

55. We have (a, b) R (a, b) for all (a, b) ∈ N × N
Since a + b = b + a. Hence, R is reflexive.
R is symmetric for we have (a,b)R(c,d) ⇒ a+d=b+c

25. Null set is the subset of all given sets.

28. $A = [x : x \in R, -1 < x < 1]$

\Rightarrow d + a = b + c \Rightarrow c + b = d + a \Rightarrow (c,d) R(a,b)	67. Here $\bullet_1 \mathbb{R} \bullet_2$, \bullet_1 is parallel to \bullet_2 and \bullet_2 is parallel to \bullet_1 ,
Hence R is symmetric	so it is symmetric.
Then by definition of R, we have	Clearly, it is also reflexive and transitive. Hence it is
a + d = b + c and $c + f = d + e$,	equivalence relation.
hence by addition, we get	
a+d+c+f=b+c+d+e or a+f=b+e	71. Let $(a, b) \in \mathbb{R}$
Hence, $(a, b) R (e, f)$	Then, $(a, b) \in \mathbb{R} \implies (b, a) \in \mathbb{R}^{-1}$, [by def or \mathbb{R}^{-1}]
Thus, (a, b) $R(c, d)$ and (c, d) $R(e, f) \implies (a, b) R(e, f)$.	$\Rightarrow (b, a) \in \mathbb{R}, [\Rightarrow \mathbb{R} = \mathbb{R}^{-1}], \text{ So } \mathbb{R} \text{ is symmetric.}$
	74. $A = \{1, 2, 3\}$
Hence R is transitive.	$ a^2 - b^2 \le 5$ $-5 \le a^2 - b^2 \le 5$
56. For $(a, b), (c, d) \in N \times N$	$\mathbf{R} = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)\}$
$(a, b) R(c, d) \implies ad(b + c) = bc(a + d)$	Domain of $R = \{1, 2, 3\}$
Reflexive : Since $ab(b+a) = ba(a+b) \forall ab \in N$,	Range of $R = \{1, 2, 3\}$
\therefore (a, b)R(a, b), \therefore R is reflexive.	
Symmetric : For $(a, b), (c, d) \in N \times N$, let $(a, b)R(c, d)$	76. (A) (q, q) R_1 (B) (p, p) R_2 (C) (q, p) R_3
$\therefore ad (b+c) = bc(a+d) \implies bc(a+d) = ad(b+c)$	Not reflexive not reflexive not symmetric
$\Rightarrow cb(d+a) = da(c+b) \Rightarrow (c, d)R(a, b)$	79. R is reflexive if it contains (1, 1) (2, 2) (3, 3)
:. R is symmetric	→ $(1,2) \in \mathbb{R}, (2,3) \in \mathbb{R}$
Transitive : For (a, b), (c, d), (e, f) $\in N \times N$,	\therefore R is symmetric if (2, 1), (3, 2) \in R
Let (a, b)R(c, d), (c, d)R(e, f)	Now, $R = \{(1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (2, 3), (1, 2)\}$
$\therefore \mathrm{ad}(\mathrm{b}+\mathrm{c}) = \mathrm{bc}(\mathrm{a}+\mathrm{d}), \mathrm{c}f(\mathrm{d}+\mathrm{e}) = \mathrm{de}(\mathrm{c}+f)$	R will be transitive if $(3, 1)$; $(1, 3) \in \mathbb{R}$. Thus, R becomes
\Rightarrow adb + adc = bca + bcd (i)	and equivalence relation by adding
and $cfd + cfe = dec + def$ (ii)	(1, 1)(2, 2)(3, 3)(2, 1), (3, 2), (1, 3), (1, 2). Hence, the total
(i) $\times ef + (ii) \times ab$ gives,	number of ordered pairs is 7.
adbef + adcef + cfdab + cefab	
= bcaef + bcdef + decab + defab	80. Obviously, the relation is not reflexive and transitive but it is symmetric, because
$\Rightarrow adcf(b+e) = bcde(a+f)$	$x^2 + y^2 = 1 \implies y^2 + x^2 = 1$
$\Rightarrow af(b+e) = be(a+f) \Rightarrow (a,b)R(e,f).$	
R is transitive. Hence R is an equivalence relation	¹ 81. Clearly, the relation is symmetric but it is neither reflexive
59. For Reflexive $R \in \{(1,1)(2,2)(3,3)\}$	nor transitive.
For symmetric $(1, 2) \in R$ but $(2, 1)$ R Not symmetric	83. We have, $R = \{(1,3); (1,5); (2,3); (2,5); (3,5); (4,5)\}$
for transitive $(1, 2), (2, 3) \in \mathbb{R} \implies (1, 3) \in \mathbb{R}$	$\mathbf{R}^{-1} = \{(3,1); (5,1); (3,2); (5,2); (5,3); (5,4)\}$
so transitive	Hence $ROR^{-1} = \{(3, 3); (3, 2); (5, 3); (5, 3)\}$
61. For any $a \in N$, we find that a is divisible by a, therefore	
R is reflexive but R is not symmetric,	85. Given R, and S are relations on set A.
because aRb does not imply that bRa.	$\therefore R \subseteq A \times A \text{ and } S \subseteq A \times A \Longrightarrow R \cap S \subseteq A \times A$
	\Rightarrow R \cap S is also a relation on A.
66. $2x+x=41 \implies x=:$ R is not reflexive	Reflexivity : Let a be an arbitrary element of A. Then a \in
$2\mathbf{x} + \mathbf{y} = 41$ $2\mathbf{y} + \mathbf{x} = 41$: R is not symmetric	Reflexivity. Let a be all arbitrary element of A. Then $a \in$

- 6 2y + x = 41 \therefore R is not symmetric 2x + y = 412x+y=41 and $2y+z=41 \Rightarrow 4x-z=41 \Rightarrow (x,z) R$ **.** R is not transitive
 - Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035

 $A \Rightarrow (a, a) \in R$

 \Rightarrow (a, a) $\in R \cap S$

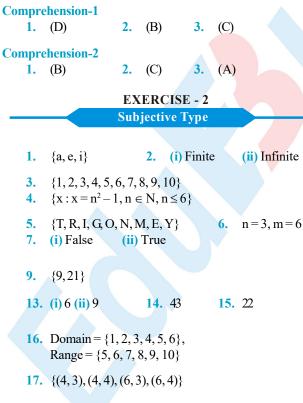
Thus, $(a, a) \in R \cap S$ for all $a \in A$.

and $(a, a) \in S$

 $[\rightarrow R and S are reflexive]$

SETS AND RELATION

So, $R \cap S$ is a reflexive relation on A. Symmetry : Let $a, b \in A$ such that $(a, b) \in R \cap S$. Then, $(a, b) \in R \cap S \Longrightarrow (a, b) \in R$ and $(a, b) \in S$ \Rightarrow (b, a) \in R and (b, a) \in S $[\rightarrow R and S are symmetric]$ \Rightarrow (b, a) $\in R \cap S$ Thus, $(a, b) \in R \cap S \Rightarrow (b, a) \in R \cap S$ for all $(a, b) \in R \cap S$. So, $R \cap S$ is symmetric on A. Transitivity : Let $a,b,c \in A$ such that $(a,b) \in R \cap S$ and $(b, c) \in R \cap S$. Then $(a, b) \in R \cap S$ and $(b, c) \in R \cap S$ \Rightarrow {((a, b) \in R and (a, b) \in S)} and $\{((b,c)\in R \text{ and } (b,c)\in S)\}$ $\Rightarrow \{(a, b) \in \mathbb{R}, (b, c) \in \mathbb{R}\} \text{ and } \{(a, b) \in \mathbb{S}, (b, c) \in \mathbb{S}\}\$ \Rightarrow (a, c) \in R and (a, c) \in S \Rightarrow (a, c) \in R \cap S Thus, $(a, b) \in R \cap S$ and $(b, c) \in R \cap S$ \Rightarrow (a, c) $\in R \cap S$. So $R \cap S$ is transitive on A Hence, R is an equivalence relation on A. Part # II : Comprehension



	EXERCISE - 3
	Part # I : AIEEE/JEE-MAIN
1.	 (B) (1, 1) ∉ R ∴ not reflexive (2, 3) ∈ R and (3, 2) ∉ R not symmetric (1, 3) ∈ R and (3, 1) ∈ R but (1, 1) ∉ R ∴ not transitive
2.	(A) (a, a) $\in \mathbb{R}$ for each $a \in \mathbb{A}$ (6, 12) $\in \mathbb{R}$ but (12, 6) \mathbb{R} (a, b) $\in \mathbb{R}$ and (b, c) $\in \mathbb{R}$ \Rightarrow transitive (A) \therefore reflexive \therefore not symmetric \Rightarrow (a, c) $\in \mathbb{R}$
3.	(A) $(x, x) \in R \forall x \in W \implies R \text{ is reflexive}$ Let $(x, y) \in R$, then $(y, x) \in R$
	[x, y have at least one letter in common]
	\Rightarrow R is symmetric.
	But R is not transitive
	eg. (TALL) R (LIGHT) and (LIGHT) R (HIGH) but (TALL)
5.	(HIGH) (A)
5.	(1) S is not reflexive so not equivalence as $x \neq x + 1$ (2) $(x, y) \in T \Rightarrow x - y$ is an integer (i) $x - x$ is an integer \Rightarrow reflexive (ii) $x - y =$ integer $\Rightarrow y - x =$ integer \therefore T is symmetric (iii) $x - y = m, y - z = n$ $\Rightarrow x - y + y - z = m + n$ $x - z = m + n \Rightarrow$ Transitive so T is equivalence relation
6.	(B) We have, $A \cup B = A \cup C$ $\Rightarrow (A \cup B) \cap C = (A \cup C) \cap C$ $\Rightarrow (A \cap C) \cup (B \cap C) = C$ [$\Rightarrow (A \cup C) \cap C = C$] $\Rightarrow (A \cap B) \cup (B \cap C) = C$ (i) [$\Rightarrow A \cap C = A \cap B$] Again, $A \cup B = A \cup C$ $\Rightarrow (A \cup B) \cap B = (A \cup C) \cap B$ $\Rightarrow B = (A \cap B) \cup (C \cap B) \Rightarrow (A \cap B) \cup (C \cap B) = B$ $\Rightarrow (A \cap B) \cup (B \cap C) = B$ (ii) From (i) and (ii), we get $B = C$
8.	(C) Statement - 1: (i) $x - x$ is an integer $x \in R$ so A is reflexive relation. (ii) $y - x \in I \implies x - y \in I$ so A is symmetric relation. (iii) $y - x \in I$ and $z - y \in I \implies y - x + z - y \in I$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Part # II : CBSE \Rightarrow z - x \in I so A is transitive relation. Therefore A is equivalence relation. Reflexive **1.(i)** Statement - 2 : \rightarrow a+b=b+a \Rightarrow (a, b) R(a, b) (i) $x = \alpha x$ when $\alpha = 1 \implies B$ is reflexive relation Hence R is reflexive. (ii) for x = 0 and y = 2, we have $0 = \alpha(2)$ for $\alpha = 0$ (ii) Symmetric But $2 = \alpha(0)$ for no α \Rightarrow a + d = b + c (a, b) R(c, d)so B is not symmetric so not equivalence. \Rightarrow b+c=a+d \Rightarrow c+b=d+a \Rightarrow (c, d) R(a, b) 9. (B) Hence R is symmetric for reflexive $(A, A) \in R$ (iii) (a, b) R(c, d) and (c, d) R(e, f) \Rightarrow A = P⁻¹ A P \Rightarrow a+d=b+c and c+f=d+e which is true for P = I \Rightarrow a+d+c+f=b+c+d+e : reflexive \Rightarrow a+f=b+e \Rightarrow (a, b) R(e, f) for symmetry Hence R is transitive As $(A, B) \in R$ for matrix P Therefore, relation R is an equivalence relation. $A = P^{-1} BP$ \Rightarrow PA = PP⁻¹ BP \Rightarrow PAP⁻¹ = IBPP⁻¹ 2. Reflexive : Let $a \in A$ \Rightarrow PAP⁻¹ = IBI \Rightarrow PAP⁻¹ = B \therefore $|\mathbf{a} - \mathbf{a}| = 0$ is an even number \Rightarrow B = PAP⁻¹ \Rightarrow (a, a) \in R \therefore (B, A) \in R for matrix P⁻¹ .: R is reflexive . R is symmetric **Symmetric**: Let $a, b \in R$ for transitivity Let $(a, b) \in \mathbb{R}$ $A = P^{-1} BP$ \Rightarrow |a - b| is even $\Rightarrow |-(b - a)|$ is even and $B = P^{-1}CP$ \Rightarrow A = P⁻¹ (P⁻¹ CP)P ⇒ |b – a| is even \Rightarrow A = (P⁻¹)² CP² \Rightarrow (b, a) $\in \mathbb{R}$ \Rightarrow A = (P²)⁻¹ C(P²) ... R is symmetric \therefore (A, C) \in R for matrix P² Transitive : Let $a, b, c \in \mathbb{R}$. R is transitive Let $(a, b) \in R$ and $(b, c) \in R$ \Rightarrow |a - b| is even and |b - c| is even so R is equivalence \Rightarrow a – b is even and b – c is even 10. **(B)** \Rightarrow (a - b) + (b - c) is even Every element has 3 options. Either set Y or set Z or \Rightarrow |a-c| is even \Rightarrow $(a, c) \in \mathbb{R}$ none R is transitive. so number of ordered pairs $= 3^5$ Hence R is an equivalence relation as R is reflexive, symmetric and transitive. 11. (C) 3. Reflexive : \rightarrow a – a is divisible by 5 for all a $\in \mathbb{Z}$ n(A) = 2. R is reflexive

n(B) = 4 n(A × B) = 8 ${}^{8}C_{3} + {}^{8}C_{4} + \dots + {}^{8}C_{8} = 2^{8} - {}^{8}C_{0} - {}^{8}C_{1} - {}^{8}C_{2}$ = 256 - 1 - 8 - 28 = 219

 \Rightarrow b – a is divisible by 5

 \Rightarrow a – b is divisible by 5

Symmetric : $(a, b) \in R$

- $\Rightarrow b-a \in R$
- ... R is symmetric

Transitive : $(a, b) \in R$ and $(b, c) \in R$

- \Rightarrow a b and b c are both divisible by 5
- \Rightarrow a b + b c is divisible by 5
- \Rightarrow a c is divisible by 5
- \Rightarrow (a, c) \in R
- . R is transitive

Since R is reflexive, symmetric and transitive.

Hence, R is an equivalence relation.

4.(i) As $a \le a^3$ is not true for all $a \in R$

- $\therefore R \text{ is not reflexive}$ For example, if $a = \frac{1}{3}$ then $a > a^3$ i.e. $a \le a^3$ is not true
- (ii) If (a, b) ∈ R then need not imply that (b, a) ∈ R
 ∴ R is not symmetric
 For example, if (1, 2) ∈ R but (2, 1) ∉ R,
 As 1 ≤ 2³ but 2 ≠ 1³

(iii) If (a, b) ∈ R and (b, c) ∈ R, then need not imply that (a, c) ∈ R
∴ R is not transitive
For example (100, 5) ∈ R and (5, 2) ∈ R but (100, 2) ∉ R
As 100 ≤ 5³ and 5 ≤ 2³ but 100 ≥ 2³.

- **5. Reflexive :** For all $a \in A$
 - $|\mathbf{a} \mathbf{a}| = 0$ is divisible by 4 \Rightarrow $(\mathbf{a}, \mathbf{a}) \in S$

: S is reflexive

Symmetric : Let $a, b \in A, (a, b) \in S$

- \Rightarrow |a b| is divisible by 4
- \Rightarrow |b-a| is divisibe by $4 \Rightarrow (b, a) \in S$
- : S is symmetric

Transitive : Let $a, b, c \in A, (a, b) \in S, (b, c) \in S$

- \Rightarrow |a b| is divisible by 4 and |b c| is divisible by 4
- \Rightarrow (a b) and (b c) is divisible by 4
- \Rightarrow (a b) + (b c) = a c is divisible by 4
- \Rightarrow |a-c| is divisible by $4 \Rightarrow (a, c) \in S$
- : S is transitive

Since S is reflexive, symmetric and transitive.

Hence, S is an equivalence relation.

The set of all elements of A, related to 1 is $\{1, 5, 9\}$

(a, b), (b, c) $\in \mathbb{R}$ \Rightarrow (a, c) $\in \mathbb{R}$ Here (1, 2) and (2, 1) $\in \mathbb{R}$ but (1, 1) $\notin \mathbb{R}$. So, it is not transitive.