SOLVED EXAMPLES

Ex. 1	Solve	$\cos 3x + \sin 2x - \sin 4x = 0$		
Sol.	cos3x +	$-\sin 2x - \sin 4x = 0$	\Rightarrow	$\cos 3x + 2\cos 3x . \sin(-x) = 0$
	\Rightarrow	$\cos 3x - 2\cos 3x \cdot \sin x = 0$	\Rightarrow	$\cos 3x (1-2\sin x)=0$
	\Rightarrow	$\cos 3x = 0$	or	$1 - 2\sin x = 0$
	⇒	$3x = (2n+1) \frac{\pi}{2}, n \in I$	or	$\sin x = \frac{1}{2}$
	⇒	$x = (2n+1) \frac{\pi}{6}, n \in I$	or	$x = n\pi + (-1)^n \frac{\pi}{6}, n \in I$
		solution of given equation is		
		$(2n+1) \ \frac{\pi}{6}, n \in I$	or	$n\pi + (-1)^n \frac{\pi}{6}, n \in I$
Ex. 2	If $x \neq \frac{r}{r}$	$\frac{n\pi}{2}$, $n \in I$ and $(\cos x)^{\sin^2 x - 3\sin x + 2} = 1$, then fin	d the general solutions of x.
Sol.	As x≠	$\frac{4}{2}$ \implies cos	s x \neq 0, 1,	-1
	So,	$(\cos x)^{\sin^2 x - 3\sin x + 2} = 1 \implies$	$\sin^2 x - 3$	$\sin x + 2 = 0$
		$(\sin x - 2)(\sin x - 1) = 0 \implies$	sinx = 1	2
	where s	$\sin x = 2$ is not possible and $\sin x = 1$	which is a	lso not possible as $x \neq \frac{n\pi}{2}$
		no general solution is possible.		2
Ex. 3 Sol.	Solve	$3\cos x + 4\sin x = 5$ $3\cos x + 4\sin x = 5$		(i)
	+	$\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}$	sinx =	$\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}$
		equation (i) becomes		
	⇒	$3\left(\frac{1-\tan^2\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)+4\left(\frac{2\tan\frac{x}{2}}{1+\tan^2\frac{x}{2}}\right)=$	= 5	(ii)
	Let	$\tan \frac{x}{2} = t$		
	÷	equation (ii) becomes $3\left(\frac{1-t^2}{1+t^2}\right)$	$+4\left(\frac{2}{1+1}\right)$	$\left(\frac{1}{t^2}\right) = 5$
	\Rightarrow	$4t^2 - 4t + 1 = 0 \qquad \Rightarrow \qquad \qquad$	(2t - 1)	$^{2} = 0$
	⇒	$t = \frac{1}{2} \qquad \Rightarrow \qquad $	t = tan	<u>x</u> 2
	⇒	$\tan \frac{x}{2} = \frac{1}{2} \implies$	$\tan \frac{x}{2}$	= $\tan \alpha$, where $\tan \alpha = \frac{1}{2}$
	⇒	$\frac{x}{2} = n\pi + \alpha \qquad \Rightarrow \qquad \qquad$	$x = 2n\pi$	$+2\alpha$ where $\alpha = \tan^{-1}\left(\frac{1}{2}\right), n \in I$

Ex.4 Solve
$$2 \cos^2 x + 4\cos x = 3\sin^2 x$$

Sol. $2\cos^2 x + 4\cos x - 3\sin^2 x = 0$
 $\Rightarrow 2\cos^2 x + 4\cos x - 3 = 0$
 $\Rightarrow 5\cos^2 x + 4\cos x - 3 = 0$
 $\Rightarrow \left\{\cos x - \left(\frac{-2 + \sqrt{19}}{5}\right)\right\} \left\{\cos x - \left(\frac{-2 - \sqrt{19}}{5}\right)\right\} = 0$ (ii)
 $\Rightarrow \cos x \in [-1, 1] \quad \forall x \in \mathbb{R}$
 $\therefore \cos x \neq \frac{-2 - \sqrt{19}}{5}$
 $\therefore \text{ equation (ii) will be true if } \cos x = \frac{-2 + \sqrt{19}}{5}$
 $\Rightarrow \cos x = \cos \alpha, \text{ where } \cos \alpha = \frac{-2 + \sqrt{19}}{5}$
 $\Rightarrow x = 2n\pi \pm \alpha \text{ where } \alpha = \cos^{-1}\left(\frac{-2 + \sqrt{19}}{5}\right), n \in \mathbb{I}$
Ex.5 Solve $\sin^2 \theta - \cos \theta = \frac{1}{4}$ for θ and write the values of θ in the interval $0 \le \theta \le 2\pi$.

$$1 - \cos^{2}\theta - \cos\theta = \frac{1}{4} \implies \cos^{2}\theta + \cos\theta - \frac{3}{4} = 0$$

$$\Rightarrow 4\cos^{2}\theta + 4\cos\theta - 3 = 0 \implies (2\cos\theta - 1)(2\cos\theta + 3) = 0$$

$$\Rightarrow \cos\theta = \frac{1}{2}, -\frac{3}{2}$$

Since, $\cos\theta = -\frac{3}{2}$ is not possible as $-1 \le \cos\theta \le 1$

$$\therefore \cos\theta = \frac{1}{2} \implies \cos\theta = \cos\frac{\pi}{3} \implies \theta = 2n\pi \pm \frac{\pi}{3}, n \in I$$

For the given interval, $n = 0$ and $n = 1$.

$$\Rightarrow \theta = \frac{\pi}{3}, \frac{5\pi}{3}$$

Ex.6 Solve the equation $5\sin^2 x - 7\sin x \cos x + 16\cos^2 x = 4$

Sol.

I. To solve this equation we use the fundamental formula of trigonometric identities,

$$\sin^2 x + \cos^2 x = 1$$

writing the equation in the form,

 $5\sin^2 x - 7\sin x \cdot \cos x + 16\cos^2 x = 4(\sin^2 x + \cos^2 x)$

 \Rightarrow $\sin^2 x - 7\sin x \cos x + 12\cos^2 x = 0$ dividing by $\cos^2 x$ on both side we get,

 $\tan^2 x - 7\tan x + 12 = 0$

Now it can be factorized as :

- $(\tan x 3)(\tan x 4) = 0$
- $\tan x = 3, 4$
- i.e., $\tan x = \tan(\tan^{-1}3)$ or $\tan x = \tan(\tan^{-1}4)$ $\Rightarrow x = n\pi + \tan^{-1}3$ or $x = n\pi + \tan^{-1}4$, $n \in I$.

 \Rightarrow

Ex.7 Solve sinx + cosx =
$$\sqrt{2}$$

Sol. $\Rightarrow \sin x + \cos x = \sqrt{2}$ (i)
Here $a = 1, b = 1$.
 \therefore divide both sides of equation (i) by $\sqrt{2}$, we get
 $\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}} = 1 \Rightarrow \sin x \sin \frac{\pi}{4} + \cos x \cos \frac{\pi}{4} = 1 \Rightarrow \cos \left(x - \frac{\pi}{4}\right) = 1$
 $\Rightarrow x - \frac{\pi}{4} = 2\pi\pi, n \in 1 \Rightarrow x = 2\pi\pi + \frac{\pi}{4}, n \in 1$
Ex.8 Solve the equation sin⁴x + cos⁴x = $\frac{7}{2}$ sinx . cosx.
Sol. $\sin^4 x + \cos^4 x = \frac{7}{2} \sin x \cdot \cos x \Rightarrow (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = \frac{7}{2} \sin x \cdot \cos x$
 $\Rightarrow 1 - \frac{1}{2}(\sin 2x)^2 = \frac{7}{4}(\sin 2x) \Rightarrow 2\sin^2 2x + 7\sin 2x - 4 = 0$
 $\Rightarrow (2\sin 2x - 1)(\sin 2x + 4) = 0 \Rightarrow \sin 2x = \frac{1}{2} \text{ or sin } 2x = -4$ (which is not possible)
 $\Rightarrow 2x = \pi\pi + (-1)^8 \frac{\pi}{6}, n \in 1$
i.e., $x = \frac{\pi\pi}{2} + (-1)^8 \frac{\pi}{12}, n \in I$
Ex.9 Find the number of distinct solutions of secx + tanx = $\sqrt{3}$, where $0 \le x \le 3\pi$.
Sol. or $\sqrt{3} \cos x - \sin \pi = 1$
dividing both sides by $\sqrt{a^1 + b^2}$ i.e. $\sqrt{4} = 2$, we get
 $\Rightarrow \frac{\sqrt{3}}{2} \cos x - \sin \pi = \frac{1}{2}$
 $\Rightarrow \cos \frac{\pi}{6} \cos x - \sin \frac{\pi}{6} \sin x = \frac{1}{2}$ $\Rightarrow \cos \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$
As $0 \le x \le 3\pi$
 $\frac{\pi}{6} \le x + \frac{\pi}{6} \le \frac{3\pi}{3}, \frac{7\pi}{3}$
 $\Rightarrow x - \frac{\pi}{6}, \frac{3\pi}{2}, \frac{13\pi}{6}$
But at $x = \frac{3\pi}{2}$, tanx and secx is not defined.
 \therefore Total number of solutions are 2.

Ex. 10 Solve: $\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0$

Sol. We have
$$\cos\theta + \cos7\theta + \cos3\theta + \cos5\theta = 0$$

$$\Rightarrow \qquad 2\cos 4\theta \cos 3\theta + 2\cos 4\theta \cos \theta = 0 \qquad \Rightarrow \qquad \qquad$$

 $\Rightarrow \qquad \cos 4\theta (2\cos 2\theta \cos \theta) = 0$

$$\Rightarrow$$
 Either $\cos\theta = 0$

or
$$\cos 2\theta = 0 \implies \theta = (2n_2 + 1)\frac{\pi}{4}, n_2 \in I$$

or
$$\cos 4\theta = 0 \implies \theta = (2n_3 + 1)\frac{\pi}{8}, n_3 \in I$$

Ex. 11 Find the general solution of equation $\sin^4 x + \cos^4 x = \sin x \cos x$. **Sol.** Using half-angle formulae, we can represent given equation in the form :

 \Rightarrow

$$\left(\frac{1-\cos 2x}{2}\right)^2 + \left(\frac{1+\cos 2x}{2}\right)^2 = \sin x \cos x$$

$$\Rightarrow \qquad (1-\cos 2x)^2 + (1+\cos 2x)^2 = 4\sin x \cos x$$

$$\Rightarrow \qquad 2(1+\cos^2 2x) = 2\sin 2x \qquad \Rightarrow \qquad 1+1-\sin^2 2x = \sin 2x$$

$$\Rightarrow \qquad \sin^2 2x + \sin 2x = 2$$

$$\Rightarrow \qquad \sin 2x = 1 \text{ or } \sin 2x = -2 \text{ (which is not possible)}$$

$$\Rightarrow \qquad 2x = 2n\pi + \frac{\pi}{2}, n \in I \qquad \Rightarrow \qquad x = n\pi + \frac{\pi}{4}, n \in I$$

Ex. 12 Solve $\cos 4\theta + \sin 5\theta = 2$.

Sol. The equation
$$\cos 4\theta + \sin 5\theta = 2$$
.

 $4\theta = 2n\pi$ and $5\theta = 2n\pi + \pi/2$, n, m $\in \mathbb{Z}$

$$\Rightarrow \qquad \theta = \frac{2n\pi}{4} \text{ and } \theta = \frac{2m\pi}{5} + \frac{\pi}{10}, n, m \in \mathbb{Z}$$

Putting n; $m = 0, \pm 1, \pm 2, ...,$ the common value in $[0, 2\pi]$ is $\theta = \pi/2$ Therefore, the solution is $\theta = 2k\pi + \pi/2$, $k \in \mathbb{Z}$.

Ex. 13 Solve $4\cot^2\theta = \cot^2\theta - \tan^2\theta$.

Sol.
$$\frac{4}{\tan 2\theta} = \frac{1}{\tan^2 \theta} - \tan^2 \theta$$

or
$$\frac{4(1-\tan^2\theta)}{2\tan\theta} = \frac{1-\tan^4\theta}{\tan^2\theta}$$

or
$$(1-\tan^2\theta) \left[2\tan\theta - (1+\tan^2\theta)\right] = 0$$

or
$$(1-\tan^2\theta) (\tan^2\theta - 2\tan\theta + 1) = 0$$

or
$$(1-\tan^2\theta)(\tan\theta - 1)^2 = 0$$

or
$$\tan\theta = \pm 1$$

$$\theta = n\pi \pm \frac{\pi}{4}, n \in \mathbb{Z}$$

 $\left[\text{put } \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} \right]$

 $\cos 4\theta (\cos 3\theta + \cos \theta) = 0$

$$\theta = (2n_1 + 1) \pi/2, n_1 \in I$$

Ex. 14 Find the solution set of inequality $\sin x > 1/2$.

Sol.

When sinx = $\frac{1}{2}$, the two values of x between 0 and 2π are $\pi/6$ and $5\pi/6$. Sol.

From the graph of $y = \sin x$, it is obvious that between 0 and 2π .

From the graph of
$$y = \sin x$$
, it is bortous that between 0 and 2.1,

$$\sin x \ge \frac{1}{2} \text{ for } \pi/6 \le x \le 5\pi/6$$
Hence, $\sin x \ge 1/2$

$$\Rightarrow 2n\pi + \pi/6 \le x \le 2n\pi + 5\pi/6, n \in I$$
Thus, the required solution set is $\bigcup_{n \in I} \left(2n\pi + \frac{\pi}{6}, 2n\pi + \frac{5\pi}{6}\right)$
Ex. 15 Find the value of x in the interval $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ for which $\sqrt{2} \sin 2x + 1 \le 2 \sin x + \sqrt{2} \cos x$
Sol. We have, $\sqrt{2} \sin 2x + 1 \le 2 \sin x + \sqrt{2} \cos x$

$$\Rightarrow 2\sqrt{2} \sin x \cos x - 2 \sin x - \sqrt{2} \cos x + 1 \le 0$$

$$\Rightarrow 2 \sin x(\sqrt{2} \cos x - 1) - 1(\sqrt{2} \cos x - 1) \le 0$$

$$\Rightarrow (\sin x - \frac{1}{2})(\cos x - \frac{1}{\sqrt{2}}) \le 0$$
Above inequality holds when :
Case-I: $\sin x - \frac{1}{2} \le 0$ and $\cos x - \frac{1}{\sqrt{2}} \ge 0$ $\Rightarrow \sin x \le \frac{1}{2}$ and $\cos x \ge \frac{1}{\sqrt{2}}$
Now considering the given interval of x :
for $\sin x \le \frac{1}{2}$: $x \in \left[-\frac{\pi}{2}, \frac{\pi}{6}\right] \cup \left[\frac{5\pi}{6}, \frac{3\pi}{2}\right]$ and for $\cos x \ge \frac{1}{\sqrt{2}}$: $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

For both to simultaneously hold true : $\mathbf{x} \in \left[-\frac{\pi}{4}, \frac{\pi}{6}\right]$

Case-II: $\sin x - \frac{1}{2} \ge 0$ and $\cos x \le \frac{1}{\sqrt{2}}$ Again, for the given interval of x : for $\sin x \ge \frac{1}{2}$: $x \in \left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$ and for $\cos x \le \frac{1}{\sqrt{2}}$: $x \in \left[-\frac{\pi}{2}, -\frac{\pi}{4}\right] \cup \left[\frac{\pi}{4}, \frac{3\pi}{2}\right]$ For both to simultaneously hold true : $\mathbf{x} \in \left[\frac{\pi}{4}, \frac{5\pi}{6}\right]$ Given inequality holds for $x \in \left[-\frac{\pi}{4}, \frac{\pi}{6}\right] \cup \left[\frac{\pi}{4}, \frac{5\pi}{6}\right]$... **Ex. 16** Solve sinx + cosx = 1 + sinx.cosxSol. sinx + cosx = 1 + sinx.cosx.....(i) Let sinx + cosx = t $\sin^2 x + \cos^2 x + 2 \sin x \cdot \cos x = t^2$ ⇒ $sinx.cosx = \frac{t^2 - 1}{2}$ ⇒ Now put sinx + cosx = t and sinx.cosx = $\frac{t^2 - 1}{2}$ in (i), we get t = 1 + $\frac{t^2 - 1}{2}$ $t^2 - 2t + 1 = 0$ ⇒ \rightarrow t = sinx + cosx t = 1⇒ -> sinx + cosx = 1.....(ii) divide both sides of equation (ii) by $\sqrt{2}$, we get $\sin x. \frac{1}{\sqrt{2}} + \cos x. \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ ⇒ $\cos\left(x-\frac{\pi}{4}\right) = \cos\frac{\pi}{4} \implies x-\frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}$ ⇒ if we take positive sign, we get $x = 2n\pi + \frac{\pi}{2}$, $n \in I$ **(i)** if we take negative sign, we get **(ii)** $x = 2n\pi, n \in I$ **Ex. 17** If the set of all values of x in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying $|4 \sin x + \sqrt{2}| < \sqrt{6}$ is $\left(\frac{a\pi}{24}, \frac{b\pi}{24}\right)$ then find the value of $\left|\frac{a-b}{3}\right|$. $|4\sin x + \sqrt{2}| < \sqrt{6}$ Sol. $-\sqrt{6} < 4 \sin x + \sqrt{2} < \sqrt{6}$ \Rightarrow $-\sqrt{6} - \sqrt{2} < 4 \sin x < \sqrt{6} - \sqrt{2}$ $\Rightarrow \qquad -(\sqrt{6} + \sqrt{2}) < \sin x < \frac{\sqrt{6} - \sqrt{2}}{4} \qquad \Rightarrow \qquad -\frac{5\pi}{12} < x < \frac{\pi}{12} \text{ for } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Comparing with $\frac{a\pi}{24} < x < \frac{b\pi}{24}$, we get, a = -10, b = 2 $\therefore \left| \frac{\mathbf{a} - \mathbf{b}}{3} \right| = \left| \frac{-10 - 2}{3} \right| = 4$

Ex. 18 Find the values of x in the interval $[0,2\pi]$ which satisfy the inequality : $3|2 \sin x - 1| \ge 3 + 4 \cos^2 x$.

Sol. The given inequality can be written as :

 $3|2\sin x - 1| > 3 + 4(1 - \sin^2 x)$ $3|2\sin x - 1| > 7 - 4\sin^2 x$ ⇒ \Rightarrow 3|2t-1| \geq 7-4t² Let $\sin x = t$ **Case I:** For $2t - 1 \ge 0$ i.e. $t \ge 1/2$ we have, |2t-1| = (2t-1) $\Rightarrow 3(2t-1) \ge 7 - 4t^2 \Rightarrow 6t - 3 \ge 7 - 4t^2$ $\Rightarrow 4t^2 + 6t - 10 \ge 0 \Rightarrow 2t^2 + 3t - 5 \ge 0$ $\Rightarrow (t-1)(2t+5) \ge 0 \Rightarrow t \le -\frac{5}{2} \text{ and } t \ge 1$ Now for $t \ge \frac{1}{2}$, we get $t \ge 1$ from above conditions i.e. $\sin x \ge 1$ $x = \frac{\pi}{2}$ (for $x \in [0, 2\pi]$) The inequality holds true only for x satisfying the equation $\sin x = 1$ $t < \frac{1}{2}$ **Case II**: For 2t - 1 < 0we have, |2t-1| = -(2t-1)we have, |2t-1| = -(2t-1) $\Rightarrow -3(2t-1) \ge 7-4t^2$ $\Rightarrow -6t+3 \ge 7-4t^2$ $\Rightarrow 4t^2-6t-4 \ge 0$ $\Rightarrow 2t^2-3t-2 \ge 0$ $\Rightarrow (t-2)(2t+1) \ge 0$ $\Rightarrow t \le -\frac{1}{2}$ and $t \ge 2$ Again, for $t < \frac{1}{2}$ we get $t \le -\frac{1}{2}$ from above conditions i.e. $\sin x \le -\frac{1}{2}$ $\Rightarrow \qquad \frac{7\pi}{6} \le x \le \frac{11}{6}\pi \quad (\text{for } x \in [0, 2\pi])$ Thus, $\mathbf{x} \in \left[\frac{7\pi}{6}, \frac{11\pi}{6}\right] \cup \left\{\frac{\pi}{2}\right\}$

Exercise #1 [Single Correct Choice Type Questions] The principal solution set of the equation $2 \cos x = \sqrt{2 + 2\sin 2x}$ is 1. (A) $\left\{\frac{\pi}{8}, \frac{13\pi}{8}\right\}$ (B) $\left\{\frac{\pi}{4}, \frac{13\pi}{8}\right\}$ (C) $\left\{\frac{\pi}{4}, \frac{13\pi}{10}\right\}$ (D) $\left\{\frac{\pi}{8}, \frac{13\pi}{10}\right\}$ The solution set of the equation $4\sin\theta \cdot \cos\theta - 2\cos\theta - 2\sqrt{3}\sin\theta + \sqrt{3} = 0$ in the interval $(0, 2\pi)$ is 2. (A) $\left\{\frac{3\pi}{4}, \frac{7\pi}{4}\right\}$ **(B)** $\left\{\frac{\pi}{3}, \frac{5\pi}{3}\right\}$ **(C)** $\left\{\frac{3\pi}{4}, \pi, \frac{\pi}{3}, \frac{5\pi}{3}\right\}$ **(D)** $\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}\right\}$ The number of solutions of the equation $\tan^2 x - \sec^{10} x + 1 = 0$ in (0, 10) is -3. **(D)** 11 **(B)** 6 (A) 3 (C) 10 4. The number of solution of $\sin^4 x - \cos^2 x \sin x + 2 \sin^2 x + \sin x = 0$ in $0 \le x \le 3$ is **(A)**3 **(B)**4 (C) 5 **(D)**6 The most general value for which $\tan \theta = -1$, $\cos \theta = \frac{1}{\sqrt{2}}$ is $(n \in \mathbb{Z})$ 5. **(B)** $n\pi + (-1)^n \frac{7\pi}{4}$ **(C)** $2n\pi + \frac{7\pi}{4}$ (A) $n\pi + \frac{7\pi}{4}$ (D) none of these The sum of all the solution of $\cot\theta = \sin 2\theta$ ($\theta \neq n\pi$, n integer), $0 \le \theta \le \pi$, is 6. (A) $3\pi/2$ **(B)**π (C) infinite $(\mathbf{D})2\pi$ The solutions of the equation $\sin x + 3\sin 2x + \sin 3x = \cos x + 3\cos 2x + \cos 3x$ in the interval $0 \le x \le 2\pi$, are; 7. **(B)** $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ **(C)** $\frac{4\pi}{3}, \frac{9\pi}{3}, \frac{2\pi}{3}, \frac{13\pi}{8}$ **(D)** $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{3}, \frac{4\pi}{3}$ (A) $\frac{\pi}{8}, \frac{5\pi}{8}, \frac{2\pi}{3}$ $\frac{\cos 3\theta}{2\cos 2\theta - 1} = \frac{1}{2}$ if 8. (A) $\theta = n\pi + \frac{\pi}{3}$, $n \in I$ **(B)** $\theta = 2n\pi \pm \frac{\pi}{3}$, $n \in I$ **(D)** $\theta = n\pi + \frac{\pi}{6}, n \in I$ (C) $\theta = 2n\pi \pm \frac{\pi}{6}, n \in I$ The number of solution of the equation, $\sum_{r=0}^{\infty} \cos(r x) = 0$ lying in $(0, \pi)$ is : 9. **(B)** 3 (D) more than 5 (A) 2 **(C)**5 The general solution of the trigonometric equation $\tan x + \tan 2x + \tan 3x = \tan x \cdot \tan 2x \cdot \tan 3x$ is 10. (D) $x = \frac{n\pi}{3}$ **(B)** $n\pi \pm \frac{\pi}{2}$ (C) $x = 2n\pi$ (A) $x = n\pi$ where $n \in I$ 11. General solution of the equation sec $x = 1 + \cos x + \cos^2 x + \cos^3 x + \dots \infty$, is (A) $n\pi + \frac{\pi}{3}$ **(B)** $2n\pi \pm \frac{\pi}{2}$ (C) $n\pi \pm \frac{\pi}{\epsilon}$ (**D**) $2n\pi + \frac{\pi}{\epsilon}$ where *n* is an integer.

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

12.	Let $f(x) = \cos^2 x + \cos^2 2x + \cos^2 3x$. Number of values of $x \in [0, \pi]$ for which $f(x)$ equals the smallest positive integer is									
	(A) 3	(B) 4	(C) 5	(D) 6						
13.	Let $f(\mathbf{x}) = -\frac{1}{co}$	$\frac{\csc^4 x - 2\csc^2 x + 1}{\sec x (\csc x - \sin x) + \frac{\sin x - \cos x}{x}}$		fall the solutions of $f(\mathbf{x}) = 0$ in $[0, 100\pi]$ is						
	(A) 2550π	sin x (B) 2500π	(C) 5000π	(D) 5050π						
14.	Let X be the s	set of all solutions to the equation cos	$sx \cdot sin\left(x + \frac{1}{x}\right) = 0$). Number of real numbers contained by X in						
	the interval (0	$0 < x < \pi$), is								
	(A) 0	(B) 1	(C) 2	(D) more than 2						
15.	If $2\sin x + 7$	$7 \cos px = 9$ has atleast one solution t	hen p must be							
	(A) an odd in	teger	(B) an even int	teger						
	(C) a rational	number	(D) an irrationa	al number						
16.	Number of pr	rincipal solution(s) of the equation,								
	4.16	$\sin^2 x = 2^{6\sin x}$, is								
	(A) 1	(B) 2	(C) 3	(D) 4						
17.	If the inequal	ity $\sin^2 x + a \cos x + a^2 > 1 + \cos x$ ho	olds for any $x \in R$. t	then the largest negative integral value of a is						
	(A)-4	(B)-3	(C) - 2	(D) -1						

Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

1.	Statement - I	The value of x for which $(\sin x + \cos x)^{1 + \sin 2x} = 2$, when $0 \le x \le \pi$, is $\pi/4$ only.
	Statement - II	The maximum value of sin x + cos x occurs when $x = \pi/4$
2.	Statement - I	For any real value of $\theta \neq (2n+1)\pi$ or $(2n + 1)\pi/2$, $n \in I$, the value of the
		expression $y = \frac{\cos^2 \theta - 1}{\cos^2 \theta + \cos \theta}$ is $y \le 0$ or $y \ge 2$ (either less than or equal to zero or greater than
	Statument II	or equal to two)
	Statement - II	set $\theta \in (-\infty, -1] \cup [1, \infty)$ for all real values of θ .
3.	Statement-I	The equation $\sqrt{3} \cos x - \sin x = 2$ has exactly one solution in $[0, 2\pi]$.
	Statement-II	For equations of type $a\cos\theta + b\sin\theta = c$ to have real solutions in $[0, 2\pi]$, $ c \le \sqrt{a^2 + b^2}$ should hold true.

Exercise # 3 Part # I [Matrix Match Type Questions]

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **one or more** statement(s) in **Column-II**.

1. On the left, equation with interval is given and on the right number of solutions are given, match the column.

С	Column-I							
(4	n sinx = m cosx in $[0, 2\pi]$ where n > m and are positive integers	(p)	2					
(E	B) $\sum_{r=1}^{5} \cos rx = 5$ in $[0, 2\pi]$	(q)	4					
(0	2) $2^{1+ \cos x + \cos x ^2\infty} = 4 \text{ in } (-\pi, \pi)$	(r)	3					
(I	tan θ + tan 2θ + tan 3θ = tan θ tan 2θ tan 3θ in $(0, \pi)$	(s)	1					
С	olumn – I	Column	ı−II					
(4	Number of solutions of $\sin^2\theta + 3\cos\theta = 3$ in $[-\pi, \pi]$	(p)	0					
(E	Number of solutions of sin x . $\tan 4x = \cos x$ in $(0, \pi)$	(q)	1					
(0) Number of solutions of equation	(r)	2					
	$(1 - \tan \theta) (1 + \tan \theta) \sec^2 \theta + 2^{\tan^2 \theta} = 0$ where $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$							
(If $[\sin x] + [\sqrt{2}\cos x] = -3$, where $x \in [0, 2\pi]$	(s)	5					
	then [sin 2x] equals (Here [.] denotes G.I.F.)							
С	olumn – I	Column	ı–II					
(4	Number of solutions of sin $x = \frac{ x }{10}$	(p)	4					
(E	If $\sin^2 x - 2 \sin x - 1 = 0$ has minimum	(q)	5					
	four different solutions in $[0, n\pi]$ then n can take values							
(0	C) If $1 + \sin^4 x = \cos^2 3x$, $x \in \left[\frac{-5\pi}{2}, \frac{5\pi}{2}\right]$, then	(r)	6					
	number of values of x are							
a	In \triangle ABC, sin (2A+B) = $\frac{1}{2}$. A, B, C are in A.P.	(\$)	12					
	and $C = \frac{5\pi}{p}$ then p equals							

2.

3.

Comprehension #3

To solve a trigonometric inequation of the type sin $x \ge a$ where $|a| \le 1$, we take a hill of length 2π in the sine curve and write the solution within that hill. For the general solution, we add $2n\pi$. For instance, to solve sinx $\ge -\frac{1}{2}$, we take the hill $\left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ over which solution is $-\frac{\pi}{6} < x < \frac{7\pi}{6}$. The general solution is $2n\pi - \frac{\pi}{6} < x < 2n\pi + \frac{7\pi}{6}$, n is any integer. Again to solve an inequation of the type sin $x \le a$, where $|a| \le 1$, we take a hollow of length 2π in the sine curve. (since on a hill, sinx $\le a$ is satisfied over two intervals). Similarly cos $x \ge a$ or cos $x \le a$, $|a| \le 1$ are solved.

1. Solution to the inequation
$$\sin^{6}x + \cos^{6}x < \frac{7}{16}$$
 must be
(A) $n\pi + \frac{\pi}{3} < x < n\pi + \frac{\pi}{2}$
(B) $2n\pi + \frac{\pi}{3} < x < 2n\pi + \frac{\pi}{2}$
(C) $\frac{n\pi}{2} + \frac{\pi}{6} < x < \frac{n\pi}{2} + \frac{\pi}{3}$
(D) none of these

2. Solution to inequality
$$\cos 2x + 5 \cos x + 3 \ge 0$$
 over $[-\pi, \pi]$ is

(A)
$$[-\pi, \pi]$$
 (B) $\left[\frac{-5\pi}{6}, \frac{5\pi}{6}\right]$ (C) $[0, \pi]$ (D) $\left[\frac{-2\pi}{3}, \frac{2\pi}{3}\right]$

3. Over $[-\pi, \pi]$, the solution of $2\sin^2\left(x + \frac{\pi}{4}\right) + \sqrt{3} \cos 2x \ge 0$ is (A) $[-\pi, \pi]$ (B) $\left[\frac{-5\pi}{6}, \frac{5\pi}{6}\right]$

(C) [0, π]

$$\begin{bmatrix} 6 & 6 \end{bmatrix}$$

$$(\mathbf{D}) \begin{bmatrix} -\pi, \frac{-7\pi}{12} \end{bmatrix} \cup \begin{bmatrix} -\frac{\pi}{4}, \frac{5\pi}{12} \end{bmatrix} \cup \begin{bmatrix} \frac{3\pi}{4}, \pi \end{bmatrix}$$

Ex	xercise # 5	Part # I [Prev	ious Year Questions] [A	AIEEE/JEE-MAIN]
1.	The number of solutions	of $\tan x + \sec x = 2 \cos x$ in	$[0, 2\pi]$ is	
	(1) 2	(2) 3	(3) 0	(4) 1 [AIEEE 2002]
2.	The number of values of	x in the interval $[0, 3\pi]$ sati	sfying the equation 2 sin ² x +	$5 \sin x - 3 = 0$, is
	(1)6	(2) 1	(3) 2	(4) 4 [AIEEE 2006]
3.	The possible values of θ	$\in (0, \pi)$ such that $\sin \theta + \sin \theta$	$n 4\theta + \sin 7\theta = 0$ are :	
	(1) $\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{35}{6}$	π	(2) $\frac{2\pi}{9}, \frac{\pi}{4}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$	
	(3) $\frac{2\pi}{9}, \frac{\pi}{4}, \frac{4\pi}{9}, \frac{\pi}{2}, \frac{3\pi}{4}, \frac{8\pi}{9}$		(4) $\frac{\pi}{4}, \frac{5\pi}{2}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{8\pi}{9}$	[AIEEE 2011]
4.	The number of solutions	s of the equation $\cos^2\left(x + \frac{x}{2}\right)$	$\left(\frac{\pi}{6}\right) + \cos^2 x - 2 \cos\left(x + \frac{\pi}{6}\right)$	$\cos\left(\frac{\pi}{6}\right) = \sin^2\frac{\pi}{6}$ in the interval
	$(-\pi/2,\pi/2)$ is			
	(1)0	(2) 1	(3)2	(4) 3 [AIEEE 2012]
5.	If $0 \le x < 2\pi$, then the nu	mber of real values of x, wh	nich satisfy the equation	
	$\cos x + \cos 2x + \cos 3x + \cos$	$\cos 4x = 0, \text{ is :}$ (2) 7	(3)9	[JEE Main 2016] (4) 3
	Part # II >>	[Previous Year Quest	tions][IIT-JEE ADVA]	NCED]
1	The number of distinct	$\sin x \cos x$	$\cos x = 0$ in the interval	$-\frac{\pi}{-1} \le x \le \frac{\pi}{1}$ is
1.	The number of distinct		sin x	4 4 4 13
	(A) 0	(B) 2	(C) 1	(D) 3 [IIT-JEE-2001]
2.	The number of integral $(A)^4$	values of k for which the	equation 7 cos x + 5 sin x = (C) 10	= 2k + 1 has a solution is
			(C) 10	(D) 12 [111-3EE-2002]
3.	$\cos(\alpha - \beta) = 1$ and \cos	$(\alpha + \beta) = \frac{1}{e}$, where $\alpha, \beta \in$	$= [-\pi, \pi]$. Pairs α, β which	satisfy both the equations is/are
	(A) 0	(B) 1	(C) 2	[IIT-JEE-2005] (D) 4
4.	If $0 < \theta < 2\pi$, then the int	ervals of values of θ for wh	$ich 2 \sin^2\theta - 5 \sin\theta + 2 > 0, i$	is
		$(\pi, 5\pi)$	$(-)$ $(\pi 5\pi)$	[IIT-JEE-2006]
	(A) $\left[0,\frac{\pi}{6}\right] \cup \left[\frac{3\pi}{6},2\pi\right]$	(B) $\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$	$(\mathbf{C})\left(0,\frac{\pi}{6}\right)\cup\left(\frac{\pi}{6},\frac{5\pi}{6}\right)$	(D) $\left(\frac{\pi n}{48}, \pi\right)$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

5.	The number of solutions of the pair of equations $2 \sin^2 \theta - \cos 2\theta = 0$, $2 \cos^2 \theta - 3 \sin \theta = 0$ interval $[0, 2\pi]$ is								
	(A) zero	(B) one	(C) two	(D) four					
6.	Roots of the equation	$2\sin^2\theta + \sin^2\theta = 2$ are							
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$	[IIT 2009]				
7.	The number of all post $(y+z)\cos 3\theta$	ssible values of θ , where $0 = xyz \sin 3\theta$	$< \theta < \pi$, which the syste	om of equations	[IIT-JEE-2010]				
	$x\sin 3\theta = \frac{2}{2}$	$\frac{\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$							
	$xyz \sin 3\theta =$ has a solution (x ₀ , y ₀ ,	$(y+2z)\cos 3\theta + y\sin 3\theta$ z_0 with $y_0, z_0 \neq 0$, is							
	(A) 0	(B) 2	(C) 3	(D) 4					
8.	The number of va	lues of θ in the interv	val $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ such that	at $\theta \neq \frac{n\pi}{5}$ for $n =$	= 0, ± 1 , \pm 2 and				
	$\tan\theta = \cot 5\theta$ as well	as $\sin 2\theta = \cos 4\theta$ is			[IIT-JEE-2010]				
9.	Let θ , $\phi \in [0, 2\pi]$ b	be such that $2\cos\theta(1 - \frac{1}{2})$	$-\sin\phi$) = $\sin^2\theta \left(\tan\frac{\theta}{2}\right)$	$+\cot\frac{\theta}{2}$ $\cos\phi - 1$, tar	$n(2\pi - \theta) > 0$ and				
	$-1 < \sin\theta < -\frac{\sqrt{3}}{2}$. The second	hen ϕ cannot satisfy			[IIT-JEE 2012]				
	(A) $0 < \phi < \frac{\pi}{2}$	$(\mathbf{B}) \ \frac{\pi}{2} < \phi < \frac{4\pi}{3}$	$(C) \ \frac{4\pi}{3} < \phi < \frac{3\pi}{2}$	(D) $\frac{3\pi}{2} < \phi <$	2π				
10.	For $x \in (0, \pi)$, the eq	uation sinx + <mark>2 sin2x – si</mark>	n3x = 3 has		[JEE Ad. 2014]				
	(A) Infinitely many s(C) One solutions	solutions	(B) Three solution(D) No solutions	ons S					
11.	Let $S = \begin{cases} x \in (-\pi, \pi) \end{cases}$	$x \neq 0, \pm \frac{\pi}{2}$. The sun of a	ll distinct solution of the	equation					
	$\sqrt{3}$ secx + cosecx + 2	$R(\tan x - \cot x) = 0$ in the set	t S is equal to		[JEE Ad. 2016]				
	$(\mathbf{A}) - \frac{7\pi}{9}$	$(\mathbf{B}) - \frac{2\pi}{9}$	(C) 0	(D) $\frac{5\pi}{9}$					

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

SECTION - II : MULTIPLE CORRECT ANSWER TYPE

11.	$4\sin^4 x + \cos^4 x = 1$ if								
	(A) $x = n\pi$		(B) $\mathbf{x} = \mathbf{n}\pi \pm \frac{1}{2} \cos^{-1}\left(\frac{1}{5}\right)$)					
	$(\mathbf{C}) \mathbf{x} = \frac{\mathbf{n}\pi}{2}$		(D) none of these, $(n \in I)$)					
12.	$\sin x + \sin 2x + \sin 3x = \cos 3x$	sx + cos2x + cos3x if							
	(A) $\cos x = -\frac{1}{2}$	(B) $\sin 2x = \cos 2x$	$(\mathbf{C}) \mathbf{x} = \frac{\mathbf{n}\pi}{2} + \frac{\pi}{8}$	(D) $x = 2n\pi \pm \frac{2\pi}{3}, (n \in I)$					
13.	$\cos 15 x = \sin 5x \text{ if}$								
	(A) $x = -\frac{\pi}{20} + \frac{n\pi}{5}, n \in I$	(B) $x = \frac{\pi}{40} + \frac{n\pi}{10}, n \in I$	(C) $x = \frac{3\pi}{20} + \frac{n\pi}{5}, n \in I$	(D) $x = -\frac{3\pi}{40} + \frac{n\pi}{10}, n \in I$					
14.	$\sin^2 x + 2 \sin x \cos x - 3\cos x$	$s^2 x = 0$ if							
	(A) $\tan x = 3$	(B) $\tan x = -1$	(C) $x = n\pi + \pi/4, n \in I$	(D) $x = n\pi + tan^{-1} (-3), n \in I$					
15.	$\sin^2 x - \cos 2x = 2 - \sin 2$	x if							
	(A) $x = n\pi/2, n \in I$	(B) $\tan x = 3/2$	(C) $x = (2n+1) \pi/2, n \in I$	(D) $x = n\pi + (-1)^n \sin^{-1}(2/3), n \in I$					
	SECTION - III : ASSERTION AND REASON TYPE								

16. Statement-I: The number of real solutions of the equation $\sin x = 2^x + 2^{-x}$ is zero

Statement-II : Since $|\sin x| \le 1$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

17. Statement-I: If
$$\sin x + \cos x = \sqrt{\left(y + \frac{1}{y}\right)}$$
, $x \in [0, \pi]$, then $x = \frac{\pi}{4}$, $y = 1$

Statement-II : AM≥GM

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

18. Statement-I : In $(0, \pi)$, the number of solutions of the equation $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta$ is two

Statement-II: tan 6 θ is not defined at $\theta = (2n+1)\frac{\pi}{12}$, $n \in I$

(A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.

- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

19. Statement-I: The equation sin(cos x) = cos(sin x) does not possess real roots.

Statement-II: If $\sin x > 0$, then $2n\pi < x < (2n+1)$, $n \in I$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I

(C) Statement-I is True, Statement-II is False

(D) Statement-I is False, Statement-II is True

20. Statement-I: If $\sin^2 A = \sin^2 B$ and $\cos^2 A = \cos^2 B$, then $A = n\pi + B$, $n \in I$

Statement-II: If sinA = sinB and cosA = cosB, then A = $n\pi + B$, $n \in I$

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

SECTION - IV : MATRIX - MATCH TYPE

21.	Colum	Column I						
	(A)	If number of ordered pairs (x, y) satisfying $ y = \cos x$	(p)	$m\!+\!n\!=\!0$				
		and $y = \sin^{-1}(\sin x)$, when $ x \le 2\pi$ is m and when $ x \le 3\pi$ is n, then						
	(B)	If number of solutions of $\ln \sin x = -x^2 + 2x$, when	(q)	$m\!+\!n\!=\!2$				
		$x \in [0, \pi]$ is m and when $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is n, then	(r)	m+n=10				
	(C)	If number of solutions of [sin x] = cos x, (where [.] denotes the	(s)	n-m=0				
		greatest integer function) when $x \in [0, \pi]$ is m and when						
		$x \in [0, 3\pi]$ is n, then	(t)	n-m=2				
22.	Colum	Column II						
	(A)	If α , β are the solutions of sin x = $-\frac{1}{2}$ in [0, 2π]	(p)	$\alpha - \beta = \pi$				
		and α , γ are the solutions of $\cos x = -\frac{\sqrt{3}}{2}$ in [0, 2π], then	(q)	$\beta - \gamma = \pi$				
	(B)	If α , β are the solutions of $\cot x = -\sqrt{3}$ in $[0, 2\pi]$ and	(r)	$\alpha - \gamma = \pi$				
		α , γ are the solutions of cosec x = -2 in [0, 2 π], then						
	(C)	If α , β are the solutions of sin x = $-\frac{1}{2}$ in [0, 2π] α , γ are the	(s)	$\alpha + \beta = 3\pi$				
		solution of $\tan x = \frac{1}{\sqrt{3}}$ in [0, 2 π], then	(t)	$\beta + \gamma = 2\pi$				

SECTION - V : COMPREHENSION TYPE

23. Read the following comprehension carefully and answer the questions.

Suppose equation is f(x) - g(x) = 0 of f(x) = g(x) = y say, then draw the graphs of y = f(x) and y = g(x). If graph of y = f(x) and y = g(x) cuts at one, two, three, ..., no points, then number of solutions are one, two, three, ..., zero respectively.

The number of solutions of sin $x = \frac{|x|}{10}$ is 1. **(A)**4 **(B)**6

(C)8

(D) none of these

(D) none of these

Total number of solutions of the equation $3x + 2 \tan x = \frac{5\pi}{2}$ in $x \in [0, 2\pi]$ is equal to 2. **(B)** 2 **(C)**3 **(D)**4 **(A)**1

Total number of solutions of $\sin\{x\} = \cos\{x\}$, where $\{.\}$ denotes the fractional part, in $[0, 2\pi]$ is equal to 3. **(A)**3 **(B)** 5 (C) 7 (D) none of these

24. Read the following comprehension carefully and answer the questions.

> When ever the terms on the two sides of the equation are of different nature, then equations are known as Non standard form, some of them are in the form of an ordinary equation but can not be solved by standard procedures. Non standard problems require high degree of logic, they also require the use of graphs, inverse properties of functions, in equalities.

> > (C) 3

1. The number of solutions of the equation
$$2\cos\left(\frac{x}{2}\right) = 3^x + 3^{-x}$$
 is

(B) 2

(A) 1 The equation $2\cos^2\left(\frac{x}{2}\right)\sin^2 x = x^2 + x^{-2}, 0 < x \le \frac{\pi}{2}$ has (A) one real solutions (B) more than one real solutions

(C) no real solution

(D) none of the above

The number of real solutions of the equation $sin(e^x) = 5^x + 5^{-x}$ is 3. **(A)**0 **(B)**1 **(C)**2 (D) infinitely many

25. Read the following comprehensions carefully and answer the questions.

An equation of the form $f(\sin x \pm \cos x, \pm \sin x \cos x) = 0$ can be solved by changing variable. Let $sinx \pm cosx = t$

$$\Rightarrow \qquad \sin^2 x + \cos^2 x \pm 2 \sin x \cos x = t^2$$

$$\pm \operatorname{sinx} \operatorname{cosx} = \left(\frac{t^2 - 1}{2}\right).$$

Hence, reduce the given equation into

$$f\left(t,\frac{t^2-1}{2}\right) = 0$$

 \Rightarrow

2.

1. If $1 - \sin 2x = \cos x - \sin x$, then x is

(A)
$$2n\pi$$
, $2n\pi - \frac{\pi}{2}$, $n \in I$
(C) $2n\pi - \frac{\pi}{2}$, $n\pi + \frac{\pi}{4}$, $n \in I$

2. If sinx + cos x = 1 + sinx cosx, then x is

(A)
$$2n\pi, 2n\pi + \frac{\pi}{2}, n \in I$$

(C) $2n\pi - \frac{\pi}{2}, n\pi + \frac{\pi}{4}, n \in I$

(B) $2n\pi, n\pi + \frac{\pi}{4}, n \in I$

(D) none of these

(B)
$$2n\pi$$
, $n\pi + \frac{\pi}{4}$, $n \in I$

(D) none of these

3. If $\sin^4 x + \cos^4 x = \sin x \cos x$, then x is

(A)
$$n\pi$$
, $n \in I$

 $(\mathbb{C})(4n+1)\frac{\pi}{4}, n \in \mathbb{I}$

(B)
$$(6n+1) \frac{\pi}{6}, n \in I$$

(D) none of these

SECTION - VI : INTEGER TYPE

- 26. Number of roots of the equation $|\sin x \cos x| + \sqrt{2 + \tan^2 x + \cot^2 x} = \sqrt{3}$, $x \in [0, 4\pi]$.
- 27. Number of solutions of the equation $\frac{\sin x}{\cos 3x} + \frac{\sin 3x}{\cos 9x} + \frac{\sin 9x}{\cos 27x} = 0$ in the interval $\left(0, \frac{\pi}{4}\right)$.
- 28. The value of a for which system of equations $\sin^2 x + \cos^2 y = \frac{3a}{2}$ and $\cos^2 x + \sin^2 y = \frac{a^2}{2}$ has a solutions.
- 29. The maximum integral value of a for which the equation $a \sin x + \sin 2x = 2a 7$ has a solution.
- 30. Number of solution of the equation $\sin^4 x \cos^2 x \sin x + 2 \sin^2 x + \sin x = 0$ in $0 \le x \le 3\pi$.

ANSWER KEY

EXERCISE - 1

1. A 2. B 3. A 4. B 5. C 6. A 7. B 8. B 9. C 10. D 11. B 12. C 13. C 14. B 15. C 16. C 17. B

EXERCISE - 2 : PART # I

1.	BD	2.	BC	3.	ABD	4.	BD	5.	ABC	6.	ABC	7.	AC	8.	AB
9.	ABCD	10.	AD	11.	ABCD	12.	CD	13.	AB	14.	AB	-15.	ABCD	16.	ABC
17.	AD	18.	AC												

PART - II

1. A 2. D 3. B

EXERCISE - 3 : PART # I

1. $A \rightarrow q \ B \rightarrow p \ C \rightarrow q \ D \rightarrow p$ **2.** $A \rightarrow q \ B \rightarrow s \ C \rightarrow r \ D \rightarrow p$ **3.** $A \rightarrow r \ B \rightarrow p, q, r, s \ C \rightarrow q \ D \rightarrow s$

PART - II

 Comprehension #1: 1.
 B
 2.
 C
 3.
 A
 Comprehension #2: 1.
 D
 2.
 C
 3.
 B

 Comprehension #3: 1.
 C
 2.
 D
 3.
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D</

EXERCISE - 5 : PART # I

1. 1 **2.** 4 **3.** 3 **4.** 3 **5.** 2

PART - II

1. C 2. B 3. D 4. A 5. C 6. BD 7.C 8. 3 9. ACD 10. C 11. C

MOCK TEST

 1. C
 2. C
 3. C
 4. D
 5. D
 6. D
 7. B
 8. B
 9. B
 10. C
 11. AB
 12. C

 13. B
 14. BC
 15. BC
 16. D
 17. A
 18. D
 19. A
 20. C

 21. A \rightarrow r,t B \rightarrow s C \rightarrow t
 22. A \rightarrow s,q B \rightarrow p,t C \rightarrow r,s,t
 23. 1. B
 2. A
 3. C
 24. 1. A
 2. C
 3. A
 25. 1. D
 2. A
 3. C

 26. 0
 27. 6
 28. 1
 29. 6
 30. 4