SETS AND RELATION

SOLVED EXAMPLES

Ex. 1 Sol.	Express set $A = \{x : x \in N \text{ and } x = 2n \text{ for } n \in N\}$ in roster form. $A = \{2, 4, 6, \dots\}$
Ex. 2 Sol.	Express set $B = \{x^2 : x \le 4, x \in W\}$ in roster form. $B = \{0, 1, 4, 9\}$
Ex. 3 Sol.	Express set A = $\{2, 5, 10, 17, 26\}$ in set builder form. A = $\{x : x = n^2 + 1, n \in \mathbb{N}, 1 \le n \le 5\}$
Ex. 4 Sol.	The set $A = [x : x \in R, x^2 = 16 \text{ and } 2x = 6]$ equal- (A) ϕ (B) [14, 3, 4] (C) [3] $x^2 = 16 \Rightarrow x = \pm 4$ $2x = 6 \Rightarrow x = 3$ There is no value of x which satisfies both the above equations. Thus, $A = \phi$ Hence (A) is the correct answer
Ex. 5	Examine whether the following statements are true or false : (i) $\{a, b\} \not\subseteq \{b, c, a\}$ (ii) $\{a, e\} \not\subseteq \{x : x \text{ is a vowel in the English alphabet}\}$ (iii) $\{1, 2, 3\} \subseteq \{1, 3, 5\}$ (iv) $\{a\} \in \{a, b, c\}$
Sol.	(i)False as $\{a, b\}$ is subset of $\{b, c, a\}$ (ii)True as a, e are vowels(iii)False as element 2 is not in the set $\{1, 3, 5\}$ (iv)False as $a \in \{a, b, c\}$ and $\{a\} \subseteq \{a, b, c\}$
Ex. 6	Two finite sets of have m and n elements respectively the total number of elements in power set of first set is 56 more that n the total number of elements in power set of the second set find the value of m and n respectively.
Sol.	Number of elements in power set of 1 st set = 2 ^m Number of elements in power set of 2 nd set = 2 ⁿ Given $2^m = 2^n + 56$ $\Rightarrow 2^m - 2^n = 56 \Rightarrow 2^n(2^{m-n} - 1) = 2^3(2^3 - 1)$ $\Rightarrow n = 3$ and $m = 6$
Ex. 7 Sol.	Find power set of set $A = \{1, 2\}$. P(A)= { ϕ , {1}, {2}, {1, 2}}
Ex. 8 Sol.	Let $A = \{2, 4, 6, 8\}$ and $B = \{6, 8, 10, 12\}$ then find $A \cup B$. $A \cup B = \{2, 4, 6, 8, 10, 12\}$
Ex. 9 Sol.	Let $A = \{1, 2, 3, 4, 5, 6\}, B = \{2, 4, 6, 8\}$. Find $A - B$ and $B - A$. $A - B = \{x : x \in A \text{ and } x \notin B\} = \{1, 3, 5\}$ Similarly $B - A = \{8\}$

Ex. 10 Prove that if $A \cup B = C$ and $A \cap B = \phi$ then A = C - B.

Sol. Let

Let	$\mathbf{x} \in \mathbf{A}$				
\Rightarrow	$x \in A \cup B$	\Rightarrow x \in C	$(\rightarrow A \cup B = C)$		
Now	$A \cap B = \phi$	\Rightarrow x \notin B	$(\rightarrow x \in A)$		
\Rightarrow	$x \in C \!-\! B$		$(\rightarrow x \in C \text{ and } x \notin B)$		
\Rightarrow	$A \mathop{\subseteq} C - B$				
Let	$x \in C\!-\!B$	\Rightarrow	$x \in C$ and $x \notin B$		
\Rightarrow	$x \in A \cup B$	and	x∉B ⇒	$x \in A$	\Rightarrow C-B \subseteq A
	A = C - B				

Ex. 11 In a group of 40 students, 26 take tea, 18 take coffee and 8 take neither of the two. How many take both tea and coffee

 $n(U) = 40, \quad n(T) = 26, \quad n(c) = 18$ $n(T' \cap C') = 8 \implies n(T \cup C)' = 8$ $\implies n(U) - n(T \cup C) = 8$ $\implies n(T \cup C) = 32$ $\implies n(T) + n(c) - n(T \cap C) = 32$ $\implies n(T \cap C) = 12$

- Ex. In a group of 50 persons, 14 drink tea but not coffee and 30 drink tea. Find
 - (i) How many drink tea and coffee both ? (ii) How many drink coffee but not tea ?
- **Sol.** T : people drinking tea

C : people drinking coffee

(i) $n(T) = n(T - C) + n(T \cap C) \implies 30 = 14 + n(T \cap C) \implies n(T \cap C) = 16$

20

16

С

(ii) $n(C-T) = n(T \cup C) - n(T) = 50 - 30 = 20$

- **Ex. 12** If $A = \{1, 2\}$ and $B = \{3, 4\}$, then find $A \times B$.
- **Sol.** $A \times B = \{(1, 3), (1, 4), (2, 3), (2, 4)\}$
- **Ex. 13** Let $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6, 8\}$ be two sets and let R be a relation from A to B defined by the phrase " $(x, y) \in \mathbb{R} \Rightarrow x > y$ ". Find relation R and its domain and range.
- Sol. Under relation R, we have 3R2, 5R2, 5R4, 7R4 and 7R6

i.e.
$$R = \{(3,2), (5,2), (5,4), (7,2), (7,4), (7,6)\}$$

- Dom $(R) = \{3, 5, 7\}$ and range $(R) = \{2, 4, 6\}$
- Ex. 14 Let A be the set of first ten natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x + 2y = 10$, i.e. $R = \{(x, y) : x \in A, y \in A \text{ and } x + 2y = 10\}$. Express R and R^{-1} as sets of ordered pairs. Determine also (i) domain of R and R^{-1} (ii) range of R and R^{-1}

....

Sol. We have $(x, y) \in \mathbb{R} \Leftrightarrow x + 2y = 10 \Leftrightarrow y = \frac{10 - x}{2}, x, y \in \mathbb{A}$

where $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Now,
$$x = 1 \Longrightarrow y = \frac{10-1}{2} = \frac{9}{2} \notin A.$$

This shows that 1 is not related to any element in A. Similarly we can observe. that 3, 5, 7, 9 and 10 are not related to any element of A under the defined relation

Further we find that :

For
$$x=2$$
, $y = \frac{10-2}{2} = 4 \in A$ \therefore $(2,4) \in R$
For $x=4$, $y = \frac{10-4}{2} = 3 \in A$ \therefore $(4,3) \in R$
For $x=6$, $y = \frac{10-6}{2} = 2 \in A$ \therefore $(6,2) \in R$

For
$$x = 8$$
, $y = \frac{10-8}{2} = 1 \in A$ \therefore $(8, 1) \in \mathbb{R}$

Thus,
$$R = \{(2, 4), (4, 3), (6, 2), (8, 1)\}$$

 $\Rightarrow R^{-1} = \{(4, 2), (3, 4), (2, 6), (1, 8)\}$

Clearly, $Dom(R) = \{2, 4, 6, 8\} = Range(R^{-1})$ and, $Range(R) = \{4, 3, 2, 1\} = Dom(R^{-1})$

Ex. 15 Let $A = \{2, 3, 4, 5, 6, 7, 8, 9\}$. Let R be the relation on A defined by $\{(x, y) : x \in A, y \in A \text{ and } x \text{ divides } y\}$. Find domain and range of R.

Sol. The relation R is

 $R = \{(2, 2), (2, 4), (2, 6), (2, 8), (3, 3), (3, 6), (3, 9), (4, 4), (4, 8), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9)\}$ Domain of R = {2, 3, 4, 5, 6, 7, 8, 9} = A Range of R = {2, 3, 4, 5, 6, 7, 8, 9} = A

- Ex. 16 Which of the following are identity relations on set $A = \{1, 2, 3\}$. $R_1 = \{(1, 1), (2, 2)\}, R_2 = \{(1, 1), (2, 2), (3, 3), (1, 3)\}, R_3 = \{(1, 1), (2, 2), (3, 3)\}.$
- Sol. The relation R_3 is idenity relation on set A. R_1 is not identity relation on set A as $(3, 3) \notin R_1$. R_2 is not identity relation on set A as $(1, 3) \in R_2$
- **Ex.17** Let T be the set of all triangles in a plane with R a relation in T given by $R = \{(T_1, T_2) : T_1 \text{ is congruent to } T_2\}$. Show that R is an equivalence relation.

Sol. Since a relation R in T is said to be an equivalence relation if R is reflexive, symmetric and transitive.

(i) Since every triangle is congruent to itself

: R is reflexive

(ii)	$(T_1, T_2) \in \mathbb{R} \implies T_1 \text{ is congruent to } T_2$
	$\Rightarrow T_2 \text{ is congruent to } T_1 \Rightarrow (T_2, T_1) \in \mathbb{R}$
	Hence R is symmetric
(iii)	Let $(T_1, T_2) \in \mathbb{R}$ and $(T_2, T_3) \in \mathbb{R}$
	\Rightarrow T ₁ is congruent to T ₂
	and T_2 is congruent to T_3
	$\Rightarrow T_1 \text{ is congruent to } T_3 \Rightarrow (T_1, T_3) \in \mathbb{R}$
	R is transitive
	Hence R is an equivalence relation.
Ex. 18	Show that the relation R in R defined as $R = \{(a, b) : a \le b\}$ is transitive.
Sol.	Let $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$
	$\therefore \qquad (a \le b) \text{ and } b \le c \Longrightarrow a \le c$ $\therefore \qquad (a, c) \in \mathbb{R}$
	$\therefore \qquad (a, c) \in R$ Hence R is transitive.
F 10	
Ex. 19 Sol.	Show that the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is symmetric. Let $(a, b) \in R$ $[\rightarrow (1, 2) \in R]$
501.	∴ $(b, a) \in \mathbb{R}$ [+ (1, 2) ∈ \mathbb{R}]
	Hence R is symmetric.
F 30	
Ex. 20	Prove that the relation R on the set Z of all integers defined by $(x, y) \in \mathbb{R}$ for $y = y$ is divisible by $x = x$ and $y = y$.
Sol.	$(x, y) \in \mathbb{R} \Leftrightarrow x - y$ is divisible by n is an equivalence relation on Z.
501.	We observe the following properties Reflexivity : For any $a \in N$, we have $a - a = 0 = 0 \times n \implies a - a$ is divisible by $n \implies (a, a) \in R$
	Thus, $(a, a) \in \mathbb{R}$ for all $a \in \mathbb{Z}$
	So, R is reflexive on Z
	symmetry : Let $(a, b) \in \mathbb{R}$. Then,
	$(a, b) \in \mathbb{R} \implies (a - b)$ is divisible by n
	$\Rightarrow a-b=np \text{ for some } p \in Z \qquad \Rightarrow \qquad b-a=n(-p)$
	$\Rightarrow b-a \text{ is divisible by n} \qquad [\Rightarrow p \in Z \Rightarrow -p \in Z]$
	$\Rightarrow (b, a) \in \mathbb{R}$
	Thus, $(a, b) \in \mathbb{R} \implies (b, a) \in \mathbb{R}$ for all $a, b, \in \mathbb{Z}$
	So, R is symmetric on Z.
	Transitivity : Let a, b, $c \in Z$ such that $(a, b) \in R$ and $(b, c) \in R$. Then,
	$(a, b) \in \mathbf{R} \implies (a-b)$ is divisible by $n \implies a-b = np$ for some $p \in \mathbf{Z}$
	$(b, c) \in R \implies (b - c)$ is divisible by $n \implies b - c = nq$ for some $q \in Z$ $\therefore (a, b) \in R$ and $(b, c) \in R$
	$\Rightarrow \qquad a-b = np \text{ and } b-c-nq \Rightarrow (a-b)+(b-c) = np+nq$
	$\Rightarrow a-c=n(p+q) \Rightarrow a-c \text{ is divisible by } n \qquad [\Rightarrow p,q\in Z \Rightarrow p+q=Z]$
	$\Rightarrow \qquad (a,c) \in R$
	thus, $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R} \Rightarrow (a, c) \in \mathbb{R}$ for all $a, b, c \in \mathbb{Z}$. so, \mathbb{R} is transitive realtion in \mathbb{Z} .

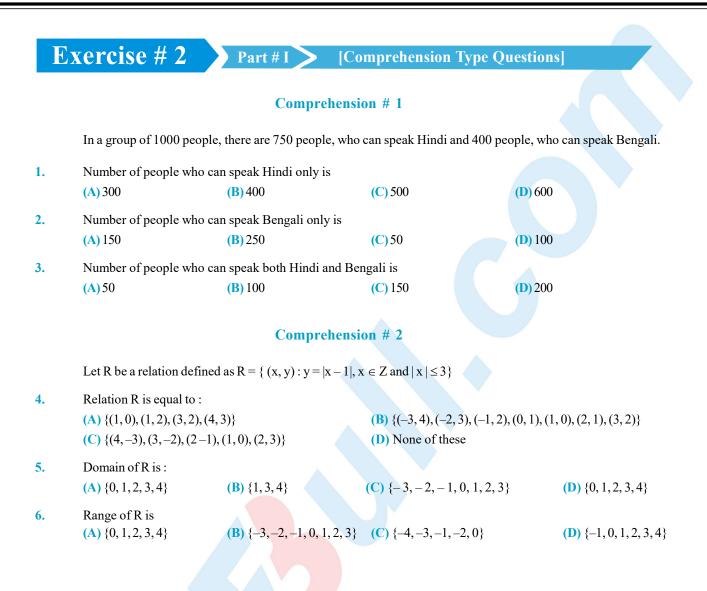
E	xercise # 1		[Single Correct Choic	e Type Questions]
PAR	<u>Г 1 SETS</u>			
1.	If A and B are two sets, (A) $A \subseteq B$	then $A \cup B = A \cap B$ iff- (B) $B \subseteq A$	(C) A=B	(D) none of these
2.	Let A and B be two sets (A) $A \cap B'$	s in the universal set. Th (B) $A' \cap B$	en A – B equals- (C) A \cap B	(D) none of these
3.	Two sets A, B are disjont (A) $A \cup B = \phi$	int iff- (B) $A \cap B \neq \phi$	(C) $A \cap B = \phi$	$(\mathbf{D})\mathbf{A} - \mathbf{B} = \mathbf{A}$
4.	Which of the following (A) {0} (C) {x : x ² =4 or x=3}	is a null set ?	(B) $\{x : x > 0 \text{ or } x < 0\}$ (D) $\{x : x^2 + 1 = 0, x \in$	
5.	If $A \subseteq B$, then $A \cap B$ is (A) A	equal to- (B) B	(C) A'	(D) B'
6.	If A and B are two sets, (A) A	then $A \cap (A \cup B)'$ is equal (B) B	ual to- (C) \$	(D) none of these
7.	If A is any set, then- (A) $A \cup A' = \phi$	$(\mathbf{B})\mathbf{A}\cup\mathbf{A'}=\mathbf{U}$	$(C) A \cap A' = U$	(D) none of these
8.	If A, B be any two sets, (A) $A' \cup B'$	then $(A \cup B)'$ is equal to (B) $A' \cap B'$	o- (C)A∩B	(D) A ∪ B
9.	If A and B be any two s (A) $A' \cap B'$	ets, then $(A \cap B)'$ is equ (B) $A' \cup B'$	al to- (C)A∩B	(D) A ∪ B
10.	Let $U = \{1, 2, 3, 4, 5, 6, 7, (A) B'\}$	7, 8, 9, 10}, $A = \{1, 2, 5\}, (B) A$	$B = \{6, 7\} \text{ then } A \cap B' \text{ is}$ (C) A'	(D) B.
11.	The set of intelligent st (A) a null set (C) a finite set	udents in a class is-	(B) a singleton set(D) not a well defined	l collection
12.	Which of the following(A) {x : x is a real numb(C) {x : x is a real numb	er and $x^2 - 1 = 0$ }	 (B) {x : x is a real num (D) {x : x is a real num 	-
13.	The set $A = \{x : x \in R, x \in A\}$ (A) Null set	$2^2 = 16$ and $2x = 6$ } is (B) Singleton set	(C) Infinite set	(D) None of these

14.	If $A = \{x : x < 3, x \in Z\}$ (A) 120	then the number of subsets (B) 30	of A is - (C) 31	(D) 32
15.	Which of the following a $(A)[3,7] \subseteq (2,10)$	are true ? (B) $(0, \infty) \subseteq (4, \infty)$	(C) (5,7]⊆[5,7)	(D) [2, 7] ⊆ (2.9, 8)
16.	If A = {2, 3, 4, 8, 10}, B = (A) {3, 4, 10}	= $\{3, 4, 5, 10, 12\}, C = \{4, 5, (B), \{2, 8, 10\}\}$	6, 12, 14} then $(A \cap B) \cup (A \cap B)$ (C) {4, 5, 6}	$A \cap C$) is equal to (D) {3, 5, 14}
17.	The shaded region in the	e given figure is		
		СВ		
	$(\mathbf{A})\mathbf{A} \cap (\mathbf{B} \cup \mathbf{C})$	(B) $A \cup (B \cap C)$	(C)A \cap (B $-$ C)	(D) $A - (B \cup C)$
18.	Let $n(U) = 700$, $n(A) = 20$ (A) 400	00, $n(B) = 300$ and $n(A \cap B)$ (B) 600	$= 100$, then $n(A' \cap B') =$ (C) 300	(D) 200
19.	Let $U = \{1, 2, 3, 4, 5, 6, 7$ (A) B'	$(\mathbf{B}, 8, 9, 10), \mathbf{A} = \{1, 2, 5\}, \mathbf{B} =$	$\{6,7\}$, then $A \cap B'$ is (C) A'	(D) B
20.	If $X = \{4^n - 3n - 1 : n \in \mathbb{N}\}$ (A) X	N} and Y = $\{9(n-1); n \in N$ (B) Y	N}, then X ∪ Y is equal to (C) N	(D) None of these
21.	If A and B are any two s (A) A	ets, then $A \cup (A \cap B)$ is equ (B) B	ual to- (C) A'	(D) B'
22.	If A and B are not disjoin (A) $n(A) + n(B)$ (C) $n(A) + n(B) + n(A \cap$	nt, then $n(A \cup B)$ is equal to B)	 (B) n(A) + n(B) - n(A ∩ (D) n(A).n(B) 	B)
23.	If $A = \{2, 4, 5\}, B = \{7, 8$ (A) 6	, 9} then n(A × B) is equal to (B) 9	o- (C) 3	(D) 0
24.	Let A and B be two sets (A) 240	such that n(A) = 70, n(B) = (B) 20	$= 60 \text{ and } n(A \cup B) = 110. \text{ Th}$ (C) 100	ten n(A \cap B) is equal to- (D) 120
25.	Which set is the subset (A) {1,2,3,4,}	of all given sets ? (B) {1}	(C) {0}	(D) {}
26.	Sets A and B have 3 and (A) 3	6 elements respectively. Wh (B) 6	at can be the minimum num (C) 9	ber of elements in A∪B ? (D) 18

SETS AND RELATION

27.	Given the sets $A = \{1, 2\}$	$\{3\}, B = \{3, 4\}, C = \{4, 5, 6\}$	}, then $A \cup (B \cap C)$ is	
	(A) {3}	(B) {1, 2, 3, 4}	(C) {1, 2, 4, 5}	(D) {1, 2, 3, 4, 5, 6}
28.	Let $A = \{x : x \in R, x \le 1\}$	1}, B = {x : x \in R, x-1 ≥ }	1} and $A \cup B = R - D$, then	the set D is
	(A) $\{x: 1 \le x \le 2\}$	(B) $\{x: 1 \le x < 2\}$	(C) $\{x: 1 \le x \le 2\}$	(D) None of these
29.	The smallest set A such	that $A \cup \{1, 2\} = \{1, 2, 3, 5\}$	5, 9} is	
	(A) {2, 3, 5}	(B) {3, 5, 9}	(C) {1,2,5,9}	(D) None of these
30.	Let A and B be two sets	s. Then		
	$(\mathbf{A})\mathbf{A}\cup\mathbf{B}\leq\mathbf{A}\cap\mathbf{B}$	$(\mathbf{B})\mathbf{A} \cap \mathbf{B} \leq \mathbf{A} \cup \mathbf{B}$	$(\mathbf{C})\mathbf{A} \cap \mathbf{B} = \mathbf{A} \cup \mathbf{B}$	(D) None of these
31.	If $Q = \begin{cases} x : x = \frac{1}{y}, \text{ when} \end{cases}$	$re \ y \in N $, then-		
	$(\mathbf{A}) 0 \in \mathbf{Q}$	(B) 1 ∈ Q	(C) 2 ∈ Q	(D) $\frac{2}{3} \in Q$
32.	$A = \{x : x \neq x\} represen$	ts-		
	(A) {0}	(B) { }	(C) {1}	(D) {x}
33.	Which of the following	statements is true?		
	(A) $3 \subseteq \{1, 3, 5\}$	(B) 3 ∈ {1, 3, 5}	(C) {3} ∈ {1, 3, 5}	(D) $\{3,5\} \in \{1,3,5\}$
34.	Which of the following	is a null set ?		
	(A) $A = \{x : x > 1 \text{ and } x < 0 \}$	<1]	(B) $\mathbf{B} = \{x : x + 3 = 3\}$	
	$(\mathbf{C}) \mathbf{C} = \{\phi\}$		(D) $D = \{x : x \ge 1 \text{ and } x\}$	$x \le 1$ }
35.	$P(A) = P(B) \Rightarrow$			
	(A)A⊆B	$(\mathbf{B}) \mathbf{B} \subseteq \mathbf{A}$	(C) A=B	(D) none of these
PAR	<u>Γ 2 RELATION</u>			
36.	If R is a relation from a	finite set A having melemen	ts to a finite set B having n	elements, then the number of relations
	from A to B is-			
	(A) 2^{mn} (B) 2	^{mn} -1	(C) 2mn	(\mathbf{D}) m ⁿ
37.	In the set $A = \{1, 2, 3, 4\}$,5}, a relation R is defined	by $\mathbf{R} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x}, \mathbf{y} \in \mathbf{A} \text{ and } $	1 x < y. Then R is-
	(A) Reflexive	(B) Symmetric	(C) Transitive	(D) None of these
38.	For real numbers x and	y, we write x R y \Leftrightarrow x – y +	$\sqrt{2}$ is an irrational number	er. Then the relation R is-
	(A) Reflexive	(B) Symmetric	(C) Transitive	(D) None of these
39.	Let $X = \{1, 2, 3, 4\}$ and	$Y = \{1, 3, 5, 7, 9\}$. Which o	f the following is relations	from X to Y-
	(A) $R_1 = \{(x, y) y = 2 + z\}$		(B) $R_2 = \{(1, 1), (2, 1),$	
	(C) $R_3 = \{(1, 1), (1, 3), (3, 3)\}$,5),(3,7),(5,7)}	(D) $R_4 = \{(1,3), (2,5), ($	(2,4), (7,9)}

40.	Let L denote the set $\alpha, \beta \in L$. Then R is-	of all straight lines in a j	plane. Let a relation R b	e defined by $\alpha \ R \ \beta \Leftrightarrow \alpha \perp \beta$,
	(A) Reflexive	(B) Symmetric	(C) Transitive	(D) None of these
41		C = {d, e}, then {(a, c), (a, d (B) A \cup (B \cap C)), (a, e), (b, c), (b, d), (b, e)} (C) $A \times (B \cup C)$	is equal to (D) $A \times (B \cap C)$
42	If $A = \{2, 4, 5\}, B = \{7, 8$ (A) 6	8,9}, then n(A×B) is equal t (B) 9	o (C) 3	(D) 0
43		$B = \{2, 4\}, C = \{4, 5\}$ then (B) $\{(4, 2), (4, 3)\}$		(D) {(2,2), (3,3), (4,4), (5,5)}
44	Let $A = \{a, b, c\}$ and $B =$ (A) A	{1, 2}. Consider a relation (B) B	R defined from set A to set A	B. Then R can equal to set (D) B×A
45.	A and B are two sets hav which can be defined from $(A) 2^5$	•	ively and having 2 elements $(C) 2^{12} - 1$	in common. The number of relation (D) none of these
46	Let R be relation from a (A) $R = A \cup B$	set A to a set B, then (B) $R = A \cap B$	(C) $\mathbf{R} \subseteq \mathbf{A} \times \mathbf{B}$	(D) $R \subseteq B \times A$
47.	Let X = {1, 2, 3, 4, 5} and (A) $R_1 = \{(x, y) y = 2 + x\}$ (C) $R_3 = \{(1, 1), (1, 3), (3, 3)\}$		of the following is not a relat (B) $R_2 = \{(1, 1), (2, 1), (3, (D), R_4 = \{(1, 3), (2, 5), $	3), (4, 3), (5, 5)}
48.	Let R be a relation defin (A) Equivalence relation	ed in the set of real numbers (B) Transitive	s by a R b \Leftrightarrow 1 + ab > 0. The (C) Symmetric	en R is- (D) Anti-symmetric
49.	Which one of the follow (A) $x R_1 y \Leftrightarrow x = y $	ing relations on R is equiva (B) $x R_2 y \Leftrightarrow x \ge y$	lence relation- (C) x $R_3 y \Leftrightarrow x y$	(D) $x R_4 y \Leftrightarrow x < y$
50	Two points P and Q in a (A) Reflexive but symme (C) An equivalence relat		 a), where O is a fixed point. T (B) Symmetric but not tr (D) none of these 	
51.		$hA = \{1, 2, 3\} by a R b if a^{2} (2, 1), (1, 2), (2, 3), (3, 2) (3, $	$ -b^{2} \le 5$. Which of the follo (B) $R^{-1} = R$ (D) Range of $R = \{5\}$	wing is false-
52.	Let a relation R is the set The relation R is- (A) Reflexive	N of natural numbers be def	ined as $(x, y) \in R$ if and only (C) Transitive	if $x^2-4xy+3y^2=0$ for all $x, y \in N$. (D) An equivalence relation
53.		tr $R = \{(2, 2), (3, 3), (4, 4), (5, 3), (4, 4), (5, $)} be a relation in A. Then R is-


54.	If $A = \{2, 3\}$ and $B = \{1, 2\}$ (A) $\{(2, 1), (2, 2), (3, 1), (3, 2)\}$ (C) $\{(2, 1), (3, 2)\}$		 (B) {(1,2), (1,3), (2,2), (2 (D) {(1,2), (2,3)} 	2, 3)}
55.	Let R be a relation over the (A) Reflexive only	e set N × N and it is define (B) Symmetric only	d by (a, b) R (c, d) \Rightarrow a + d (C) Transitive only	= b + c. Then R is- (D) An equivalence relation
56.	Let N denote the set of if $ad(b + c) = bc(a + d)$, the (A) Symmetric only		R be the relation on N (C) Transitive only	× N defined by (a, b) R (c, d)(D) An equivalence relation
57.		6, 9} and R is a relation fro (B) {4, 6, 9}	m A to B defined by 'x is gro (C) {1}	eater than y'. Then range of R is- (D) none of these
58.	Let $A = \{1, 2, 3, 4\}$ and R b relation R is (A) Reflexive	be a relation in A given by R (B) Symmetric	$R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$ (C) Equivalence	4), (1, 2), (2, 1), (3, 1), (1, 3)}, then (D) Reflexive and Symmetric
59.	The relation R = {(1, 1), (2, (A) Reflexive but not symm (C) Symmetric and Transit	netric	 3) on set A = {1, 2, 3} is (B) Reflexive but not tran (D) Neither symmetric not 	
60.	The relation "less than" in (A) Only symmetric	the set of natural number (B) Only transitive	is (C) Only reflexive	(D) Equivalence relation
61.	The relation R defined in N (A) Reflexive but not symm (C) Symmetric and transiti	netric	 by a is (B) Symmetric but not tra (D) None of these 	ansitive
62.	In the set $A = \{1, 2, 3, 4, 5\}$ (A) Reflexive	a relation R is defined by (B) Symmetric	$R = \{(x, y) x, y \in A \text{ and } x < (C) \text{ Transitive} \}$	Y}. Then R is(D) None of these
63.	Let R ₁ be a relation defined (A) An equivalence relatio (C) Symmetric, Transitive	on on R	$b \in R$. Then R_1 is (B) Reflexive, transitive (D) Neither transitive nor	•
64.	The R is	ll straight lines in a plane (B) Symmetric	 e. Let a relation R be define (C) Transitive 	ned by $\alpha R\beta \Leftrightarrow \alpha \bot \beta$, α , $\beta \in L$. (D) None of these
65.	 (A) Reflexive Let S be the set of all real r (A) Reflexive and symmetric (C) Symmetric, transitive b 	numbers. Then the relation ric but not transitive	 (C) Transitive R = {(a, b) : 1 + ab > 0} on (B) Reflexive, transitive a (D) Reflexive, transitive a 	S is but not symmetric
66.	Let R be a relation on the s (A) Reflexive	et N be defined by {(x, y) (B) Symmetric	$x, y \in N, 2x + y = 41$. Then (C) Transitive	n R is (D) None of these

67.	Let L be the set of all strain $\mathbf{\Phi}_1$ is parallel to $\mathbf{\Phi}_2$. Th		plane. Two lines $ullet_1$ and $ullet_2$:	are said to be related by the relation R
	(A) Reflexive	(B) Symmetric	(C) Transitive	(D) Equivalence
68.	A and B are two sets h relations which can be c	-	espectively and having 2 e	lements in common. The number of
	(A) 2 ⁵	(B) $2^{10} - 1$	(C) $2^{12} - 1$	(D) none of these
69.	For n, $m \in N$, n m mean	is that n is a factor of m, the	relation is-	
	(A) reflexive and symme	etric	(B) transitive and sym	metric
	(C) reflexive, transitive	and symmetric	(D) reflexive, transitive	e and not symmetric
70.	Let $R = \{(x, y) : x, y \in A$	$x + y = 5$ where $A = \{1, 2\}$, 3, 4, 5} then	
	(A) R is not reflexive, sy	ymmetric and not transitive		
	(B) R is an equivalence	relation		
	(C) R is reflexive, symn	netric but not transitive		
	(D) R is not reflexive, not	ot symmetric but transitive		
71.	Let R be a relation on a	set A such that $R = R^{-1}$ the	n R is-	
	(A) reflexive	(B) symmetric	(C) transitive	(D) none of these
72.	For real numbers x and	y, we write x R y \Rightarrow x – y +	$\sqrt{2}$ is an irrational number	r. Then the relation R is-
	(A) Reflexive	(B) Symmetric	(C) Transitive	(D) None of these
73.	Which one of the follow	ving relations on R is equiv	valence relation-	
	(A) $x R_1 y \Leftrightarrow x = y $		(B) $x R_2 y \Leftrightarrow x \ge y$	
	(C) $x R_3 y \Leftrightarrow x y (x \text{ divi})$	ides y)	(D) $x R_4 y \Leftrightarrow x < y$	
74.	The relation R defined i	n A = {1, 2, 3} by a R b if a	$ a^2 - b^2 \le 5$. Which of the following t	lowing is false-
	(A) $R = \{(1, 2), (2, 2), (3, 3)\}$	3), (2, 1), (2, 3), (3, 2)}	(B) Co-domain of $R = \{$	{1,2,3}
	(C) Domain of $R = \{1, 2, \dots, N\}$,3}	(D) Range of $R = \{1, 2,\}$	3}
75.	Let $P = \{(x, y) x^2 + y^2 =$	$\{1, x, y \in R\}$, then P is		
	(A) reflexive	(B) symmetric	(C) transitive	(D) equilance
76.	Let $A = \{p, q, r\}$. Which	h of the following is an equ	ivalence relation on A?	
	(A) $R_1 = \{(p,q), (q,r), (p,r), (p,$	(p, r) (p, p)	(B) $R_2 = \{(r, q), (r, p), (r, p),$	(\mathbf{q},\mathbf{q})
	(C) $R_3 = \{(p, p), (q, q), ($	(r, r) (p, q)	(D) none of these	
77.	Let x, $y \in I$ and suppose	e that a relation R on I is de	fined by x R y if and only i	$f x \le y$ then
	(A) R is partial order ral	ation	(B) R is an equivalence	e relation
	(C) R is reflexive and sy	mmetric	(D) R is symmetric and	l transitive
78.	Let R be a relation from	a set A to a set B, then-		
	(A) $R = A \cup B$	(B) $R = A \cap B$	(C) $R \subseteq A \times B$	(D) $\mathbf{R} \subseteq \mathbf{B} \times \mathbf{A}$

79.	Given the relation R = = { to R make it an equivalent		$\{1,2,3\}$, the minimum numb	er of ordered pairs which when added
	(A) 5	(B) 6	(C) 7	(D) 8
80.	Let $P = \{(x, y) x^2 + y^2 = 1\}$	$l, x, y \in R$ Then P is-		
	(A) reflexive	(B) symmetric	(C) transitive	(D) anti-symmetric
81.	Let X be a family of sets	and R be a relation on X d	lefined by 'A is disjoint from	n B'. Then R is-
	(A) reflexive	(B) symmetric	(C) anti-symmetric	(D) transitive
82.	In order that a relation R	defined in a non-empty s	et A is an equivalence relation	on, it is sufficient that R
	(A) is reflexive		(B) is symmetric	
	(C) is transitive		(D) possesses all the ab	pove three properties
83.	If R be a relation '<' from	A = $\{1, 2, 3, 4\}$ to B = $\{1, 3, 4\}$	$(3, 5)$ i.e. $(a, b) \in R$ iff $a < b, t$	hen ROR ⁻¹ is-
	(A) {(1,3), (1,5), (2,3), (2	$(2,5), (3,5), (4,5)\}$	(B) {(3,1), (5,1), (3,2), ((5,2), (5,3), (5,4)
	(C) {(3,3), (3,5), (5,3), (5	5, 5)}	(D) $\{(3,3), (3,4), (4,5)\}$	
84.	If R is an equivalence re	lation in a set A, then R^{-1} i	s-	
	(A) reflexive but not sym	metric	(B) symmetric but not t	ransitive
	(C) an equivalence relation	ion	(D) none of these	
85.	Let R and S be two equi	valence relations in a set A	A. Then-	
	(A) $R \cup S$ is an equivale	nce relation in A	(B) $\mathbf{R} \cap \mathbf{S}$ is an equivale	ence relation in A
	(C) $R - S$ is an equivaler	nce relation in A	(D) none of these	

Ē	Exercise # 3 Part # I [Subjective Type Questions]
	Write the set of all vowels in English alphabet which precede letter O.
2.	Classify the following as a finite or infinite set : (i) $A = \{x \in N : (x-1)(x-2)=0\}$ (ii) $B = \{x \in N : x \text{ is odd}\}$
	Write the following set by roster method : The set of all natural numbers 'x' such that $4x + 9 < 50$.
	Describe the following set by set property method {0, 3, 8, 15, 24, 35}
	Describe the following set by roster method the set of all letters in the word TRIGONOMETRY.
•	Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the to number of subsets of the second set. Find the values of m and n.
	Which of the following are true ? (i) If $A = \{1, 5, 5, 5\}, B = \{1, 3, 5\}, \text{then } A \not\subset B.$ (ii) If $A = \{x : x^3 - 1 = 0, x \in N\}, B = \{x : x^2 - 4x + 3 = 0, x \in N\}$ then $A \subseteq B.$
	Assume that $P(A) = P(B)$. Prove that $A = B$.
	If $A = \{x : x = 4n + 1, n \le 5, n \in N\}$ and $B \{3n : n \le 8, n \in N\}$, then find $A - (A - B)$.
0.	Prove that $A \cup B = A \cap B$ iff $A = B$.
1.	Prove that : $A - (B \cup C) = (A - B) \cap (A - C)$ without using venn diagram.
2.	Prove by using venn diagram (i) $A - (B \cup C) = (A - B) \cap (A - C)$ (ii) $A \subseteq B \Rightarrow B' \subseteq A'$
3.	A and B are two sets such that $n(A) = 3$ and $n(B) = 6$. Find (i) minimum value of $n(A \cup B)$ (ii) maximum value of $n(A \cup B)$
4.	Of the members of three athletic teams in a school 21 are in the cricket team, 26 are in the hockey team and 29 are the football team. Among them, 14 play hockey and cricket, 15 play hockey and football, and 12 play football are cricket. Eight play all the three games. Find the total number of members in the three athletic teams.
5.	In a class of 55 students, the number of students studying different subjects are 23 in Mathematics, 24 in Physic 19 in Chemistry, 12 in Mathematics and Physics 9 in Mathematics and Chemistry, 7 in Physics and Chemistry at 4 in all the three subjects. Find the number of students who have taken exactly one subject.
6.	Determine the domain and the range of the relation R defined by $R = \{(x+1, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$.
7.	If $A = \{3, 4, 6\}$, $B = \{1, 3\}$ and $C = \{1, 2, 6\}$ then find $(A - B) \times (A - C)$.
8.	Let n be a fixed positive integer. Define a relation R on the set of integers Z, aRb \Leftrightarrow n (a – b). Then prove that R equivalence relation
9.	Let R be a relation over the set $N \times N$ and it is defined by (a, b) R (c, d) \Rightarrow a + d = b + c. Then prove that R equivalence relation
0.	Let L be the set of all straight lines in the Euclidean plane. Two lines \bullet_1 and \bullet_2 are said to be related by the relation R if \bullet_1 is parallel to \bullet_2 . Then prove that R is equivalence relation.
1.	For $n, m \in N$, $n \mid m$ means that n is a factor of m, then prove that relation \mid is reflexive, transitive but not symmetric
2.	Let $R = \{(x, y) : x, y \in A, x + y = 5\}$ where $A = \{1, 2, 3, 4, 5\}$ then prove that R is neither reflexive nor transitive b symmetric.

•	Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation		}. The relation R is-			
	(A) transitive (B) not symmetric	(C) reflexive	(D) a function	[AIEEE-200 4		
•	Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9)$ relation R is	, (3, 12), (3, 6)} be relation		9, 12}. Then th [AIEEE - 2005		
	(A) reflexive and transitive only	(B) reflexive only				
	(C) an equilvalence relation	(D) reflexive and symmetry	netric only			
	Let W denote the words in the english dictionary. D	efine the relation R by : R	$= \{(\mathbf{x}, \mathbf{y}) \in \mathbf{W} \times \mathbf{W} \mid \mathbf{t}\}$	he words x and		
	have at least one letter in common}. Then R is-			[AIEEE - 2000		
	(A) reflexive, symmetric and not transitive	(B) reflexive, symmetr	ric and transitive			
	(C) reflexive, not symmetric and transitive	(D) not reflexive, sym	metric and transitive			
	The set S : {1, 2, 3,, 12} is to be partitioned	d into three sets A, B, C	of equalsize.Thus A	\cup B \cup C = S		
	$A \cap B = B \cap C = A \cap C = \phi$. The number of ways to	o partition S is-		[AIEEE - 2007		
	(A) $12!/3!(4!)^3$ (B) $12!/3!(3!)^4$	(C) $12!/(4!)^3$	(D) $12!/(3!)^4$			
	Let R be the real line. Consider the following subset $S = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$ $T = \{(x, y) : x - y \text{ is an integer}\}$ Which one of the following is true ?	ets of the plane R × R		[AIEEE-2008		
	(A) T is an equivalence relation on R but S is not(C) Both S and T are equivalence relations on R	(B) Neither S nor T is(D) S is an equivalence	-			
	If A, B and C are three sets such that $A \cap B = A \cap C$	C and $A \cup B = A \cup C$, then	n	[AIEEE-200		
	$(\mathbf{A})\mathbf{A} = \mathbf{C} \qquad (\mathbf{B})\mathbf{B} = \mathbf{C}$	$(\mathbf{C})\mathbf{A} \cap \mathbf{B} = \phi$	(D) A=B			
	Consider the following relations :			[AIEEE-201		
	$R: \{(x, y) x, y \text{ are real numbers and } x = wy for some$	e rational number w}				
	$S = \left\{ \left(\frac{m}{n}, \frac{p}{q}\right) \mid m, n, p \text{ and } q \text{ are integers such that } n, q \neq 0 \text{ and } qm = pn \right\}$					
	Then					
	(A) neither R nor S is an equivalence relation					
	(B) S is an equivalence relation but R is not an equivalence relation					
	(C) R and S both are equivalence relations					
	(D) R is an equivalence relation but S is not an	uivalence relation				
	Let R be the set of real numbers.			[AIEEE-201		
	Statement-1 : $A = \{(x, y) \in R \times R : y - x \text{ is an int}\}$	teger} is an equivalence	relation on R.			
	Statement-2 : $B = \{(x, y) \in R \times R : x = \alpha y \text{ for so} \}$	me rational number α } is	an equivalence rela	tion on R.		
	(A) Statement-1 is true, Statement-2 is true; Stat	ement-2 is a correct expl	anation for Statemer	nt-1.		
	(B) Statement-1 is true, Statement-2 is true; State					

9.	 Consider the following relation R on the set of real square matrices of order 3. [AIEEE - 2011] R = {(A, B) A = P⁻¹ BP for some invertible matrix P}. Statement -1: R is equivalence relation. Statement - 2: For any two invertible 3 × 3 matrices M and N, (MN)⁻¹ = N⁻¹M⁻¹. (A) Statement-1 is true, statement-2 is a correct explanation for statement-1. (B) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for statement-1. (C) Statement-1 is true, statement-2 is false. (D) Statement-1 is false, statement-2 is true. 		
10.	Let $X = \{1, 2, 3, 4, 5\}$. The number of differe Z is empty, is : (A) 5^2 (B) 3^5	ent ordered pairs (Y, Z) that can formed such that (C) 2^5 (D) 5^3	$Y \subseteq X, Z \subseteq X \text{ and } Y \cap$ [AIEEE-2012]
11.	or more elements is (A) 256 (B) 220	and 4 elements respectively. The number of sub (C) 219 (D) 211 us Year Questions [CBSE]	osets of A × B having 3 [AIEEE - 2013]
1.	Show that the relation R defined by (a, b) $R(c, d) \Rightarrow a + d = b + c$ on the set N × N is an equivalence relation. [CBSE - 2008]		
2.	Prove that the relation R in the set A = $\{1, 2, 3, 4, 5\}$ given by R = $\{(a, b) : a - b \text{ is even}\}$, is an equivalence relation. [CBSE - 2009]		
3.	Let Z be the set of all integers and R be the relation on Z defined as $R = \{(a, b) : a, b \in Z, and (a - b) \text{ is divisible by 5} \}$ Prove that R is an equivalence relation. [CBSE - 2010]		
4.	Show that the relation S in the set R of real numbers, defined as $S = \{(a, b) : a, b \in R \text{ and } a \le b^3\}$ is neither reflexive, nor symmetric nor transitive. [CBSE - 2010]		
5.	Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by $S = \{(a, b) : a, b \in Z, a - b \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1. [CBSE - 2010]		
6.	Show that the relation S defined on the set N × N by (a, b) $S(c, d) \Rightarrow a + d = b + c$ is an equivalence relation. [CBSE - 2010]		
7.	Let $f: X \rightarrow Y$ be a function. Define a relation R on X given by $R = \{(a, b) : f(a) = f(b)\}$. Show that R is an equivalence relation on X . [CBSE - 2010]		
8.	State the reason for the relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ not to be transitive. [CBSE - 2011]		

ANSWER KEY

EXERCISE - 1

1. C 2. A 3. C 4. D 5. A 6. C 7. B 8. B 9. B 10. B 11. D 12. B 13. A 14. D 15. A 16. A 17. D 18. C 19. B 20. B 21. A 22. B **23.** B 24. B 25. D 26. B **27.** B 28. B 29. B **30.** B **31.** B **32.** B 33. B 34. A 35. C 36. A 37. C 38. A 39. A **40.** B **41.** C **42.** B 45. D 46. C 47. D 48. C 49. A 50. C 51. D **43.** A **44.** C 52. A 53. B 54. A 55. D 56. D 57. C 58. D 59. A 60. B 61. A 62. C 63. B 64. B 65. A 66. D 67. D 68. D 69. D 70. A 71. B 72. A 73. A 74. A 75. B 76. D 77. A 78. C 79. C 80. B 81. B 82. D 83. C 84. C 85. B

EXERCISE - 2 : PART # I

Comprehension #1: 1. D 2. B 3. C Comprehension #2: 1. B 2. C 3. A

EXERCISE - 4 : PART # I

1. B 2. A 3. A 4. C 5. A 6. B 7. B 8. C 9. B 10. B 11. C

