times 10^{23} \text{ molecules}$
 - $\therefore 129 \text{ cm}^3 \text{ of N}_2 \text{ at STP will contain} = \frac{6.022 \times 10^{23} \times 129}{22400} = 3.468 \times 10^{21} \text{ molecules}$

Area occupied by a single molecule = 16.2×10^{-20} m²

- Area occupied by 3.468×10^{21} molecules of nitrogen = $(16.2 \times 10^{-20}) \times (3.468 \times 10^{21})$ m² = 561.8 m².
- Ex. 7 How do size of particles of adsorbent, pressure of gas and prevailing temperature influence the extent of adsorption of a gas on a solid?
- Sol. (A) Smaller the size of the particles of the adsorbent, greater is the surface area and hence greater is the adsorption
 - (B) At constant temperature, adsorption first increases with increase of pressure and then attains equilibrium.
 - (C) In physical adsorption, it decreases with increase of temperature bu in chemisorption, first it increases and then decreases.

- **Ex. 8** How is adsorption of a gas is related to its critical temperature?
- Sol. Higher is the critical temperature of a gas, greater the van der Waal's forces of attraction and hence greater is the adsorption.
- **Ex.9** What happens when persistent dialysis of a colloidal solution is carried out.
- Sol. The stability of a colloidal sol is due to the presence of a small amount of the electrolyte. On persistent dialysis, the electrolyte is completely removed. As a result, the colloidal sol becomes unstable and gets coagulated.
- **Ex. 10** What type of colloidal sols are formed in the following?
 - (i) Through cooled water, vapours of sulphur are passed.
 - (ii) White of an egg is mixed with water.
- **Sol.** (i) Sulphur molecules associate together to form molecular sols.
 - (ii) Macromolecular sol because protein molecules present in the white of the egg are macromolecules soluble in water.
- **Ex. 11** Physical adsorption is essentially quite appreciable:
 - (A) at room temperature

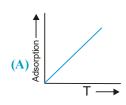
(B) at higher temperature

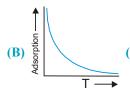
(C) at lower temperature

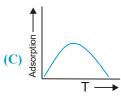
(D) none of these

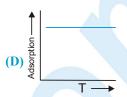
Sol. (C

Rate of physical adsorption decreases with increase in temperature.


Therefore, (C) is correct option.




Exercise # 1


[Single Correct Choice Type Questions]

1. Following is the variation of physical adsorption with temperature:

- 2. Adsorption is the phenomenon in which a substance:
 - (A) accumulates on the surface of the other substance
 - (B) goes into the body of the other substances
 - (C) remains close to the other substance
 - (D) none of these
- 3. Finely divided catalyst has greater surface area and has greater catalytic activity than the compact solid. If a total surface area of 6291456 cm² is required for adsorption in a catalysed gaseous reaction, then how many splits should be made to a cube of exactly 1 cm in length to achieve required surface area. (Given: One split of a cube gives eight cubes of same size)
 - (A) 60

(B) 80

(C)20

- **(D)** 22
- 4. Which of the following statements about chemisorption is not applicable?
 - (A) It involves chemical forces between adsorbent and absorbate
 - (B) It is irreversible in nature
 - (C) It involves high heat of adsorption
 - (D) It does not require activation energy
- Volume of N_2 at NTP required to form a mono layer on the surface of iron catalyst is 8.15 ml/gram of the adsorbent. What will be the surface area of the adsorbent per gm if each nitrogen molecule occupies 16×10^{-22} m².
 - (A) $16 \times 10^{-16} \,\mathrm{cm}^2$
- **(B)** $0.35 \,\mathrm{m}^2/\mathrm{g}$
- (C) $39 \text{ m}^2/\text{g}$
- (D) $22400 \, \text{cm}^2$

- 6. There is desorption of physical adsorption when:
 - (A) temperature is increased

(B) temperature is decreased

(C) pressure is increased

- (D) concentration is increased
- 7. Softening of hard water is done using sodium aluminium silicate (zeolite). The causes:
 - (A) adsorption of Ca²⁺ and Mg²⁺ ions of hard water replacing Na⁺ ions.
 - (B) adsorption of Ca²⁺ and Mg²⁺ ions of hard water replacing Al³⁺ ions
 - (C) both (A) and (B)
 - (D) none of these
- **8.** The rate of chemisorption :
 - (A) decreases with increase of pressure
- (B) increases with increase of pressure

(C) is independent of pressure

(D) is independent of temperature

9.	Which one is false in (A) A catalyst is spec	the following statement?				
		ount of the catalyst alters the r	ate of a reaction			
	•	ree vacancies on the surface of		sub-division		
	(D) Ni is used as a ca	talyst in the manufacture of a	mmonia			
10.	A catalyst increases r	ate of reaction by:				
	(A) Decreasing entha	lpy	(B) Decreasing internal	energy		
	(C) Decreasing active	ntion energy	(D) Increasing activation	on energy		
11.	Colloidal solution of	gold prepared by different me	thods of different colours b	pecause of:		
	(A) different diameter	s of colloidal gold particles	(B) variable valency of	gold		
	(C) different concentr	ration of gold particles	(D) impurities produced	d by different methods		
12.	Peptisation is:					
	(A) conversion of a c	olloidal into precipitate form				
	(B) conversion of pre	ecipitate into colloidal sol				
	(C) conversion of me	etal into colloidal sol by passa	ge of electric current			
	(D) conversion of col	lloidal sol into macromolecule	es			
13.	A colloidal solution can be purified by the following method:					
	(A) dialysis	(B) peptization	(C) filtration	(D) oxidation		
14.	(A) the blood starts f(B) the blood reacts a(C) the blood is coag	y the application of ferric chloronic in opposite direction and forms a solid, which seals gulated and thus the blood ve	s the blood vessel			
		e seals the blood vessel.				
15.		ng ions is most effective in the	_			
	(A) K ⁺	(B) Mg ²⁺	$(\mathbf{C})\mathbf{A}\mathbf{l}^{3+}$	(D) C		
16.	Which of the following	ng ions is most effect <mark>ive in</mark> the	coagulation of ferric hydro	oxide solution ?		
	(A) Cl	(B) Br ⁻	$(C) NO_2^-$	(D) SO ₄ ²⁻		
17.	Gold number of a lyo	philic sol is such property that	::			
	(A) the larger its valu	ie, the greater is the peptising	power			
	(B) the lower its valu	e, the greater is the peptising	power			
	(C) the lower its valu	e, the greater is the protecting	g power			
	(D) the larger its value	ne, the greater is the protecting	g power			
18.	Protective sols are:					
	(A) lyophilic	(B) lyophobic	(C) both (A) and (B)	(D) none of (A) and (B)		
19.	For the coagulation o	of 200 mL of As ₂ S ₃ solution, 1	0 mL of 1 M NaCl is requ	ired. What is the coagulating value		
	(number of milli mole	s of solute needed for coagula	tion of 1 liter of solution) of	f NaCl.		
	(A) 200	(B) 100	(C) 50	(D) 25		

20.	At CMC, the surfacta	nt molecules:			
	(A) Decomposes		(B) Become complete	ly soluble	
	(C) Associate		(D) Dissociate		
21.	Small liquid droplets	dispersed in another liquid i	s called :		
	(A) Suspension	(B) Emulsion	(C) Gel	(D) True solution	
22.	Some type of gels like	e gelatin loose water slowly.	The process is known as:		
	(A) Syneresis	(B) Thixotropy	(C) Peptisation	(D) Imbibition	
23.	Which of the followin (A) It can be easily s	ng statements is not correct colvated	for a lyophobic solution ?		
	(B) It carries charges	S			
	(C) The coagulation(D) It is less stable in	of this sol is irreversible in a solvent	nature		
24.	Which of the following	ng statements is correct for a	a lyophilic solution?		
	(A) It is not easily so	=			
	(B) It is unstable				
	(C) The coagulation	of this sol is irreversible in	nature		
	(D) It is quite stable	in a solvent			
25.	Liquid-liquid sol is kr	nown as			
	(A) aerosol	(B) foam	(C) emulsion	(D) gel	
26.	kept in a flask of one l			g of sample of activated charcoal was oal at 1.25 gm/mL. The volume of gas	
	(A) 80.03 mL	(B) 32.20 mL	(C) 100.08 mL	(D) None of these	
27.		the electrolyte <mark>s AlCl₃ and</mark> Ngulating power than NaCl.	aCl for As ₂ S ₃ sol are 0.093	and 52 respectively. How many times	
	(A) 930	(B) 520	(C) 560	(D) None of these	
28.	Graph between $\log x/m$ and $\log p$ is a straight line inclined at an angle of 45°. When pressure is 0.5 atm and $\ln k = 0.693$, the amount of solute adsorbed per gm of adsorbent will be:				
	(A) 1	(B) 1.5	(C) 0.25	(D) 2.5	
29.	The colloidal system	consisting of a liquid adsort	pate in a solid adsorbent is	termed as:	
	(A) aerosol	(B) foam	(C) emulsion	(D) gel	
30.	Which of the following	ng statements is not correct	9		
30.		tion is a heterogeneous two-			
		er is an example of lyophilic	= -		
		s in water are examples of ly			
		loidal solution is not a stab	=		
31.	Size of colloidal partic		(0) 1 (100	(D) 1. 10	
	(A) 1 to 1000 nm	(B) 10 to 100 pm	(C) 1 to 100 μm	(D) 1 to 10 mm	

32.	Which of the following statements is not correct? (A) Peptization is the process by which certain sub (B) Metal sols of gold, silver and platinum can be p (C) Impurities present in a solution makes it more s	orepared by Bredig's arc mo table.	ethod.			
	(D) Dialysis is a process to remove impurities of ion	ns and molecules from a so	lution.			
33.	 Select correct statement (s): (A) hydrophilic colloid is a colloid in which there is a strong attraction between the dispersed phase and water (B) hydrophobic colloid is a colloid in which there is a lack of attraction between the dispersed phase and water (C) hydrophobic sols are often formed when a solid crystallises rapidly from a chemical reaction or a supersaturated solution (D) all of the above 					
34.	A reddish brown sol (containing Fe ³⁺) is obtained b (A) the addition of small amount of FeCl ₃ solution t (B) the addition of Fe(OH) ₃ to freshly prepared FeC (C) the addition of NH ₄ OH to FeCl ₃ solution dropwing (D) the addition of NaOH to FeCl ₃ solution dropwing	o freshly prepared Fe(OH) Cl ₃ solution vise	, precipitate			
35.	Which of the following represents a multimolecular (A) Starch (B) A sol of gold	colloidal particles? (C) Proteins	(D) Soaps			
36.	Which of the following anions will have minimum fl (A) Cl (B) Br	occulation value for the fer	ric oxide solution ? (D) [Fe(CN) ₆ 1 ³⁻			
37.	Which of the following represents a macromolecular (A) Solution of gold (B) Cellulose	r colloidal particles? (C) Soaps	(D) Synthetic detergents			
38.	Which is an example of coagulation? (A) curdling of milk (C) formation of deltas at the river beds	(B) purification of water (D) All the three are example.	-			
39.	Gold number of some lyophilic sols are: I : Casein : 0.01 II : Haemoglobin : 0.03 III : Gum arabic : 0.15 IV : Sodium oleate : 0.40 Which has maximum protective power: (A) I (B) II	(C)III	(D) IV			
40.	Gold number Of haemoglobin is 0.03. Hence, 100 coagulated by 1 mL of 10% NaCI solution:					
	(A) 0.03 mg (B) 30 mg	(C) 0.30 mg	(D) 3 mg			
41.	Smoke is a dispersion of: (A) gas in gas (B) gas in solid	(C) solid in gas	(D) liquid in gas			
42.	Smoke has generally blue tinge. It is due to: (A) scattering (B) coagulation	(C) Brownian motion	(D) electro-osmosis			
43.	Compared to common colloidal sols, micelles have: (A) higher colligative properties (C) same colligative properties	(B) lower colligative pro (D) none of these	pperties			

44. Which is not a purely surface phenomena: (A) surface tension. (B) adsorption. (C) absorption. (D) none of these. 45. Arsenic (III) sulphide forms a sol with a negative charge. Which of the following ionic substances should be most effective in coagulating the sol? (A) KCl (B) MgCl₂ (C) Al₂ $(SO_4)_3$ (D) Na, PO, 46. The stabilisation of a lyophobic colloid is due to: (A) preferential adsorption of similar charged particle on colloids surface. (B) the large electro-kinetic potential developed in the colloid. (C) the formation of a covalent bond between two phases. (D) the viscosity of the medium. 47. Which one of the following statements is false for hydrophilic sols? (A) they do not require electrolytes for stability (B) their viscosity is of the order of that of water (C) their surface tension is usually lower than that of dispersion medium. (D) none of these 48. Which one of the following statements is correct: (A) Brownian movement is more pronounced for smaller particles than for bigger ones (B) Sols of metal sulphides are lyophilic (C) Schulze-Hardy law states, the bigger the size of the ion, the greater is its coagulating power (D) One would expect charcoal to adsorb hydrogen gas more strongly than chlorine. 49. Soaking of sponge by water is an example of: (B) Physical adsorption (A) Simple adsorption (C) Chemisorption (D) Absorption **50.** Identify the appropriate graph between enthalpy and progress of physical adsorption. (A) **(B) (D) (C) Progress Progress 51.** Hydrolysis of ester in catalysed by acid. Rates of hydrolysis of ester were obtained initially and after 50% ester has been hydrolysed as R₀ and R₅₀ then (same temp.) $(C) R_0 > R_{50}$ (D) Cannot be determined (A) $R_0 = R_{50}$ **(B)** $R_0 < R_{50}$ **52.** The potential difference between the fixed charged layer and the diffused layer having opposite charge is called: (A) Water potential (B) Zeta potential (C) Electrode potential (D) None of these **53.** Which one is not the characteristic of chemisorption: (A) Multilayer adsorption (B) Exothermic nature (C) Strong adsorption by adsorption sites (D) Irreversible 54. The solution in which the light is scattered by the particles is: (A) Suspension (B) Colloidal solution (C) True solution (D) None of these **55.** Blood is purified by: (A) Dialysis (C) Coagulation (B) Electro-osmosis (D) Filtration

56.	An arsenious sulphide sol carries a negative charge. The maximum precipitating power of this sol is : possessed by :				
	(A) K ₂ SO ₄	(B) CaCl ₂	(C) Na ₃ PO ₄	(D) AlCl ₃	
57.	For adsorption of a gas [n being a whole numb	on a solid, the plot of log (er]	(x/m) Vs log P is linear wi	th a slope equal to	
	(A) K	(B) log K	(C) n	(D) 1/n	
58.	Surface tension of lyop	philic sols is:			
	(A) Lower than that of	H₂O	(B) More than that of H ₂ O		
	(C) Equal to that of H_2	2	(D) None of the above	-	
59.	On passing light from	colloidal solution, the effec	t due to scattering of light	t is known as :	
	(A) Electrophoresis	(B) Tyndall effect	(C) Electro-osmosis	(D) Coagulation	
60.	Tyndall effect is shown	ı by :			
	(A) Sol	(B) Solution	(C) Plasma	(D) Precipitation	
61.	(A) $Na^{+} > Ba^{2+} > Al^{3+}$	Schulze rule, the coagulatin (B) $Al^{3+} > Ba^{2+} > Na^{+}$		the order: (D) $Al^{3+} > Na^{+} > Ba^{2+}$	
62.	Milk is an example of:				
	(A) True solution	(B) Gel	(C) Suspension	(D) Emulsion	
63.	The stability of lyophilic colloid is due to which of the following: (A) Charge on their particles (B) Large size of their particles		=		
	(C) Small size of their p	particles	(D) Solvation by disp	bersion medium	
64.	A colloidal solution is subjected to an electrical field. same solution is studied using NaCl, BaCl ₂ and AlCl ₃ (A) NaCl>BaCl ₂ >AlCl ₃ (C) AlCl ₃ >BaCl ₂ > NaCl			ulating power should be IaCl	
65.	Which of the following	g is most effective in coagul	ating a ferric hydroxide so	al ·	
03.			(C) K ₂ SO ₄	(D) K ₃ [Fe(CN) ₆]	
66.	Most effective ion to c (A) PO ₄ ³⁻	coagulate a negative sol is: (B) Al ³⁺	(C) Ba ²⁺	(D) K ⁺	
67.	Which of the following	g electrolytes will be most e	effective in the coagulation	ı of gold sol :	
	(A) NaNO ₃	$\mathbf{(B)}\mathrm{K_4[Fe(CN)_6]}$	(C) Na ₃ PO ₄	(D) MgCl ₂	
68.	The property of colloid	l is:	J .	-	
	(A) Scattering of light	(B) Shows attraction	(C) Dialysis	(D) Emulsion	
69.	Which one is colloid:				
	(A) NaCl	(B) Urea	(C) Cane Sugar	(D) Blood	
70.	Fog is an example of co	olloidal system of:			
	(A) Liquid dispersed in	ı gas	(B) Gas dispersed in	gas	
	(C) Solid dispersed in gas		(D) Solid dispersed in	(D) Solid dispersed in liquid	

Part # I 💙

Exercise # 2 Which of the following statements are true for physisorption? 1. (A) Extent of adsorption increases with increase in pressure. (B) It needs activation energy (C) It can be reversed easily (D) It occurs at high temperature. 2. Which of the following are hydrophobic sols? (B) Gold sol (D) Fe(OH), sol. (A) Protein sol (C) Gum sol 3. If Cl, gas is enclosed in presence of powdered charcoal in a closed vessel, the pressure of the gas decreases. It is because (A) the gas molecules are absorbed at the surface (B) the gas molecules concentrate at the surface of the charcoal (C) the gas molecules are adsorbed at the surface (D) the gas molecules are desorbed by the surface 4. The diameter of colloidal particle is of the order: (C) 10^{-15} m (A) 10^{-3} m **(B)** 10^{-6} m **(D)** 10^{-7} m Which of the following colloidal solutions contain negatively charged colloidal particles? 5. (A) Fe(OH), sol (C) Blood (D) Gold sol (B) As, S, sol **6.** Which of the following are examples of aerosols? (A) Whipped cream (B) Cloud (D) Soap lather (C) Fog 7. The origin of charge on colloidal solution is (A) Self dissociation (in soaps and detergents) (B) Electron capture during Bredig's arc method (C) Selective adsorption of ion on their surface (D) It is due to addition of protective colloids 8. Which of the following are based on Tyndall effect. (A) Tail of comets (B) Deltas (C) Blue colour of sky (D) Coagulation 9. When negatively charged colloids like As, S, sol is added to positively charged Fe(OH), sol in suitable amounts (A) Both the sols are precipitated simultaneously (B) This process is called mutual coagulation. (C) They become positively charged colloids. (D) They become negatively charged colloids. 10. Which of the following are incorrect statements? (A) Hardy Schulz rule is related to coagulation (B) Brownian movement and Tyndall effect are the characteristic of colloids. (C) In gel, the liquid is dispersed in liquid (D) Higher the gold number, more is the protective power of lyophillic sols. 11. Which of the following are multimolecular colloids? (A) Sulphur (B) Egg albumin in water (C) Gold sol (D) Soap solution 12. The size of colloidal particles is: (A) 1-10 Å **(B)** 20 - 50 Å (C) 10 - 100 Å (D) 1 -200 Å

[Multiple Correct Choice Type Questions]

13.	Which of the follow	ing statements is correct?		
	(A) The efficiency of	of a heterogeneous catalyst d	epends upon its surface are	ea.
	(B) Catalyst operate	es by providing alternate path	for the reaction that involve	ves a lower activation energy.
	· · · · · · · ·			t affecting the energy of activation of
	the backward di	= -		5 6
		ot affect the overall enthalpy	change of the reaction.	
14.	Which of the following	ing statements is (are) true?		
		on of a homogeneous catalys	t may appear in the rate ex	pression.
		vays consumed in the reaction		
	•	always be in the same phase		
	(D) None of these	arways so in the same phase	us the reactants.	
15.	Which is the correct	statement in case of milk:		
	(A) Milk is an emuls	ion of fat in water	(B) Milk is an emulsio	n of protein in water
	(C) Milk is stabilized		(D) Milk is stabilized b	
16.	Tyndall effect will be	a observed in t		
10.	(A) Solution	(B) Precipitate	(C) Sol	(D) Vapour
	(12) Selwiell	(2)1100111000	(6) 201	(2) (4)
17.	The Brownian motio	on is due to:		
	(A) Temperature flu	ctuation within the liquid pha	ase	
	(B) Attraction and r	epulsion between charge on	the colloidal particles	
	(C) Impact of molec	cules of the dispersion mediur	n on the colloidal particles	
	(D) Convective curr	rent		
18.	In coagulating the co	olloidal sol <mark>ution of As₂S₃ whi</mark>	ch has the minimum coagu	lating value ·
10.	(A) NaCl	(B) KCl	(C) BaCl ₂	(D) AlCl ₃
	(11)1141	(b) Ref	(C) Buci ₂	(1)/11013
19.	The charge on As ₂ S ₃	sol is due to the adsorbed:		
	$(\mathbf{A})\mathbf{H}^{+}$	(B) OH	$(\mathbf{C})\mathbf{O}^{-2}$	(D) S ⁻
20.	The sky looks blue d	lue to:		
	(A) Dispersion	(B) Reflection	(C) Transmission	(D) Scattering
21.	Gold number is mini	mum in case of:		
	(A) Gelatin	(B) Egg albumin	(C) Gumarabic	(D) Starch
22.	The size of a colloida	al particle is:		
	$(A) > 0.1 \mu$	(B) $1 \text{m} \mu \text{ to } 0.1 \mu$	(C)<0.1 µ	(D) More than 3000 m μ
23.		ng electrolytes is least effecti	=	-
	$(A) K_4[Fe(CN)_6]$	(B) K ₂ CrO ₄	(C) KBr	$(D)K_2SO_4$
24.			-	of 0.0250 gm of starch the coagulation
	_	arch has the following gold n		
35	(A) 0.025	(B) 0.25	(C) 2.5	(D) 25
25.	Which one is a lyoph		(C) Cyaleal	(D) Cyana anahi-
	(A) Gelatin	(B) Starch	(C) Sulphur	(D) Gum arabic

26.	Smoke is an example of: (A) Gas dispersed in liquid (C) Solid dispersed in gas		(B) Gas dispersed in solid(D) Solid dispersed in solid		
27.	Tyndall effect in colloidal (A) Scattering of light (C) Absorption of light	l solutions is due to :	(B) Reflection of lig (D) Presence of elec	ht strically charged particles	
28.	Which one of the followin (A) Smoke	ng is not a colloidal system (B) Ink	: (C) Air	(D) Blood	
29.	Which of the following w (A) PO ₄ ³⁻	rill have highest coagulation (B) SO ₄ ²⁻	power for As ₂ S ₃ colle (C) Na ⁺	oid ? (D) Al ³⁺	
30.	Positive sol is: (A) Gold	(B) Gelatin	(C) As ₂ S ₃	(D) None	
31.	A colloidal solution of ar (A) NaCl	senious sulphide is most rea (B) CaCl ₂	adily coagulated by th	e addition of a normal solution? (D) $Al_2(SO_4)_3$	
32.	A colloid always: (A) Contains two phases (C) Contains three phases		(B) Is a true solution(D) Contains only water soluble particles		
33.	Colloidal solution of silver is prepared by: (A) Colloidal milk (C) Bredig's method		(B) Double decomposition method (D) Peptization		
34.	Which of the following is wrong: (A) Enthalpy (numerical value) of physisorption is greater than that of chemisorption (B) Physisorption is not very specific but chemisorption is highly specific (C) Chemisorption takes place at relatively high temperatures (D) In physisorption generally multi-molecular layers are formed on the adsorbent				
35.	Which of the following ga	ases, will be adsorbed maxin (B) O ₂	num on a solid surface	e: (D) H ₂	
36.	Which of the following is (A) Lyophilic colloids (B) Associated collides (C) Tyndall effect (D) Electrophoresis	reversible solsmicellesscattering of light	nt by colloidal particle persion medium unde	r the influence of electric field	
37.	Lyophobic colloids are: (A) Reversible colloids	(B) Irreversible colloids	(C) Protective collo	oids (D) Gum proteins	
38.	Which of the following io (A) [Fe(CN) ₆)] ⁴	ns has maximum flocculation (B) Cl	on value : (C) SO_4^{2-}	(D) PO ⁻³ ₄	
39.	The arsenious sulphide so (A) H ₂ SO ₄	ol has - ve charge. The maxi (B) Na ₃ PO ₄	mum power of precipi	itating is of: (D) AlCl ₃	

40.	Which of the following	Which of the following ions will be most effective in coagulating the As ₂ S ₃ sol:				
	(A) Fe^{3+}	(B) Ba ²⁺	(C) Cl ⁻	(D) PO ₄ ³⁻		
41.	When freshly precipitated Fe(OH) ₃ is shaken with aqueous solution of FeCl ₃ , a colloidal solution is formed. This process is known as:					
	(A) Emulsification	(B) Coagulation	(C) Peptization	(D) Electro-osmosis		
42.		2	f charcoal is higher than that o	Z.		
	(ii) The movement of c known as Brownian mo		the oppositely charged electr	odes on passing electric current is		
	(A) T, T	(B) T, F	(C) F, T	(D) F, F		
43.	Which of the following	kinds of catalysis can be	explained by the adsorption th	neory?		
	(A) heterogeneous cata	alysis	(B) enzyme catalysis			
	(C) homogeneous cata	lysis	(D) acid base catalysis			
44.	Which of the following	relations is (are) correct a	ccording to Freundlich?			
	(i) $x/m = constant$					
	(ii) $x/m = constant \times p^{1/n} (n > 1)$					
	(iii) $x/m = constant \times p^n (n > 1)$					
	(A) All are correct	(B) All are wrong	(C) (ii) is correct	(D) (iii) is correct		
45.	The principle(s) involved in the chromatographic operation is (are):					
	(A) Adsorption	(B) Absorption	(C) Partition	(D) None		
46.	A negative catalyst will					
	(A) raise the energy of activation for a given reaction					
	(B) take away the inter	rnal energ <mark>y of re</mark> actants an	nd deactivate them			
	(C) catalyse the backw(D) none of these	rard reaction more than the	e forward one, thereby shifting	equilibrium backward.		
47.		hetween log x/m and log n	it is straight line with an angle	45° and intercept 0.3010 on y-axis.		
• / •		<u> </u>	unt of gas adsorbed per gm of	ž .		
	(A) 0.4	(B) 0.6	(C) 0.8	(D) 0.1		
48.	A liquid is found to scat be described as	ter a beam of light but leav	es no residue when passed thro	ough the filter paper. The liquid can		
	(A) a suspension	(B) Oil	(C) a colloidal sol	(D) a true solution		
49.		n of gases on the solid sur		(2) a a ao solation		
	(A) vander Waals force		(B) covalent bonding			
	(C) hydrogen bonding		(D) All of these			
	(c) in arogon contains		(B) The of these			
50.	Correct equation of Fre	eundlich isotherm is				
	$(\mathbf{A})\log\left(\frac{\mathbf{x}}{\mathbf{m}}\right) = \log \mathbf{K} + \frac{1}{2}$	$-\frac{1}{n}\log C$	(B) $\log \left(\frac{x}{n}\right) = \log m + \frac{1}{n}$	$\frac{1}{m} \log C$		
	(C) $\log \left(\frac{x}{m}\right) = \log C + \frac{x}{m}$	$-\frac{1}{K} \log C$	(D) $\log \left(\frac{x}{m}\right) = \log C + \frac{1}{2}$	$\frac{1}{n} \log K$		

- 51. Identify the correct statement regarding enzymes.
 - (A) Enzymes are specific biological catalysts that can normally function at very high tempt. ($T \approx 1000 \text{ K}$)
 - (B) Enzymes are normally heterogeneous catalysts that are very specific in action
 - (C) Enzymes are specific biological catalysts that can not be poisoned
 - (D) Enzymes are non-biological catalysts.
- 52. Which of the following statements about physical adsorption is correct?
 - (A) It is usually monolayer
 - (B) It is reversible in nature
 - (C) It involves van der Waals interactions between adsorbent and adsorbate
 - (D) It involves small enthalpy of adsorption as compared to chemisorption.
- 53. Which of the following statements regarding adsorption is correct?
 - (A) Extent of adsorption of gases on charcoal increases with increase in pressure of the gas
 - (B) Extent of adsorption is independent of temperature
 - (C) Extent of chemisorption by a given mass of adsorbent is limited
 - (D) Extent of adsorption is dependent on the nature of adsorbent
- 54. Which of the following is characteristic of chemisorption?
 - (A) it is irreversible

(B) it is specific

(C) it is multilayer phenomenon

- (D) heat of adsorption of about 400 kJ
- 55. An example of extrinsic colloid (lyophobic colloids) is:
 - (A) As₂S₃ sol
- (B) Fe(OH), sol
- (C) Egg albumin
- (D) Au sol

- 56. Which of the following sols is positively charged?
 - (A) Arsenious sulphide

(B) Aluminium hydroxide

(C) Ferric hydroxide

(D) Silver iodide in silver nitrate solution

Part # II

[Assertion & Reason Type Questions]

Each question has 5 choices (A), (B), (C), (D) and (E) out of which only one is correct.

- (A) Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation for Statement-1
- (B) Statement-1 is true, Statement-2 is true and Statement-2 is not correct explanation for Statement-1
- (C) Statement-1 is true, Statement-2 is false
- (D) Statement-1 is false, Statement-2 is true
- (E) Both Statements are false
- 1. Statement-1: Gold number is the measure of protective powers of different colloids.
 - Statement-2: The smaller the gold number of lyophilic colloid, the smaller is its protective power.
- 2. Statement-1: The property of adsorption is shown by solids to a much larger extent than liquids.
 - Statement-2: Solids, particularly when finely divided, have a large surface area.
- 3. Statement-1: Aqueous gold colloidal solution is red in colour.
 - Statement-2: The colour arises due to scattering of light of colloidal gold particles.

- 4. Statement-1: All colloidal dispersions give very low osmotic pressure and show very small freezing point depression or boiling point elevation.
 - **Statement-2:** Tyndall effect is due to scattering of light from the surface of colloidal particles.
- 5. Statement-1: The Brownian movement is due to the bombardment on colloidal particles by the molecules of dispersion medium which are in the constant motion like molecules in a gas.
 - Statement-2: Brownian movement provides a visible proof of the random kinetic motion of molecules in a liquid.
- 6. Statement-1: In the coagulation of negatively charged arsenic sulphide sol, the coagulating power decreases in the order, $Al^{3+} > Ba^{2+} > Na^+$.
 - Statement-2: Generally greater the valency of coagulating ion, the greater is its power of coagulation.
- 7. Statement-1: Isoelectric point is pH at which colloidal can move towards either of electrode
 - Statement-2: At isoelectric point, colloidal particles become electrically neutral
- 8. Statement-1: A gas with higher critical temperature gets adsorbed to more extent than a gas with lower critical temperature.
 - **Statement-2:** The easily liquefiable gases get adsorbed to more extent which have higher critical temperature.
- 9. Statement-1: When AgNO₃ is treated with excess of KI, colloidal particles gets attracted towards anode.
 - **Statement-2:** Colloidal particles adsorb common ions and thus become charged.
- 10. Statement-1: Tetraethyl lead minimises the knocking effect when mixed with petrol.
 - **Statement-2:** Because tetraethyl lead acts as a –ve catalyst.
- 11. Statement-1: In physisorption, adsorption increases with increases in temperature.
 - **Statement-2:** Physisorption is of exothermic nature.
- 12. Statement-1: Colloidal solution exhibit Tyndall effect while true solution do not.
 - Statement-2: Because the size of the colloidal particles is large enough to scatter light as compared to size of the true solution particles.
- 13. Statement-1: Physisorption of molecules occurs on surface only.
 - Statement-2: In this process; the bonds of the adsorbed molecules are broken.
- 14. Statement-1: Medicines in the colloidal state are more effective.
 - **Statement-2:** In the colloidal state, the medicines are easily assimilated by the body.

Exercise # 3

Part # I

[Matrix Match Type Questions]

1. Match list I with list II and select the correct answer:

List I

- (A) Coagulation
- (B) Dialysis
- (C) Peptization
- (D) Tyndall effect

List II

- (p) Scattering of light
- (q) Formation of colloidal solution from precipitates.
- (r) Purification of colloids
- (s) Accumulation of colloidal sols
- 2. Match list I with list II and select the correct answer:

List I

- (A) Mechanical property of colloid
- (B) Purification
- (C) Gold number
- (D) Formation of a sol

- List II
- (p) Dialysis
- (q) Peptization
- (r) Brownian movement
- (s) Protection

3. Column (I)

- (A) Gold sol
- (B) Purification of colloidal solution
- (C) As₂S₃ sol
- (D) Zeta potential
- (E) Casein

Column (II)

- (p) Bredig's Arc method
- (q) Negatively charged
- (r) Ultra centrifugation
- (s) Electro kinetic potential
- (t) Double decomposition reaction
- (u) Protective colloid

4. Column (I)

- (A) Tyndall effect
- (B) Brownian movement
- (C) Electrophoresis
- (D) Hardy schulze rule
- (E) Froth floatation

Column (II)

- (p) Zig-zag motion
- (q) Sky is blue
- (r) Coagulation of colloids
- (s) Charge on colloidal solution
- (t) Emulsion of pine oil
- (u) Gold number

Part # II

[Comprehension Type Questions]

Comprehension #1

The clouds consist of charged particles of water dispersed in air. Some of them are +vely charged, others are -vely charged. When +vely charged clouds come closer they cause lightening and thundering whereas when +ve and -ve charged colloids come closer they cause heavy rain by aggregation of minute particles. It is possible to cause artificial rain by throwing electrified sand or silver iodide from an aeroplane and thus coagulating the mist hanging in air.

Smoke screen is a cloud of smoke used to hide military, naval police etc. it consists of fine particles of TiO₂.

- 1. When excess of AgNO₃ is treated with KI solution, AgI forms
 - (A) +ve charged sol
- (B) –vely charged sol
- (C) neutral sol
- (D) true solution

- 2. AgI helps in artificial rain because:
 - (A) it helps in ionisation of water
 - (B) it helps in dispersion process
 - (C) it helps in coagulation
 - (D) all of them
- 3. Smoke screens consist of
 - (A) fine particles of TiO, dispersed in air by aeroplanes
 - (B) fine particles of AgI dispersed in air by aeroplanes
 - (C) fine particles of Al₂O₃ dispersed in air by aeroplanes
 - (D) None of these

Comprehension #2

Many lyophilic sols and few lyophobic sols when coagulated under some special conditions changes into semi rigid mass, enclosing whole amount of liquid within itself, it is called gel and the process is called gelation. Gelatin Agar-agar, gum-Arabic can be converted into gels by cooling them under moderate concentration conditions. Hydrophobic sols like silicic acid. Al(OH)₃ are prepared by double decomposition and exchange of solvent method.

Types of Gel:

- (i) Elastic gel: Those gel which have elastic properties.
- Ex: Gelatin, Starch, Agar-Agar etc.
- (ii) Non- elastic gel: Those gel which are rigid.
- Ex: Silica gel.

Properties of Gel:

- **1.Syneresis/weeping of gel:** The spontaneous liberation of liquid from a gel is called syneresis or weeping of gels. It is reverse of swelling.
- Ex: Gelatin, Agar-Agar show syneresis at low concentration while silicic acid shows it at high concentration.
- 2. Imbibition or swelling of gel: When gel is kept in a suitable liquid (water) it absorb large volume of liquid. The phenomenon is called imbibition or swelling of gel.
- 3. Thixotropic: Some gels when shaken to form a sol, on keeping changes into gel are termed as thixotropic gel and phenomenon is called thixotropy.
- Ex: Gelatin and silica liquify on shaking changing into corresponding sol and the sol on keeping changes back into gel.
- 1. Which of the following is used to adsorb water?
 - (A) Silica gel

(B) Calcium acetate

(C) Hair gel

- (D) Cheese
- 2. The process of imbibing water when elastic gel are placed in water is called:
 - (A) imbibition

(B) syneresis

(C) coagulation

- (D) thixotropy
- 3. Some types of gels like gelatin and silica liquify on shaking thereby changing into sols. The sols on standing change back into gels. This process is know as
 - (A) syneresis

(B) thixotropy

(C) double decomposition

(D) peptization

Comprehension #3

Read the following passage carefully and answer the questions.

The Colloidal particles are electrically charged as is indicated by their migration toward cathode or anode under the applied electric field. In a particular colloidal system, all particles carry either positive charge or negative charge.

The electric charge on colloidal particles originate in several ways. According to preferential adsorption theory, the freshly obtained precipitate particles adsorb ions from the dispersion medium, which are common to their lattice and acquire the charge of adsorbed ions. For example, freshly obtained Fe(OH)₃ precipitated is dispersed, by a little FeCI₃, into colloidal solution owing to the adsorptions of Fe³⁺ ions in preference. Thus sol particles will be positively charged.

In some cases the colloidal particles are aggregates of cations or anions having ampiphilic character. When the ions possess hydrophobic part (hydrocarbon end) as well as hydrophilic part (polar end group), they undergo association in aqueous solution to form particles having colloidal size. The formation of such particles, called micelles plays a very important role in the solubilization of water insoluble substances, (hydrocarbon, oils, fats, grease etc.). In micelles, the polar end groups are directed towards water and the hydrocarbon ends into the centre.

The charge on sol particles of proteins depends on the pH. At low pH, the basic group of protein molecule is ionized (protonated) and at higher pH (alkaline medium), the acidic group in ionized. At Isoelectric pH, characteristic to the protein, both basic and acidic groups are equally ionized.

The stability of colloidal solution is attributed largely to the electric charge of the dispersed particles. This charge causes them to be coagulated or precipitated. On addition of small amount of electrolytes, the ions carrying opposite charge are adsorbed by sol particles resulting in the neutralization of their charge. When the sol particles either with no charge or reduced charge, come closer due to Browman movement, they coalesce to form bigger particles resulting in their separation from the dispersion medium. This is what is called coagulation or precipitation of the colloidal solution. The coagulating power of the effective ion, which depend on its charge, is expressed in terms of its coagulating value, defined as its minimum concentration (m mol/L) needed to precipitate a given sol.

1.	A gelatin sol at pH less then the isoelectric value is subjected to an electric field. The sol particles migrate tow			
	(A) Anode		(B) Cathode	
	(C) Both anode and c	athode	(D) Neither anode r	or cathode
2.	Which of the followin	ng ions would <mark>have the min</mark> in	num coagulating value fo	or sol obtained on peptizing Sn(OH) ₄ by
	little NaOH solution.			
	(A) Cl ⁻	(B) SO ₄ ²⁻	(C) K ⁺	(D) Ba^{2+}
3.	(A) By adding little e(B) By adding little e	n a sol of AgI, the particles of xcess of KI to AgNO ₃ solution xcess of AgNO ₃ to KI solution volumes of 0.010 M AgNO ₃ a	on on	cathode under the electric field?
4.		ius sulphide sol and 1.0 ml of The effective ion and its co (B) Cl ⁻ , 20 m mol/L	2	•

- 5. 100 ml each of two sols of AgI, one obtained by adding AgNO₃ to slight excess of KI and another obtained by adding KI to slight excess of AgNO₃, are mixed together. Then
 - (A) The two sols will stabilize each other
 - (B) The sol particles will acquire more electric charge
 - (C) The sols will coagulate each other mutually
 - (D) A true solution will be obtained

- **6.** Under the influence of an electric field, the particles in a sol migrate towards cathode. The coagulation of the same sol is studied using NaCl, Na₂SO₄ and Na₂PO₄ solutions. Their coagulating values will be in the order
 - (A) NaCl > Na, SO₄ > Na, PO₄

(B) $Na_2SO_4 > Na_3PO_4 > NaCl$

(C) $Na_2 PO_4 > Na_2 SO_4 > NaCl$

(D) $Na_2SO_4 > NaCl > Na_2PO_4$

Comprehension #4

Whenever a mixture of gases is allowed to come in contact with a particular adsorbent under the same conditions, the more strong adsorbate is adsorbed to greater extent irrespective of its amount present, e.g., H₂O is adsorbed to more extent on silica gel than N₂ and O₂. This shows that some adsorbates are preferentially adsorbed. It is also observed that preferentially adsorbable adsorbents can displace a weakly adsorbed substance from the surface of an adsorbent.

- 1. Which of the following gases is adsorbed to maximum extent:
 - (A) He

- (B) Ne

(D) Xe

- 2. Which of the gas can displace remaining all the gases
 - $(A) O_{2}$

 $(B) N_2$

- (C)CO
- (D) H,

- 3. When temperature is increased
 - (A) extent of adsorption increases
- (B) extent of adsorption decreases

(C) no effect on adsorption

- (D) extent of adsorption first decreases, then increases
- 4. Chromatogarphic separations are based on

 - (A) differential solubility (B) differential adsorption (C) differential absorption (D) None of these
- **5.** Activated charcoal is prepared by
 - (A) heated charcoal with steam so that it becomes more porous
 - (B) addition Ca₃(PO₄), to charcoal
 - (C) addition impurity to charcoal
 - (D) reacted with conc. HNO,

Comprehension #5

In macromolecular type of colloids, the dispersed particles are themselves large molecules (usually polymers). Since these molecules have dimensions comparable to those of colloidal particles, their dispersions are called macromolecular colloids. Most lyophilic sols belong to this category. There are certain colloids which behave as normal strong electrolytes at low concentrations, but exhibit colloidal properties at higher concentrations due to the formation of aggregate particles. These are known as micelles or associated colloids. Surface active agents like soaps and synthetic detergent belong to this class.

- EO Critical micelle concentration (CMC) is the lowest concentration at which micelle formation appears. CMC increases with the total surfactant concentration. At concentration higher than CMC, they form extended parallel sheets known as lamellar micelles which resemble biological membranes. With two molecules thick, the individual molecule is perpendicular to the sheets such that hydrophilic groups are on the outside in aqueous solution and on the inside in a non-polar medium
- 20 In concentrated solution, micelles take the form of long cylinders packed in hexagonal arrays and are called lytotropic mesomorphs.
- 20 In an aqueous solution (polar medium), the polar group points towards the periphery and the hydrophobic hydrocarbon chains point towards the centre forming the core of the micelle.
- 20 Micelles from the ionic surfactants can be formed only above a certain temperature called the Kraft temperature.

- 20 They are capable of forming ions.
- Molecules of soaps and detergents consist of lyophilic as well as lyophobic parts which associate together to form micelles.
- 20 Micelles may contains as many as 100 molecules or more.
- 1. Select incorrect statement(s):
 - (A) Surface active agent like soaps and synthetic detergents are micelles
 - (B) Soaps are emulsifying agents
 - (C) C₁₇H₃₅ (hydrocarbon part) and –COO⁻ (carboxylate part) of stearate ion (C₁₇H₃₅COO⁻) both are hydrophobic
 - (D) All are incorrect statements
- 2. Which part of the soap (RCOO⁻) dissolved grease and forms micelle?
 - (A) R part (called tail of the anion)
- (B) -COO part (called head of the anion)

(C) both (A) and (B)

- (D) none of these
- 3. In multimolecular colloidal sols, atoms or molecules are held together by:
 - (A) H-bonding

(B) vander Waals forces

(C) ionic bonding

- (D) polar covalent bonding
- 4. Cleansing action of soap occurs because :
 - (A) oil and grease can be absorbed into the hydrophobic centres of soap micelles and washed away
 - (B) oil and grease can be absorbed into hydrophilic centres of soap micelles acid washed away
 - (C) oil and grease can be absorbed into both hydrophilic and hydrophobic centres but not washed away
 - (D) cleansing action is not related to micelles

Comprehension #6

The protective power of the lyophilic colloids is expressed in terms of gold number a term introduced by Zsigmondy. Gold number is the number of milligram of the protective colloid which prevent the coagulation of 10 mL of red gold sol. when 1 mL of a 10 percent solution of sodium chloride is added to it. Thus, smaller the gold number of lyophilic colloid, the greater is the protective power.

- 1. On addition of one mL of solution of 10% NaCl to 10 mL of red gold sol in presence of 0.025 g of starch, the coagulation is just prevented. The gold number of starch is
 - (A) 0.025
- **(B)** 0.25
- (C) 2.5

(D) 25

- 2. Which of the following statement(s) is/are correct
 - (A) Higher the gold number, more protective power of colloid
 - (B) Lower the gold number, more the protective power
 - (C) Higher the coagulation value, more the coagulation power
 - (D) Lower the coagulation value, higher the coagulation power
- 3. Gold number gives an indic liation of
 - (A) protective nature of colloids
 - (B) purity of gold in suspension
 - (C) the charge on a colloidal solution of gold
 - (D) g-mole of gold per litre

Exercise # 4

[Subjective Type Questions]

- 1. Why is gelatin generally added to ice creams?
- 2. How can metallic adsorbent be activated?
- 3. Account for the following
 - (i) Curdling of milk

- (ii) Tail of comets
- (iii) Use of potash alum in the purification of water
- (iv) Cleansing action of soap.
- 4. What happens when gelatin is added to gold sol?
- 5. Which out of 'He' and 'Ne' would adsorb on the surface of charcoal more readily and why?
- 6. Name two industrial processes in which heterogeneous catalysts are employed?
- 7. What is fire foam?
- **8.** Explain what is observed
 - (a) When an electrolyte NaCl is added to ferric hydroxide sol.
 - (b) When an emulsion is subjected to centrifugation.
 - (c) When direct current is passed through a colloidal sol.
 - (d) When a beam of light is passed through a colloidal solution.
- 9. What are micelles? How do they differ from a normal colloidal solution?
- 10. The colloidal dispersions of liquids in solid media are called.....
- 11. Describe the following terms while stating the properties of colloids:
 - (i) Brownian movement
- (ii) Tyndall effect
- (iii) Electrophoresis
- 12. What is meant by the colloidal state of matter? Explain the following terms:
 - (i) Multimolecular colloids (ii) Electro-dialysis
- 13. What are micelles? Give an example of micellar system.
- 14. The zig-zag motion of colloidal particles is called
- Explain the terms: Physisorption and Chemisorption.
 How does adsorption of a gas on a solid surface vary with pressure?
- 16. What is observed when a beam of light is passed through a colloidal solution of arsenius sulphide?
- 17. What are lyophilic and lyophobic sols? Compare the two in terms of stability and reversibility.
- 18. Explain the terms 'multimolecular colloids' and 'macromolecular colloids'.
- 19. Explain the difference between a homogeneous and heterogeneous catalyst. Give an example of each.
- 20. Explain the terms shape selective catalyste, emulsification and dimulsification with one example each.
- **21.** Explain the terms 'Brownian movement' and 'peptization'.

Exercise # 5 Part # I > [Previous Year Questions] [AIEEE/JEE-MAIN]

- 1. The disperse phase in colloidal iron (III) hydroxide and colloidal gold is positively and negatively charged, respectively. Which of the following statements is NOT correct? [AIEEE 2005]
 - (1) Coagulation in both sols can be brought about by electrophoresis
 - (2) Mixing the sols has no effect
 - (3) Sodium sulphate solution causes coagulation in both sols
 - (4) Magnesium chloride solution coagulates, the gold sol more readily than the iron (III) hydroxide sol.
- 2. The volume of colloidal particle V_c as compared to the volume of a solute particle in a true solution V_s could be:

[AIEEE 2005]

 $(1) \sim 1$

 $(2) \sim 10^{23}$

 $(3) \sim 10^{-3}$

 $(4) \sim 10^3$

3. In Langmuir's model of adsorption of a gas on a solid surface: [AIEEE 2006]

- (1) the rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
- (2) the adsorption at a single site on the surface may involve multiple molecules at the same time
- (3) the mass of gas striking a given area of surface is proportional to the pressure of the gas
- (4) the mass of gas striking a given area of surface is independent of the pressure of the gas
- Gold numbers of protective colloids A, B, C and D are 0.50, 0.01, 0.10 and 0.005, respectively. The correct order of 4. their protective powers is [AIEEE 2008]

(1) C < B < D < A

(2) A < C < B < D

(3) B < D < A < C (4) D < A < C < B

- 5. In context with the industrial preparation of hydrogen from water gas (CO +H₂), which of the following is the correct [AIEEE 2008]
 - (1) CO is removed by absorption in aqueous Cu₂Cl₂ Solution
 - (2) H₂ is removed through occlusion with Pd
 - (3) CO is oxidized to CO, with steam in the presence of a catalyst followed by absorption of CO, in alkali
 - (4) CO and H, are fractionally separated using differences in their densities
- 6. Which of the following statements is incorrect regarding physisorptions?

[AIEEE 2009]

- (1) More easily liquefiable gases are adsorbed readily.
- (2) Under high pressure it results into multi molecular layer on adsorbent surface.
- (3) Enthalpy of adsorption ($\Delta H_{adsorption}$) is low and positive.
- (4) It occurs because of van der Waal's forces.
- 7. According to Freundlich adsorption isotherm which of the following is correct?

[AIEEE 2012]

(1) $\frac{x}{m} \propto p^0$

(2) $\frac{x}{m} \propto p^1$

- (3) $\frac{x}{m} \propto p^{1/n}$
- (4) All the above are correct for different ranges of pressure.
- The coagulating power of electrolytes having ions Na⁺, Al³⁺ and Ba²⁺ for arsenic sulphide sol increases in the order: 8.

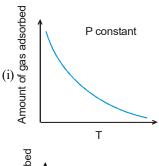
[**JEE**(**Mains**) 2013]

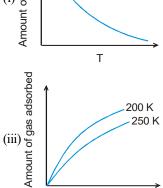
(1) $Al^{3+} < Ba^{2+} < Na^+$

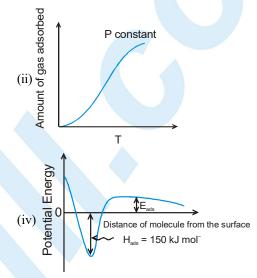
(2) $Na^+ < Ba^{2+} < Al^{3+}$

(3) $Ba^{2+} < Na^+ < Al^{3+}$

- (4) $A1^{3+} < Na^+ < Ba^{2+}$
- 9. For a linear plot of $\log (x/m)$ versus $\log p$ in a Freundlich adsorption isotherm, which of the following statements is correct? (k and n are constants) [**JEE**(Mains) 2016]
 - (1) 1/n appears as the intercept


- (2) Only 1/n appears as the slope.
- (3) $\log (1/n)$ appears as the intercept
- (4) Both k and 1/n appear in the slope term.


10.	The Tyndall effect is observed only when following	g conditions are satisfied:	[JEE(Mains) 2017]
	(a) The diameter of the dispersed particles is much	smaller than the wavelength of the ligh	it used.
	(b) The diameter of the dispersed particle is not mu	ich smaller than the wavelength of the l	ight used.
	(c) The refractive indices of the dispersed phase and	d dispersion medium are almost similar	in magnitude.
	(d) The refractive indices of the dispersed phase an	d dispersion medium differ greatly in n	nagnitude.
	(1) (a) and (d) (2) (b) and (d)	(3) (a) and (c) (4) (b) a	and (c)
11.	A water sample has ppm level concentration of follows	owing anions	[JEE(Mains) 2017]
	$F^{-1} = 10$; $SO_4^{2-} = 100$; $NO_3^{-} = 50$		
	The anion/anions that make/makes the water sample	e unsuitable for drinking is/are :	
	(1) only NO_3^-	(2) both SO_4^{2-} and NO_3^-	
	(3) only F ⁻¹	(4) only SO_4^{2-}	
	Part # II > [Previous Year Ques	tions][IIT-JEE ADVANCED]	
	Tart#II / I Trevious Tear Ques	donsjiii i-see AD vanceDj	
1.	Adsoption of gases on solid surface is generally ex	othermic because	[JEE 2004]
	(A) enthalpy is positive (B) entropy decreases	(C) entropy increases (D) free	energy increases
2.	Lyophilic sols are		[JEE 2005]
	(A) Irreversible sols	(B) They are prepared from inorgan	ic compound
	(C) Coagulated by adding electrolytes	(D) Self-stabilizing	
3.	Among the following, the surfactant that will form n ambient condition is:	nicelles in aqueous solution at the lowes	t molar concentration at [JEE 2008]
	(A) CH ₃ (CH ₂) ₁₅ N ⁺ (CH ₃) ₃ Br ⁻	(B) CH ₃ (CH ₂) ₁₁ OSO ₃ -Na ⁺	
	(C) CH ₃ (CH ₂) ₆ COO ⁻ Na ⁺	(D) CH ₃ (CH ₂) ₁₁ N ⁺ (CH ₃) ₃ Br ⁻	
4.	Among the electrolytes Na ₂ SO ₄ , CaCl ₂ , Al ₂ (SO ₄) ₃ as		ng agent for Sb ₂ S ₃ sol is: [JEE 2009]
	(A) Na2SO4	(C) $Al_2(SO_4)_3$ (D) NH_4	Cl
5.	Silver (atomic weight = 108 g mol^{-1}) has a density of 10^{-12} m^2 can be expressed in scientific notation as y		oms on a surface of area [JEE 2010]
6.	The correct statement(s) pertaining to the adsorption	on of a gas on a solid surface is (are)	[JEE 2011]
	(A) Adsorption is always exothermic		
	(B) Physisorption may transform into chemisorptio	n at high temperature	
	(C) Physisorption increases with increasing tempera	ture but chemisorption decreases with i	ncreasing temperature.
	(D) Chemisorption is more exothermic than physisorr	otion, however it is very slow due to high	er energy of activation.


Choose the correct reason(s) for the stability of the lyophobic colloidal particles. 7.

JEE 2012]

- (A) Preferential adsorption of ions on their surface from the solution.
- (B) Preferential adsorption of solvent on their surface from the solution.
- (C) Attraction between different particles having opposite charges on their surface.
- (D) Potential difference between the fixed layer and the diffused layer of opposite charges around the colloidal particles.
- 8. The given graph / data I, II, III and IV represent general trends observed for different physisorption and chemisorption processes under mild conditions of temperature and pressure. Which of the following choice (s) about I, II, III and [JEE 2012] IV is (are) correct

- (A) I is physisorption and II is chemisorption
- (B) I is physisorption and III is chemisorption
- (C) IV is chemisorption and II is chemisorption
- (D) IV is chemisorption and III is chemisorption
- 9. Methylene blue, from its aqueous solution, is adsorbed on activated charcoal at 25° C. For this process, the correct statement is: [JEE (Advanced) 2013]
 - (A) The adsorption requires activation at 25°C.
 - (B) The adsorption is accompanied by a decreases in enthalpy.
 - (C) The adsorption increases with increase of temperature.
 - (D) The adsorption is irreversible.
- 10. The correct statement(s) about surface properties is(are)

[JEE (Advanced) 2017]

- (A) Cloud is an emulsion type of colloid in which liquid is dispersed phase and gas is dispersion medium
- (B) The critical temperatures of ethane and nitrogen are 563 K and 126 K, respectively. The adsorption of ethane will be more than that of nitrogen on same amount of activated charcoal at a given temperature.
- (C) Adsorption is accompanied by decrease in enthalpy and decrease in entropy of the system
- (D) Brownian motion of colloidal particles does not depend on the size of the particles but depends on viscosity of the solution

MOCK TEST

SECTION-I: STRAIGHT OBJECTIVE TYPE

1.	When a graph is plotted between $\log x/m$ and $\log p$, it is straight line with an angle of 45° and intercept 0.3010 on y-axis. If the initial pressure is 0.3 atm, what will be the amount of gas adsorbed per gm of adsorbent:				
	(A) 0.4	(B) 0.6	(C) 0.8	(D) 0.1	
2.	(A) It is usually r(B) It is reversible	e in nature.			
		anderwaals interaction between nall value of adsorption.	en adsorbent and adsorba	te.	
3.	surface area of 62		orption of gaseous reaction	ctivity then the compact solid. If a total n in a catalysed reaction, then how many	
	(A) 60	(B) 80	(C) 20	(D) 22	
4.	Which one of the	following is not characteristic	s of chemisorption ?		
	(A) it is irreversib	<u>-</u>	(B) it is specific		
	(C) it is multilaye	r phenomenon	(D) heat of adsorp	tion of about -400kJ	
5.	A colloidal solution can be purified by the following method of				
	(A) dialysis	(B) peptization	(C) filtration	(D) oxidation	
6.	Gold number of a	lyophilic sol is such a propert	y that :		
	(A) the larger its	value, the greater is the peptis	ing power.		
	(B) the lower its	value, the greater is the peptis	ing power.		
	(C) the lower its	value, the greater is the protec	ting power.		
	(D) the larger its	value, the greater is the protec	ting power.		
7.	For the coagulation of 200 mL of As ₂ S ₃ solution, 10 mL of 1 M NaCl is required. What is the coagulating value of NaCl.				
	(A) 200	(B) 100	(C) 50	(D) 25	
8.	Some type of gels	s like gelatin loose water slowl	y. The process is known a	as:	
	(A) Syneresis	(B) Thixotropy	(C) Peptisation	(D) Imbibition	
9.		e of the electrolytes AlCl ₃ and N coagulating power than NaCl.	VaCl for As2S3 sol are 0.0	93 and 52 respectively. How many times	
	(A) 930	(B) 520	(C) 560	(D) None of these.	

- **10.** Select the correct statement (s):
 - (A) Hydrophilic colloid is a colloid in which there is a strong attraction between the dispersed phase and water.
 - (B) Hydrophilic colloid is a colloid in which there is a lack of attraction between the dispersed phase and water.
 - (C) Hydrophobic sols are often formed when a solid crystallises rapidly from a chemical reaction or a supersaturated solution.
 - (D) All of the above.
- 11. Gold number of haemoglobin is 0.03. Hence, 100 mL of gold sol will require haemoglobin so that gold is not coagulated by 10 mL of 10% NaCl solution:
 - $(A) 0.03 \, \text{mg}$
- (B) 30 mg
- $(C) 0.30 \, mg$
- (D) 3 mg

- 12. What can absorb larger volume of hydrogen gas:
 - (A) Colloidal solution of palladium
- (B) Finely divided nickel

(C) Finely divided platinum

- (D) Colloidal Fe(OH),
- 13. Which of the following statement(s) is/are true for physisoraption?
 - (A) Extent of adsorption increases with increase in pressure.
 - (B) It needs activation energy
 - (C) It can be reversed easily.
 - (D) It occurs at high temperature.

SECTION-II: MULTIPLE CORRECT ANSWER TYPE

- 14. Which of the following statement (s) is/are correct:
 - (A) Spontaneous adsorption of gases on solid surface is an exothermic process an entropy decreases during adsorption.
 - (B) Formation of micelles takes place when temperature is below Kraft Temperature (T_k) and concentration is above critical micelle concentration (CMC).
 - (C) A colloid of Fe(OH)₃ is prepared by adding a little excess (required to completely precipitate Fe⁺³ ions as Fe(OH)₃) of NaOH in FeCl₃ solution the particles of this sol will more towards the cathode during electrophoresis.
 - (D) According to Hardy-Schulze rules the coagulation (flocculating) value of Fe⁺³ will be more than Ba⁺² or Na⁺¹.
- 15. Which of the following is/are incorrect statement(s)?
 - (A) Hardy schulz rule is related to coagulation.
 - (B) Brownian movement and tyndall effect are the characteristics of colloids.
 - (C) In gel, the liquid is dispersed in liquid.
 - (D) Lower the gold number, more is the protective power of hydrophilic sols.
- **16.** The origin of charge on colloidal solution is
 - (A) Frictional rubbing
 - (B) Electron capture during Bredig's arc method
 - (C) Selective adsorption of ion on their surface
 - (D) It is due to the addition of protective colloids.

SECTION - III: ASSERTION AND REASON TYPE

17. Assertion: All colloidal dispersions give very low osmotic pressure and show very small freezing point depression or boiling point elevation.

Reason: Tyndall effect is due to scattering of light from the surface of colloidal particles.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- **18. Assertion:** The Brownian movement is due to the bombardment of colloidal particles by the molecules of dispersion medium which are in the constant motion like molecules of a gas.

Reason: Brownian movement provides visible proof of the random motion of a molecule in a liquid.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- 19. Assertion: Isolelectronic point is pH at which colloidal can move towards either of electrode.

Reason: At isoelectronic point, colloidal solution become electrically neutral.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- 20. Assertion: Gelatin is added to ice cream as a protective agent so as to preserve its smoothness.

Reason: whipped cream is colloidal in nature.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.
- **21. Assertion :** Medicines in the colloidal state are more effective.

Reason: In the colloidal state, the medicines are easily assimilated by the body.

- (A) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
- (B) Both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
- (C) Assertion is true but Reason is false.
- (D) Assertion is false but Reason is true.

SECTION-IV: COMPREHENSION TYPE

Read the following comprehensions carefully and answer the questions.

Comprehension #1

The clouds consists of charged particles of water dispersed in air. Some of them are +vely charged, other are -vely charged. When ++vely charged clouds come closer they cause

lightening and thundering whereas when +ve and -ve charged colloids come closer they cause heavy rain by aggregation of minute particles. It is possible to cause artificial rain by throwing electrified sand or silver iodide from an aeroplane and thus coagulating the mist hanging in the air.

- 22. When excess of AgNO₃ is treated with KI solution, AgI forms
 - (A) +vely charged sol

(B) -vely charged sol

(C) neutral sol

- (D) true solution
- 23. AgI helps in artificial rain because:
 - (A) it helps in condensation process
- (B) it helps in dispersion process

(C) it helps in coagulation

(D) all of them

- 24. Smoke screens consists of
 - (A) fine particles of TiO, dispersed in air by aeroplanes
 - (B) fine particles of AgI dispersed in air by aeroplanes
 - (C) fine particles of Al₂O₃ dispersed in air by aeroplanes.
 - (D) None of these.

SECTION - V: MATRIX - MATCH TYPE

25. Match list I with list II and select the correct answer:

Column I

Column II

(A) Coagulation

(p) Scattering of light

(B) Dialysis

(q) Washing of precipitates

(C) Peptization

(r) Purification of colloids

(D) Tyndall effect

- (s) Electrolyte
- **26.** Match list I with list II and select the correct answer:

Column I

Column II

(A) Emulsifies

(p) Colloidal solution

(B)Xerogel

(q) Soaps

(C) Colloidal electrolyte

(r) Foil of cellophane

(D) Purple of Cassius

(s) Dextrin

ANSWER KEY

EXERCISE - 1

1. B 2. A 3. C 4. D 5. B 6. A 7. A 8. B 9. D 10. C 11. A 12. B 13. A 14. C 15. C 16. D 17. C 18. A 19. C 20. C 21. B 22. A 23. A 24. D 25. C 26. C 27. C 28. A 29. D 30. B 31. A 32. C 33. D 34. A 35. B 36. D 37. B 38. D 39. A 40. C 41. C 42. A 43. B 44. C 45. C 46. A 47. B 48. A 49. D 50. A 51. B 52. B 53. A 54. B 55. A 56. D 57. D 58. A 59. B 60. A 61. B 62. D 63. D 64. C 65. D

EXERCISE - 2 : PART # I

1. A, C 2. B, D 3. B, C 4. B, D 5. B, C, D 6. B, C 7. A, B, C 8. A, C 9. A, B
10. C, D 11. A, C 12. B, C 13. A, B, D 14. A 15. A 16. C 17. C 18. D 19. D 20. D
21. A 22. B 23. C 24. D 25. C 26. C 27. A 28. C 29. D 30. B 31. D 32. A 33. C
34. A 35. A 36. D 37. B 38. B 39. D 40. A 41. C 42. B 43. A 44. C 45. A 46. A
47. B 48. C 49. A 50. A 51. B 52. B, C, D 53. A, C, D 54. A, B, D 55. A, B, D 56. B, C, D

PART # II

1. C 2 B 3. A 4. B 5. B 6. A 7. D 8. B 9. A 10. A 11. D 12. A 13. C 14. A

EXERCISE - 3: PART # I

- 1. $A \rightarrow s, B \rightarrow r, C \rightarrow q, D \rightarrow p$
- 2. $A \rightarrow r, B \rightarrow p, C \rightarrow s, D \rightarrow q$
- 3. $A \rightarrow p, q, B \rightarrow r, C \rightarrow q, t, D \rightarrow s, E-u$

66. B 67. D 68. A 69. D 70. A

4. $A \rightarrow q, B \rightarrow p, C \rightarrow s, D \rightarrow r, E-t$

PART # II

Comprehension #1: 1. A 2. C 3. A

Comprehension #2: 1. A 2. A 3. B

Comprehension #3: 1. B 2. D 3. B 4. C 5. C 6. A

Comprehension #4: 1. D 2. C 3. B 4. B 5. A

Comprehension #5: 1. C,D 2. C 3. B 4. A

Comprehension #6: 1. D 2. B,D 3. A

EXERCISE - 5: PART # I

1. 2 2. 4 3. 3 4. 2 5. 3 6. 3 7. 4 8. 2 9. 2 10. 2 11. 3

PART # II

1. B 2. D 3. A 4. C 5. 7 6. A,B,D 7. A,D 8. A,C 9. B 10. B,C

MOCK - TEST

1 B 2 A 3 C 4 C 5 A 6 C 7 C 8 A 9 C 10 D 11 C 12 A 13 A

14 A,C 15 C,D 16 ABC 17 B 18 B 19 B 20 B 21 A 22 A 23 C 24 A

25 $A \rightarrow s; B \rightarrow r; C \rightarrow q; D \rightarrow p$ 26 $A \rightarrow s; B \rightarrow r; C \rightarrow q; D \rightarrow p$