LOG & MODULUS

EXERCISE #1

Question based on Logarithms

Dascu oli	5		
Q.1	$\frac{1}{\log_{\sqrt{bc}} abc} + \frac{1}{\log_{\sqrt{ca}} abc} + \frac{1}{\log_{\sqrt{ab}} abc}$ has the		
	value equal to (A) $1/2$ (B) 1 (C) 2 (D) 4	Q.5	
Sol.[B]	$= \log_{abc} \sqrt{bc} + \log_{abc} \sqrt{ca} + \log_{abc} \sqrt{ab}$ $= \log_{abc} abc = 1$		
Q.2	log ₄ 18 is (A) a prime number (B) a rational number (C) an irrational number (D) None of these		
Sol.[C]	$\log_4 18 = \log_4 2 + \log_4 3^2 = \frac{1}{2} \log_2 2 + \frac{2}{2} \log_2 3$	Sol.	
	$=\frac{1}{2} + \log_2 3$ an irrational no.		
Q.3	If $a^2 + 4b^2 = 12ab$, then $\log (a + 2b) =$ (A) $\frac{1}{2} (\log a + \log b - \log 2)$ (B) $\log a/2 + \log b/2 + \log 2$ (C) $\frac{1}{2} (\log a + \log b + 4 \log 2)$	Q.6	
Sol.	(b) $\frac{1}{2} (\log a - \log b + 4\log 2)$ (D) $\frac{1}{2} (\log a - \log b + 4\log 2)$ [C] $\Theta a^2 + 4b^2 = 12ab \Rightarrow (a + 2b)^2 = 16 ab$	Sol.	
	Taking log both sides $\Rightarrow 2 \log (a + 2b) = \log a + \log b + \log 16$		
Q.4 If	$N = \frac{81^{\frac{1}{\log_5 9}} + 3^{\frac{3}{\log_{\sqrt{6}} 3}}}{409} \left(\left(\sqrt{7}\right)^{\frac{2}{\log_{25} 7}} - 125^{\log_{25} 6} \right)$		
	Then $\log_2 N$ has the value- (A) 0 (B) 1 (C) -1 (D) None of these	Q.7	

	$N = \frac{9^{2.\log_9 5} + 3^{3\log_3 6^{1/2}}}{409} \left(7^{\log_7 25} - 5^{3.\log_5 2} 6 \right)$		
	$=\frac{5^2+(6)^{3/2}}{409} (25-(6)^{3/2})=\frac{625-216}{409}=\frac{409}{409}=1$		
	$\therefore \log_2 N = \log_2 1 = 0$		
Q.5	The expression $\log_p \log_p \sqrt[p]{\sqrt[p]{p}} \sqrt[p]{\sqrt[p]{p}}$		
	where $n \ge 2$, $n \in N \cdot n \in N$ when simplified is		
	(A) independent of p		
	(B) independent of p and of n		
	(C) depend on both p & n		
	(D) positive		
Sol.	[A]		
	$\frac{1}{n}$ -n		
	$\log_{p} \log_{p} p^{p^{n}} = \log_{P} \log_{p} p^{p^{n}}$		
	$= \log_{P} p^{-n} \log_{p} p = -n \log_{P} p = -n$		
Q.6	If $x_n > x_{n-1} > > x_2 > x_1 > 1$ then the value of		
	$\log_{x_1} \log_{x_2} \log_{x_3} \dots \log_{x_n} x_n x_n^{N_{n-1}^{x_1}}$ is equal to-		
	(A) 0 (B) 1		
	(C) 2 (D) None of these		
Sol.	[B]		
	$\log_{x_1} \log_{x_2} \log_{x_3} \log_{x_n} x_n x_{n-1}^{x_{n-1}^{1}}$		
	$\Rightarrow \log_{x_{1}} \log_{x_{2}} \log_{x_{3}} \log_{x_{n-1}} x_{n-1}^{N^{x_{1}}} \log_{x_{n}} x_{n}$		
	$\Rightarrow \log_{x_{1}} \log_{x_{2}} \log_{x_{3}} \log_{x_{n-2}} x_{n-2}^{N_{n-2}^{x_{1}}}$		
	$\log_{x_{n-1}} x_{n-1} . 1$		
	$\Rightarrow \log_{x_1} x_1 = 1$		

Q.7 The ratio $\frac{2^{\log_{2^{1/4}}a} - 3^{\log_{2^{7}}(a^{2}+1)^{3}} - 2a}{7^{4\log_{49}a} - a - 1}$ simplifies to (A) $a^{2} - a - 1$ (B) $a^{2} + a - 1$ (C) $a^{2} - a + 1$ (D) $a^{2} + a + 1$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	

Sol.

[A]

Sol.[D]
$$\Rightarrow \frac{2^{4\log_2 a} - 3^{\frac{3}{3}\log_5(a^2+1)} - 2a}{7^{\frac{4}{2}\log_7 - a - 1}} \Rightarrow a^4 - (a^2 + 1) - 2a}{a^2 - a - 1}$$

$$\Rightarrow \frac{a^4 - a^2 - 2a - 1}{a^2 - a - 1} \Rightarrow a^2 + a + 1$$

Q.8 The value of $a^{\frac{\log_5 \log_5 N}{\log_6 a}}$ is-
(A) $\log_b N$ (B) $-\log_b N$ (C) $\log_N b$ (D) $-\log_N b$
Sol. [A]
 $a^{\log_a \log_5 N} = \log_5 N$ ($\Theta a^{\log_5 x} = x$)
Q.9 If $(a^{\log_5 x})^2 - 5 x^{\log_5 a} + 6 = 0$ where $a > 0$,
 $b > 0 \& ab \neq 1$. Then the value of x is equal to
(A) $2^{\log_5 a}$ (B) $3^{\log_2 b}$
(C) $2^{\log_a 2}$ (D) $a^{\log_5 3}$
Sol. [B]
 $(a^{\log_5 x})^2 - 5 x^{\log_5 a} + 6 = 0$, $a > 0, b > 0, \& ab \neq 1$
 $\Theta a^{\log_5 x} = x^{\log_5 a}$
 $\therefore (x^{\log_5 a})^2 - 5 x^{\log_5 a} + 6 = 0$
Let $x^{\log_5 a} = t$
 $t^2 - 5t + 6 = 0$
 $\Rightarrow (t - 2) (t - 3) = 0$ $\Rightarrow t = 2, 3$
 $\therefore x^{\log_5 a} = 2 \text{ or } 3$
 $\Rightarrow x = 2^{\log_a b} \text{ or } 3^{\log_a b}$
Question
Inequalities
Q.10 The solution set of the inequation
 $\log_{1/3} (x^2 + x + 1) + 1 > 0$ is
(A) $(-\infty, -2) \cup (1, +\infty)$
(B) $[-1, 2]$
(C) $(-2, 1)$
(D) $(-\infty, +\infty)$
Sol. [C]
 $\log_{1/3} (x^2 + x + 1) > -1$
 $\Rightarrow x^2 + x + 1 < (\frac{1}{3})^{-1}$

 $\Rightarrow x^2 + x + 1 < 3$ $\Rightarrow x^2 + x - 2 < 0$ \Rightarrow (x - 1) (x + 2) < 0 $\Rightarrow x \in (-2, 1)$

Q.11 Find the values of x, $\left(\frac{1}{2}\right)^{\log_2 \log_1\left(x^2 - \frac{4}{5}\right)} < 1$ (A) $-1 < x < -\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}} < x < 1$ (B) $-1 < x < -0, \frac{2}{\sqrt{5}} < x < 1$ (C) $-1 < x < -\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}} < x < 3$ (D) None of these [A] $\left(\frac{1}{2}\right)^{\log_2 \log_1 \left(x^2 - \frac{4}{5}\right)} < 1$ $\Rightarrow 2^{-1^{\log_2 \log_{1/5} \left(x^2 - \frac{4}{5}\right)} < 1$ $\Rightarrow 2^{\log_2 \left[\log_{1/5} \left(x^2 - \frac{4}{5}\right)\right]^{-1}} < 1$ $\begin{pmatrix} 2 & 4 \end{pmatrix} \Big]^{-1}$ < 1

Sol.

$$\Rightarrow \left\lfloor \log_{1/5} \left(x^2 - \frac{4}{5} \right) \right\rfloor <$$
$$\Rightarrow \log_{1/5} \left(x^2 - \frac{4}{5} \right) > 1$$

For log defined, $x^2 - \frac{4}{5} > 0 \implies x^2 > \frac{4}{5}$

$$\Rightarrow x > \pm \frac{2}{\sqrt{5}} \qquad \dots (1)$$

and
$$x^2 - \frac{4}{5} < \left(\frac{1}{5}\right)^1$$
, $x^2 < \frac{4}{5} + \frac{1}{5}$

< 1

$$x^2 < 1 \Rightarrow x < \pm 1$$
 ... (2)
(1) & (2) $\Rightarrow -1 < x < -\frac{2}{\sqrt{5}}, \frac{2}{\sqrt{5}} < x < 1$

Q.12 $\log_4 (2x^2 + x + 1) - \log_2 (2x - 1) \le -\tan \frac{7\pi}{4}$ (A) $x \ge -1$ (B) $x \ge 1$ (C) $x \le -1$ (D) None of these

Power by: VISIONet Info Solution Pvt. Ltd Website : www.edubull.com

Mob no. : +91-9350679141

Edubull

Number of integral values of x satisfying the

Sol. [B] $\log_4 (2x^2 + x + 1) - \log_2 (2x - 1) \le -\tan \frac{7\pi}{4}$ $\Rightarrow \log_2^2 (2x^2 + x + 1) - \log_2 (2x - 1) \le 1$ $(\Theta \tan \frac{7\pi}{4} = -1)$ $\Rightarrow \log_2 \frac{\sqrt{2x^2 + x + 1}}{2x - 1} \le 1$ $\Rightarrow \frac{\sqrt{2x^2 + x + 1}}{2x - 1} \le 2 \Rightarrow \sqrt{2x^2 + x + 1} \le 2(2x - 1)$ $\Rightarrow 2x^2 + x + 1 \le 16x^2 - 16x + 4$ $\Rightarrow 14x^2 - 17x + 3 \ge 0$ \Rightarrow 14 x² - 14 x - 3x + 3 \ge 0 \Rightarrow (x - 1) (14 x - 3) \geq 0 \Rightarrow x \ge 1 or x \le 3/14 $= x \ge 1$ $x^{\log_5 x} > 5$ implies -**Q.13** (B) x ∈ (0, 1/5) ∪ (5, ∞) (A) $x \in (0, \infty)$ (D) $x \in (1, 2)$ (C) $x \in (1, \infty)$ Sol. **[B]** $x^{\log_5 x} > 5$ taking log₅ both sides $\Rightarrow \log_5 x \log_5 x > 1$ $\Rightarrow (\log_5 x)^2 - 1 > 0$ $\Rightarrow (\log_5 x - 1) (\log_5 x + 1) > 0$ $\therefore \log_5 x < -1 \& \log_5 x > 1$ $(\Theta \mathbf{x} > 0)$ $\therefore x < 5^{-1} \& x > 5$ $\therefore x \in (0, 1/5) \cup (5, \infty)$ Set of values of x satisfying the inequality **Q.14** $\frac{(x-3)^2(2x+5)(x-7)}{(x^2+x+1)(3x+6)^2} \le 0 \text{ is } [a, b] \cup (b, c]$ then 2a + b + c is equal to (A) 0 (B) 2 (D) 7 (C) 5 **Sol.**[A] $x^2 + x + 1 > 0$; $3x + 6 \neq 0$ $x \neq -2$ Put $(x - 3) = 0 \implies x = 3$ so the inequality becomes $(2x + 5)(x - 7) \le 0$ $\mathbf{x} \in \left| -\frac{5}{2}, 7 \right|$ but $x \neq -2$ so $x \in \left[-\frac{5}{2}, 2\right] \cup (2, 7]$ $a = -\frac{5}{2}$, b = 2, c = 7

inequality $\left(\frac{3}{4}\right)^{6x+10-x^2} < \frac{27}{64}$ is (C) 8 (A) 6 (B) 7 (D) Infinite **Sol.[B]** $\left(\frac{3}{4}\right)^{6x+10-x^2} < \left(\frac{3}{4}\right)^3$ $\Rightarrow 6x + 10 - x^2 > 3 \Rightarrow x^2 - 6x - 7 < 0$ \Rightarrow (x + 1) (x - 7) < 0 \Rightarrow x \in (-1, 7) \Rightarrow 7 solution. Question **Characteristics and Mantissa** based on 0.16 Number of ciphers after decimal before a significant figure comes in $\left(\frac{5}{3}\right)^{-100}$ is-(A) 21 (B) 22 (C) 23 (D) None of these **Sol.[B]** N = $\left(\frac{5}{3}\right)^{-100} \log_{10}N = -100(\log 5 - \log 3)$ = -100(1 - 0.3010 - 0.4771)=-100(0.2219) = -22.19 = -23 + 0.81characteristic = -23 \therefore number of ciphers after decimal (22) If $\log_{10} 3 = 0.477$, the no. of digits in 3^{40} is **Q.17** (A) 18 **(B)** 19 (C) 20 (D) 21 Sol. [C] Let $z = 3^{40}$ $\therefore \log_{10} z = \log_{10} 3^{40}$ $\Rightarrow \log_{10} z = 40 \log_{10} 3$ $= 40 \times 0.477$ [$\Theta \log_{10} 3 = 0.477$ given] = 19.08 \therefore number of digits in z is = 19 + 1 = 20 Question based on **Modulus function** Q.18 If x_1 and x_2 are two solutions of the equation $\log_3 |2x - 7| = 1$ where $x_1 < x_2$, then the number of integer(s) between x1 and x2 is/are-(A) 2 (\mathbf{B}) 3 (C) 4(D) 5

Q.15

Sol.[A]
$$\log_3|2x - 7| = 1$$

 $\Rightarrow |2x - 7| = 3$

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

2a + b + c = 0

 $\Rightarrow 2x - 7 = \pm 3$ $\Rightarrow 2x = 4$ and 2x = 10 \Rightarrow x = 2 and x = 5 \Rightarrow x₁=2, x₂=5 Integers between 2 and 5 are 2 Q.19 If $|x - 1| + |x - 2| + |x - 3| \ge 6$ then. (A) $0 \le x \le 4$ (B) $x \le -2$ or $x \ge 4$ (C) $x \le 0$ or $x \ge 4$ (D) None of these Sol. [C] $|x-1| + |x-2| + |x-3| \ge 6$ \therefore if x < 1, the inequation becomes $(x-1) - (x-2) - (x-3) \ge 6$ or $-3x + 6 \ge 6$ $\therefore x \le 0$ \therefore x is such that x < 1 and x $\le 0 \Rightarrow$ x ≤ 0 If $1 \le x < 2$, the inequation becomes $(x-1) + (x-2) - (x-3) \ge 6$ or $-x + 4 \ge 6$, $\therefore x \le -2$ No such values satisfy $1 \le x \le 2$ If $2 \le x \le 3$, the inequation becomes $(x-1) + (x-2) - (x-3) \ge 6$ or $x \ge 6$, no such values satisfy $2 \le x < 3$ If $x \ge 3$, the inequation becomes $(x-1) + (x-2) + (x-3) \ge 6$ or $3x - 6 \ge 6$ or $3x \ge 12$ $\therefore x \ge 4$ which satisfy $x \ge 3$ \therefore The values of x satisfy $x \le 0$ or $x \ge 4$ \therefore required solution is $x \le 0$ or $x \ge 4$ **Q.20** The set of real values of x satisfying $||x - 1| - 1| \le 1$ is-(A) [-1, 3] (B)[0,2](D) None of these (C)[-1,1]Sol. [A] $||x - 1| - 1| \le 1$ $\Rightarrow -1 \leq |\mathbf{x} - 1| - 1 \leq 1$ $\Rightarrow 0 \le |x - 1| \le 2$ $||\mathbf{x} - 1|| \le 2$ $\Rightarrow -2 \le x - 1 \le 2$ \Rightarrow x \in [-1, 3] Q.21 The solution of the inequation $\log_2 \frac{x^2 + 1}{|x - 1|}$ $\log_{0.1}$ < 0 lies in the interval - $(A)(1,\infty)$ $(B)(-\infty, 1)$ (C) [1, ∞) (D) None of these Sol. [A]

$$\log_2 \frac{x^2 + 1}{|x - 1|} > 1$$

$$\Rightarrow \frac{x^2 + 1}{|x - 1|} > 2 \quad \text{for log defined here } x > 1$$

$$\Rightarrow \frac{x^2 + 1 - 2|x - 1|}{|x - 1|} > 0 \quad \therefore x > 1$$

$$\Rightarrow x^2 + 2x - 1 > 0 \qquad (1, \infty)$$

$$x > 0 \ 41$$

Question based on Miscellaneous points

Q.22	Which is greater -		
	(i) $\log_2 3$ or $\log_{1/2} 5$		
	(ii) $\log_7 11$ or $\log_8 5$		
	(iii) $\log_4 5$ or $\log_{1/16} 25$		
	(iv) $\log_2 3$ or $\log_3 11$		
	(v) $\log_{1/2} 1/2$ or $\log_{1/2} 1/3$		
	$(v_1) \log_{10} 2$ or $\log_{10} 2$ (vi) $\log_{10} 2$		
Sol.	(i) $\log_2 3 > 1$; $\log_{1/2} 5 = -\log_2 5 < 0$		
	(ii) $\log_7 11 > 1$; $\log_8 5 < 1$		
	(iii) $\log_4 5 > 1$; $\log_{1/16} 25 = -\log_4 5 < 0$		
	(iv) $2 > \log_2 3 > 1$; $\log_3 11 > 2$		
	(v) $\log_{1/3} \frac{1}{2} = \log_3 2 < 1; \log_{1/2} \frac{1}{3} = \log_2 3 > 1$		
	(vi) $\log_{3}5$, $\log_{17}25 = \log_{(\sqrt{17})^2}(5)^2 = \log_{\sqrt{17}}5$		
	$\frac{\log 5}{\log 3} > \frac{\log 5}{\log \sqrt{17}}$		
Q.23	log ₂ 7 is (A) an integer		

- (B) a rational number
- (C) an irrational number
- (D) a prime number

Sol.[**C**] log₂7 is an irrational number.

Q.24 Which is the correct order for a given number α in increasing order: (A) $\log_2 \alpha$, $\log_3 \alpha$, $\log_e \alpha$, $\log_{10} \alpha$

- (B) $\log_{10}\alpha$, $\log_{3}\alpha$, $\log_{e}\alpha$, $\log_{2}\alpha$
- (C) $\log_{10}\alpha$, $\log_{2}\alpha$, $\log_{e}\alpha$, $\log_{2}\alpha$ (C) $\log_{10}\alpha$, $\log_{2}\alpha$, $\log_{e}\alpha$, $\log_{3}\alpha$
- (D) $\log_3\alpha$, $\log_e\alpha$, $\log_2\alpha$, $\log_1\alpha$
- **Sol.[B]** Clearly increating order is $\log_{10}\alpha$, $\log_{3}\alpha$, $\log_{e}\alpha$, $\log_{2}\alpha$

EXERCISE # 2

Part-	A Only single correct answer type questions
Q.1	If $\log_{16} x = \frac{3}{4}$ and $\log_y 0.125 = -3$, then the
	value of $\log_{0.25}\left(\frac{x}{y}\right)$ is-
	(A) 1 (B) -1 (C) 2 (D) 4
Sol.[B]	$\log_{16} x = \frac{3}{4}, \log_{y}(0.125) = -3$
	\Rightarrow x = 8, y = 2
	$\Rightarrow \log_{0.25} \left(\frac{x}{y}\right) = \log_{0.25} \left(\frac{8}{2}\right) = \log_{0.25} (4)$
	$= -\log_{0.25}(0.25) = -1$
Q.2	Let $x_1 = 97$, $x_2 = \frac{2}{x_1}$, $x_3 = \frac{3}{x_2}$, $x_4 = \frac{4}{x_3}$,,
	$x_8 = \frac{8}{x_7}$ then $\log_{3\sqrt{2}} \left(\prod_{i=1}^8 x_i - 60\right) =$
	(A) $\frac{3}{2}$ (B) 4 (C) 6 (D) $\frac{5}{2}$
Sol.[B]	$x_1 = 97, x_2 = \frac{2}{x_1}, x_3 = \frac{3}{x_2}, \dots, x_8 = \frac{8}{x_7}$
	$\Rightarrow \prod_{i=1}^{8} x_{i} = x_{1}.x_{2}.x_{3}.x_{4}.x_{5}.x_{6}.x_{7}.x_{8}$
	$= x_1. \frac{2}{r}.x_3. \frac{4}{r}.x_5. \frac{6}{r}.x_7. \frac{8}{r}$
	$x_1 = x_3 = x_5 = x_7$ = 2.4.6.8 = 384
	$\Rightarrow \log_{3\sqrt{2}} \left(\prod_{i=1}^{8} x_i - 60 \right)$
	$= \log_{10^{\frac{1}{2}}} (384 - 60) = 2\log_{18} 324$
	$= 2\log_{18}18^2 = 4$
Q.3	If $2 \log_a x = \log_b x + \log_c x$ where a, b, c > 0 and $\neq 1$ then which of the following holds
	\neq 1 then which of the following holds-

A)
$$c^{2} = (bc)^{\log_{c} a}$$
 (B) $a = bc (log_{c}b)$

(C)
$$b^2 = (bc)^{\log_c a}$$
 (D) $a^2 = bc$

(

Sol.[C]
$$2\log_a x = \log_b x + \log_c x$$

$$\Rightarrow \frac{2}{\log a} = \frac{1}{\log b} + \frac{1}{\log c} \Rightarrow \frac{2}{\log a} = \frac{\log bc}{\log b \log c}$$

$$\Rightarrow 2\log b = \frac{\log a}{\log c} . \log bc \Rightarrow \log b^2 = \log_c a \log bc$$

$$\Rightarrow b^2 = (bc)^{\log_c a}$$
Q.4 If $\log_a 8 = \gamma$, $\log_\beta \alpha = -1$ and $\log_{1/4} \beta = -1$ then

$$\left(\frac{1}{\alpha}+1\right)^{\log_{\sqrt{5}}(\beta^2+4\gamma^2)}$$
 is equal to-
(A) $\sqrt{5}$ (B) 5
(C) 25 (D) 625

Sol.[D] $\log_{\alpha} 8 = \gamma$, $\log_{\beta} \alpha = 1$, $\log_{1/4} \beta = -1$

$$\Rightarrow \beta = 4, \alpha = \frac{1}{4}, \gamma = -\frac{3}{2}$$
$$\Rightarrow \left(\frac{1}{\alpha} + 1\right)^{\log_{\sqrt{5}}(\beta^2 + 4y^2)}$$
$$= 5^{\log_{\sqrt{5}}(16+9)} = 5^{\log_{5^{1/2}} 5^2} = 5^4 = 625$$

Q.5 The equation,
$$\log_2(2x^2) + \log_2 x$$
. $x^{\log_x(\log_2 x+1)} +$

$$\frac{1}{2} \log_4^2(x^4) + 2^{-3\log_{1/2}(\log_2 x)} = 1 \text{ has}$$

- (A) exactly one real solution
- (B) two real solutions
- (C) 3 real solutions

(D) no solution

Sol.[D] Given equation can be written as $\log_2 x (\log_2^2 x + 3 \log_2 x + 3) = 0$ $\Rightarrow \log_2 x = 0 \Rightarrow x = 1$ and $\log_2^2 x + 3 \log_2 x + 3 = 0 \Rightarrow$ imaginary sol. But x = 1 does not satisfy the given equation so equation has no solution.

Part-B One or more than one correct answer type questions

Q.6 Which of the following when simplified, vanishes?

Power by: VISIONet Info Solution Pvt. Ltd	
Website : www.edubull.com	Mob no. : +91-9350679141

Edubull

(D) log₁₀sin 125³

-2/3

(A)
$$\frac{1}{\log_3 2} + \frac{2}{\log_9 4} - \frac{3}{\log_{27} 8}$$

(B) $\log_2\left(\frac{2}{3}\right) + \log_4\left(\frac{9}{4}\right)$
(C) $-\log_8 \log_4 \log_2 16$
(D) $\log_{10} \cot 1^\circ + \log_{10} \cot 2^\circ + \log_{10} \cot 3^\circ + \dots + \log_{10} \cot 89^\circ$
Sol.[A,B,C,D]
(A) $\log_2 3 + 2 \log_{2^2} 3^2 - 3\log_{2^3} 3^3$
 $\Rightarrow \log_2 3 + 2\log_2 3 - 3\log_2 3 = 0 \text{ correct}$
(B) $\log_2\left(\frac{2}{3}\right) - \log_{2^2}\left(\frac{2}{3}\right)^2 = 0 \text{ correct}$
(C) $-\log_8 \log_4 \log_2 2^4 - \log_8 \log_4 4$
 $= -\log_8 1 = 0 \text{ correct}.$
(D) $\log_{10} \cot 1^\circ + \log_{10} \cot 2^\circ + \dots + \log_{10} \cot 89^\circ + \dots + \log_{10} \cot 89^\circ + \dots + \log_{10} \tan 1^\circ$
 $\Rightarrow \log_{10} \cot 1^\circ + \log_{10} \cot 2^\circ + \dots + \log_{10} \tan 1^\circ d5^\circ + \log_{10} \tan 44^\circ + \dots + \log_{10} \tan 1^\circ d5^\circ + \log_{10} \tan 44^\circ + \dots + \log_{10} \cot 45^\circ + \log_{10} \cot 45^\circ + \log_{10} \tan 45^\circ + \log_{10} \cot 45^\circ + \log_{10} \cos 45^\circ$

Q.7 The number N =
$$\frac{1 + 2\log_3 2}{(1 + \log_3 2)^2} + \log_6^2 2$$
 when

simplified reduces to-

(A) a prime number

- (B) an irrational number
- (C) a real which is less then $\log_3 \pi$
- (D) a real which is greater than log₇6

Sol.[C,D]

$$N = \frac{1+2\log_3 2}{(1+\log_3 2)^2} + \log_6^2 2$$

= $\frac{1}{1+\log_3 2} + \frac{\log_3 2}{(1+\log_3 2)} + \log_6^2 2$
= $\frac{1}{\log_3 6} + \frac{\log_3 2}{\log_3^2 6} + \log_6^2 2$
= $\log_6 3 + \log_6 2 (\log_6 3 + \log_6 2)$
= $\log_6 3 + \log_6 2 = \log_6 6 = 1$
Clearly $\log_7 6 < N < \log_3 \pi$
 \Rightarrow option C, D are correct.

Q.8 Which of the following numbers are positive?

(A)
$$\log_{\log_3^2}\left(\frac{1}{2}\right)$$
 (B) $\log_2\left(\frac{2}{3}\right)$

(C) $\log_{10} \log_{10} 9$

Sol.[A,B]

(A)
$$\log_{\log_3 2} \left(\frac{1}{2}\right)$$
 is +ve $\Theta \log_3 2 < 1$

(B)
$$\log_2\left(\frac{3}{2}\right)^{2/3} = \frac{2}{3} \log_2\frac{3}{2}$$
 is +ve

(C)
$$\log_{10}\log_{10}9$$
 is – ve

- (D) $\log_{10} \sin 125^3$ is -ve
- \Rightarrow option A, B are correct.
- Q.9 Which of the following are correct? (A) $\log_3 19$. $\log_{1/7} 3$. $\log_4 1/7 > 2$ (B) $\log_5(1/23)$ lies between -2 and -1(C) if $m = 4^{\log_4 7}$ and $n = \left(\frac{1}{9}\right)^{-2\log_3 7}$ then $n = m^4$ (D) $\log_{\sqrt{5}} \sin\left(\frac{\pi}{5}\right)$. $\log_{\sqrt{\sin\frac{\pi}{5}}} 5$

simplifies to an irrational number

Sol.[A,B,C]

(A)
$$\log_{3} 19. \ \log_{1/7} 3. \ \log_{4} 1/7$$

$$= \frac{\log 19}{\log 3} \frac{\log 3}{\log \frac{1}{7}} \cdot \frac{\log \frac{1}{7}}{\log 4}$$

$$= \log_{4} 19 > 2$$
(B) $\log_{5} (23)^{-1} = -\log_{5} 23$
(B) $\log_{5} (23)^{-1} = -\log_{5} 23$
(B) $\log_{5} 23$ lies between 1 and 2

$$\Rightarrow -2 < -\log_{5} 23 < -1$$
(C) $m = 4^{\log_{4} 7}, n = 9^{2\log_{3} 7}$

$$\Rightarrow m = 7, n = 7^{4}$$

$$\Rightarrow n = m^{4}$$
(D) $2\log_{5} \sin \frac{\pi}{5} \cdot 2\log_{\sin \frac{\pi}{5}} 5$

$$\Rightarrow 4 \frac{\log \sin \frac{\pi}{5}}{\log 5} \cdot \frac{\log 5}{\log \sin \frac{\pi}{5}} = 4 \text{ rational}$$

$$\Rightarrow A, B, C \text{ are correct.}$$

Q.10 The solution set of the system of equations,

$$log_{12}x \left(\frac{1}{log_{x}2} + log_{2}y\right) = log_{2}x \text{ and}$$

$$log_{2}x (log_{3}(x + y)) = 3 log_{3}x \text{ is}$$

(A) x = 6; y = 2
(B) x = 4, y = 3
(C) x = 2; y = 6
(D) x = 3; y = 4

Sol.[A,C]

Given equations can be written as $log_2xy = log_212 \Rightarrow xy = 12$ and $log_3(x + y) = log_32^3 \Rightarrow x + y = 8$ Solvign we get x = 2, y = 6 and x = 6, y = 2 \Rightarrow option A, C are correct.

Q.11 If x_1 and x_2 are the solution of the equation

$$x^{3\log^{3} x - \frac{2}{3}\log x} = 100 \sqrt[3]{10} \text{ then}$$
(A) $x_{1}x_{2} = 1$
(B) $x_{1}. x_{2} = x_{1} + x_{2}$
(C) $\log_{x_{2}}. x_{1} = -1$
(D) $\log(x_{1}. x_{2}) = 0$

Sol.[A,C,D]

$$x^{3\log_{10}^{3}x - \frac{2}{3}\log_{10}x} = 10^{\frac{7}{3}}$$

$$\Rightarrow \left(3\log_{10}^{3}x - \frac{2}{3}\log_{10}x\right) \log_{10}x = \frac{7}{3}$$

$$\Rightarrow \left(9\log_{10}^{2}x - 2\right) \log_{10}^{2}x = 7$$

Solving we get

$$\log_{10}^{2}x = 1$$

$$\Rightarrow$$
 x₁ = 10, x₂ = $\frac{1}{10}$

 $\Rightarrow x_1.x_2 = 1, \ \log_{x_2} \ x_1 = -1, \ \log(x_1.x_2) = 0$

 \Rightarrow A, C, D are correct.

Q.12 The solutions of the equation $|x-1|^{(\log x)^2 - \log x^2} = |x-1|^3$, where base of logarithm is 10 are-

(A) $x = 2$	(B) $x = \frac{1}{10}$
(C) $x = 1000$	(D) x = 100
Sol.[A,B,C]	
$\left(\log x\right)^2 - 2\log x = 3$	
$\Rightarrow (\log x)^2 - 2 \log x -$	-3 = 0

 $\Rightarrow \log x = 3, \log x = -1$ \Rightarrow x = 1000, x = $\frac{1}{10}$ and x = 2 equation is Satisfy so x = 2 is correct \Rightarrow Option A, B, C are correct. The in-equation $(\log_x 2)(\log_{2x} 2)(\log_2 4x) > 1$ (A) has a meaning for all x (B) has a meaning if x > 2 $\left(2^{-\sqrt{2}},\frac{1}{2}\right)$ (C) is satisfied in (D) is satisfied in (1, $2^{\sqrt{2}}$) [B,C,D] $(\log_{x} 2)(\log_{2x} 2)(\log_{2} 4x) > 1$ $\log_{x} 2$ is defined for x > 0 and x $\neq 3$ $\log_{2x} 2$ is defined for x > 0 and x $\neq \frac{1}{2}$ $\log_2 4x$ is defined for x > 0so domain of $(\log_x 2)(\log_{2x} 2)$ $(\log_2 4x)$ is x > 0and $x \neq 1$ also $x \neq \frac{1}{2}$ so choice (A) is ruled out. Since x > 2 is subset of domain of the inequation is meaningful if x > 2The given expressions is $\frac{2 + \log_2 x}{\log_2 x (1 + \log_2 x)} > 1$ put $\log_2 x = t$ $\Rightarrow \frac{2+t}{t(1+t)} > 1$ If numerator & denominator > 0 \Rightarrow t² + t - t - 2 < 0 $\Rightarrow -\sqrt{2} < t < \sqrt{2}$ $\Rightarrow 2^{-\sqrt{2}} < \mathbf{x} < 2^{\sqrt{2}}$ The solution set of $\left| \frac{x+1}{x} \right| + |x+1| = \frac{(x+1)^2}{|x|}$ is (A) $\{x \mid x \ge 0\}$ (B) $\{x \mid x > 0\} \cup \{-1\}$ $(C) \{-1, 1\}$ (D) $\{x \mid x \ge 1 \text{ or } x \le -1\}$

 $\Rightarrow (\log x - 3) (\log x + 1) = 0$

Q.13

Sol.

Q.14

Sol. [B]

$$\left| \frac{\mathbf{x}+\mathbf{1}}{\mathbf{x}} \right| + |\mathbf{x}+\mathbf{1}| = \frac{(\mathbf{x}+\mathbf{1})^2}{|\mathbf{x}|}$$
$$\Rightarrow \left| \frac{\mathbf{x}+\mathbf{1}}{\mathbf{x}} \right| + |\mathbf{x}+\mathbf{1}| = \frac{(\mathbf{x}+\mathbf{1})^2}{|\mathbf{x}|}$$
$$\Rightarrow |\mathbf{x}+\mathbf{1}| \left\{ \frac{1}{|\mathbf{x}|} + 1 - \frac{|\mathbf{x}+\mathbf{1}|^2}{|\mathbf{x}|} \right\} = 0$$

 $\therefore |\mathbf{x} + 1| = 0 \text{ or } 1 + |\mathbf{x}| - |\mathbf{x} + 1| = 0$ $\Rightarrow \mathbf{x} = -1: \text{ If } \mathbf{x} < -1, 1 + |\mathbf{x}| - |\mathbf{x} + 1| = 0$

 $\Rightarrow 1 - x + x + 1 = 0 \Rightarrow 2 = 0$

(Not possible, Rejected)

$$\begin{split} &\text{if} - 1 \le x < 0, \ 1 + |x| - |x + 1| = 0 \\ &\Rightarrow 1 - x - (x + 1) = 0 \\ &\Rightarrow x = 0 \ (\text{not possible}) \\ &\text{if } x \ge 0, \ 1 + x - (x + 1) = 0 \Rightarrow 0 = 0 \\ &\Rightarrow x \ \text{can have any value in the interval} \\ &\therefore x = -1, \ x > 0 \quad (\Theta \ x \neq 0) \end{split}$$

$$\{x \mid x > 0\} \cup \{-1\}$$

Q.15
$$\log_{|\sin x|} (x^2 - 8x + 23) > \frac{3}{\log_2 |\sin x|}$$

(A) $3 < x < \pi, \pi < x < \frac{3\pi}{2}, \frac{3\pi}{2} < x < 5$
(B) $3 < x < \pi, \pi < x < \frac{\pi}{2}, \frac{\pi}{2} < x < 5$
(C) $3 < x < \frac{5\pi}{2}, \frac{5\pi}{2} < x < \frac{\pi}{2}, \frac{\pi}{2} < x < 5$
(D) None of these
Sol. [A]
 $\log_{|\sin x|} (x^2 - 8x + 23) > \frac{3}{\log_2 |\sin x|}$

$$\Rightarrow \frac{\log_2(x^2 - 8x + 23)}{\log_2 |\sin x|} > \frac{3}{\log_2 |\sin x|}$$

$$\Rightarrow \log_2(x^2 - 8x + 23) < 3 \quad (\Theta \log_2 |\sin x| < 0)$$

$$\Rightarrow x^2 - 8x + 23 < 2^3 (= 8)$$

$$\Rightarrow x^2 - 8x + 15 < 0$$

$$\Rightarrow (x - 5) (x - 3) < 0$$

$$\Rightarrow 3 < x < 5$$

For log defined $|\sin x| \neq 0$
$$\Rightarrow x \notin \{n \pi, n \in I\}$$

and $x \notin \{(2k + 1) \frac{\pi}{2}, k \in I\}$

for
$$x \in (3, 5)$$
;
 $x \neq \pi, \frac{\pi}{2}, \frac{3\pi}{2}$
Hence $x \in (3, \pi) \cup (\pi, \frac{3\pi}{2}) \cup (\frac{3\pi}{2}, 5)$
i.e. $3 < x < \pi, \pi < x < \frac{3\pi}{2}, \frac{3\pi}{2} < x < 5$.

Part-C Assertion-Reason type questions

The following questions 16 to 19 consists of two statements each, printed as Statement (1) and Statement (2). While answering these questions you are to choose any one of the following four responses.

- (A) If both Statement (1) and Statement (2) are true and the Statement (2) is correct explanation of the Statement (1).
- (B) If both Statement (1) and Statement (2) are true but Statement (2) is not correct explanation of the Statement (1).
- (C) If Statement (1) is true but the Statement (2) is false.
- (D) If Statement (1) is false but Statement (2) is true
- **Q.16** Statement (1) : The equation

 $(\log x)^2 - \log x^3 + 2 = 0$ has only one solution.

Statement (2) : $\log x^2 = 2 \log x$ if x > 0.

Sol. [D]

$\Theta \log x \text{ occurs in the equation } \therefore x > 0$ $(\log x)^2 - 3 \log x + 2 = 0$ $\Rightarrow (\log x - 1) (\log x - 2) = 0$ $\Rightarrow \log x = 1, \log x = 2$ $\Rightarrow x = 10, 100$ $\Rightarrow \text{ The equation has two solutions}$

Q.17 Statement (1) :The equation t. 2^x + 2^{-x} = 5 has a unique solution for two values of t.
Statement (2) : Sum of a positive number and

its reciprocal is not less than 2.

Sol. [B]

t. $2^{x} + 2^{-x} = 5$ If t = 0 then $2^{-x} = 5$ $\Rightarrow x = -\log_2 5$ \Rightarrow equation has a unique solution. If $t \neq 0$ then put $2^{x} = y$ t $y + \frac{1}{y} = 5$

 $\Rightarrow y = \frac{5 \pm \sqrt{25 - 4t}}{2}$ This will have unique solution if $t = \frac{25}{4}$ **(D)** and the solution will be 5/2 which is Sol. $> 0 \ (\Theta \ y > 0)$ Hence for t = 0 and t = $\frac{25}{4}$ the system has a unique solution. **Q.18** Statement- (1) : If $\log_{(\log_5 x)} 5 = 2$, then $x = 5^{\sqrt{5}}$ **Statement (2) :** $\log_{x} a = b$, if a > 0, then $x = a^{1/b}$. **Sol.[A]** $\log_{\log_5 x} 5 = 2 \implies (\log_5 x)^2 = 5$ $\log_5 x = \sqrt{5} \qquad \Rightarrow x = 5^{\sqrt{5}}$ Q.19 Statement- (1) : The equation $\log_{\frac{1}{2+|x|}}(5+x^2) = \log_{(3+x^2)}(15+\sqrt{x})$ has no solution. **Statement** (2) : $log_{1/b}a = -log_b a$ and if number and base both are greater then unity then the number is positive **Sol.[B]** $-\log_{2+|x|}(5+x^2) = \log_{2+x^2}(15+\sqrt{x})$ If a number and base are both greater than unity then the logarithm value is > 0) 2 + |x| > 1, $3 + x^2 > 1$, $5 + x^2 > 1$, $15 + \sqrt{x} > 1$ hence $\log_{2+|x|}(5+x^2) > 0$ & $\log_{3+x^2}(15+\sqrt{x}) > 0$ $-log_{2+|x|}(5 + x^2) < 0$ LHS < 0RHS > 0 hence no solution Q.21 Part-D Column Matching type questions **(A)** Q.20 Match the column for values of x which satisfy the equation in Column 1 Column-1 Column-2 **(B)** $\frac{\log_{10}(x-3)}{\log_{10}(x^2-21)} = \frac{1}{2}$ (P) 5 $x^{\log x + 4} = 32$, where (O) 100 base of logarithm is 2 $5^{\log x} - 3^{\log x - 1} = 3^{\log x + 1}$ (R) 2

(A)

(B)

(C)

$-5^{\log x - 1}$ where the base	
of logarithm is 10	
$9^{1+\log x} - 3^{1+\log x} - 210 = 0;$	(S) 1/32
where base of log is 3	
$A \rightarrow P ; B \rightarrow R, S ; C \rightarrow Q ; D$	$\rightarrow P$
(A) $\Theta (x-3)^2 = x^2 - 21$	
$\Rightarrow -6x + 9 = -21 \Rightarrow x = 5$	
(B) $(\log_2 x + 4) \log_2 x = 5$	
$\Rightarrow (\log_2 x)^2 + 4\log_2 x - 5 = 0$	
$\Rightarrow (\log_2 x + 5) (\log_2 x - 1) = 0$	
$\Rightarrow \log_2 x = -5, \log_2 x = 1 \Rightarrow x =$	$\frac{1}{32}$, x = 2
(C) Solving we get	
$5^{\log_{10} x} = \frac{50}{18} 3^{\log_{10} x}$	
$\Rightarrow \log_{10} x \log_{10} 5 = \log_{10} \frac{50}{18} + \log_{10} \frac{10}{18} + \log_{10} \frac$	$g_{10} \ge \log_{10} 3$
$\Rightarrow \log_{10} x \left(\log_{10} \frac{5}{3} \right) = \log_{10} \frac{25}{9}$	
$\Rightarrow \log_{10} x = \log_{5/3} \left(\frac{5}{3}\right)^2 \Rightarrow x = 1$	100
(D) Θ 9.3 ^{2logx} – 3.3 ^{logx} – 210 = 0	
$\Rightarrow 3x^2 - x - 70 = 0$ (wehre $3^{\log_3 3}$)	" = x)
$\Rightarrow (3x + 14) (x - 5) = 0 \Rightarrow x = 5$	$, x = -\frac{14}{3}$
\Rightarrow x = 5 (x = $\frac{-14}{3}$ not possible)	
Column-1	Column-2
If 3^x and $7^{1/x}$ are two	(P) 4
distinct prime number	
$\forall x \in R$ then number of x	
so that $3^{x} + 7^{1/x} = 10$ is/are	
If N be the number of	(Q) 2
solution and S be the sum	
of all roots of the equation	
$ x^2 - x - 6 = x + 2$, then	
N + S equals	

(C) The value of (R) 1 $4\left[\frac{2\log_6 3}{\log_2 6} + (\log_6 2)^2 + \frac{1}{(\log_2 6)^2}\right]$ is **(D**) The number of values (S) 7 of x satisfying $3^{\log_{27}(x-3)+\log_{\sqrt{3}}5} = 50$ is/are $A \rightarrow Q, B \rightarrow S, C \rightarrow P, D \rightarrow R$ Sol. **(A) (B)** $|x^2 - x - 6| = x + 2$ |(x+2)(x-3)| = x+2case 1 : $x \ge 3$ (x + 2) (x - 3) = (x + 2) $\Rightarrow x = 4$ **case 2** : $-2 \le x < 3$ $6 + x - x^2 = x + 2$ $x^2 = 4 \implies x = \pm 2$ **case 3 :** x < -2 (x + 2)(x - 3) = x + 2; x = 4 (wrong) x = 4, -2, 2S = 4;N = 3;S + N = 7(C) $4[2 \log_6 3 \log_6 2 + (\log_6 2)^2 + (\log_6 3)^2]$ $= 4[((\log_6 2) + (\log_6 3))^2]$ $=4(\log_6 6)^2 = 4$ **(D)** $3^{\log_{27}(x-3)} \times 3^{\log_{\sqrt{3}} 5} = 50$ $3^{\frac{1}{3}\log_3(x-3)} \times 3^{2\log_3 5} = 50$ $(x-3)^{1/3} \times 25 = 50$ $(x-3)^{1/3} = 2$ x - 3 = 8

x equal to Sol. $[(\log_2 x)^2 - 6 \log_2 x + 11]\log_2 x = 6$ Put $\log_2 x = t$ we get $t^3 - 6t^2 + 11t - 6 = 0 \Rightarrow (t - 1) (t - 2) (t - 3) = 0$ $\Rightarrow t = 1, 2, 3 \Rightarrow \log_2 x = 1, 2, 3 \Rightarrow x = 2, 4, 8$ Q.24 If $x + \log_{10}(2^x + 1) = \log_{10}6 + x \log_{10}5$

then the value of x is..... Sol. $(2^{x} + 1) \ 10^{x} = 6.5^{x}$ $(2^{x})^{2} + 2^{x} - 6 = 0 \text{ put } 2^{x} = t$ $t^{2} + t - 6 = 0 \Rightarrow t = 2, -3 \text{ (rejected)}$ $\therefore 2^{x} = 2 \Rightarrow x = 1$

► Fill in the blanks type questions

Q.22 If $\frac{\log x}{b-c} = \frac{\log y}{c-a} = \frac{\log z}{a-b}$ Then answer the following (i) $xyz = \dots$ (ii) $x^ay^bz^c = \dots$ Sol. (i) $x = e^{k(b-c)}, y = e^{k(c-a)}, z = e^{k(a-b)}$ $\Rightarrow xyz = e^\circ = 1$ (ii) $x^ay^bz^c = e^\circ = 1$

Q.23 If $x^{[(\log_2 x)^2 - 6\log_2 x + 11]} = 64$ then

EXERCISE # 3

Q.3

Sol.

Part-A Subjective Type Questions

- Compute the following : Q.1 (i) $\sqrt[3]{5^{\frac{1}{\log_7 5}} + \frac{1}{\sqrt{-\log_{10} 0.1}}}$ (ii) $\log_{0.75} \log_2 \sqrt{\sqrt[-2]{0.125}}$ (iii) $\left(\frac{1}{49}\right)^{1+\log_7 2} + 5^{-\log_{1/5} 7}$ (i) $\left(5^{\log_5 7} + \frac{1}{1}\right)^{1/3} \Rightarrow \left(2^3\right)^{1/3} = 2$ Sol. (ii) $\log_{0.75} \log_2 \sqrt{(0.125)^{-1/2}}$ $\Rightarrow \log_{0.75} \log_2 (0.125)^{-1/4}$ $\Rightarrow \log_{0.75} \log_2 (0.5)^{-3/4}$ $\Rightarrow \log_{0.75} (-3/4) (-1)$ $\Rightarrow \log_{0.75} 0.75 = 1$ (iii) $7^{-2} \cdot 7^{-2\log_7 2} + 5^{\log_5 7}$ $\Rightarrow 49^{-1} \times 2^{-2} + 7$ $\Rightarrow \frac{1}{196} + 7 \Rightarrow 7 + \frac{1}{196}$ Simplify the following: Q.2 (i) $5^{\log_{\frac{1}{5}}\left(\frac{1}{2}\right)} + \log_{\sqrt{2}} \frac{4}{\sqrt{7} + \sqrt{3}}$ $+ \log_{\frac{1}{2}} \frac{1}{10 + 2\sqrt{21}}$ (ii) $\log_{1/3} \sqrt[4]{\sqrt{729}} \sqrt[3]{9^{-1}.27^{-4/3}}$
 - (iii) $7^{\log_3 5} + 3^{\log_5 7} 5^{\log_3 7} 7^{\log_5 3}$ (iv) $4^{5\log_{4\sqrt{2}}(3-\sqrt{6})-6\log_8(\sqrt{3}-\sqrt{2})}$

Sol. (i)
$$5^{\log_{5^{-1}} 2^{-1}} + \log_{2^{1/2}} \frac{4}{(\sqrt{7} + \sqrt{3})}$$

 $+ \log_{2^{-1}} \frac{1}{(10 + 2\sqrt{2})}$
 $= 5^{\log_5 2} + 4^{\log_2 2} - 2\log_2(\sqrt{7} + \sqrt{3}) + \log_2(10 + 2\sqrt{2})$

$$= 2+4-\log_{2}(\sqrt{7}+\sqrt{3})^{2} + \log_{2}(\sqrt{7}+\sqrt{3})^{2} = 6 \text{ Ans.}$$
(ii) $\log_{1/3} \left[(729)^{1/2} \left(\frac{1}{9} \times \frac{1}{(27)^{4/3}} \right)^{1/3} \right]^{1/4}$

$$\Rightarrow \log_{1/3} \left[(27)^{2} \cdot \frac{1}{2} \left(\frac{1}{9} \times \frac{1}{3^{4}} \right) \right]^{1/4}$$

$$\Rightarrow \log_{1/3} \left[27 \times \frac{1}{9 \times 3^{4}} \right]^{1/4}$$

$$= \log_{1/3} \left[27 \times 3^{-2/3} \cdot 3^{-4/3} \right]^{1/4}$$

$$= \log_{3^{-1}} 3^{1/4} = -\frac{1}{4}$$
(iii) $7^{\log_{3} 5} + 3^{\log_{5} 7} - 5^{\log_{3} 7} - 7^{\log_{5} 3}$

$$= 5^{\log_{3} 7} + 7^{\log_{5} 3} - 5^{\log_{3} 7} - 7^{\log_{5} 3}$$

$$= 0$$
(iv) $4^{5\log_{2} 5/2} (3-\sqrt{6}) - 6\log_{2^{3}} (\sqrt{3}-\sqrt{2})$

$$= 4^{2\log_{2} (3-\sqrt{6})-2\log_{2} (\sqrt{3}-\sqrt{2})}$$

$$= 4^{\log_{2} \frac{(3-\sqrt{6})^{2}}{(\sqrt{3}-\sqrt{2})^{2}} = 4^{\log_{2} 3}$$

$$= 2^{2\log_{2} 3} = 2^{\log_{2} 3^{2}} = 9$$
Find the value of $49^{A} + 5^{B}$ where
 $A = 1 - \log_{7} 2 \& B = -\log_{5} 4$
 $49^{A} + 5^{B}$
 $49^{1 - \log_{7} 2} + 5^{-\log_{5} 4}$

$$\Rightarrow 49. 49^{-\log_{7} 2} + 5^{\log_{5} 4^{-1}} \Rightarrow 49. 7^{\log_{7} 2^{-2}} + 4^{-1}$$

$$\Rightarrow 49. \ \frac{1}{4} + \frac{1}{4} = \frac{25}{2} \text{ Ans.}$$

Q.4 Solve for x:
(i)
$$\log_{10} (x^2 - 12x + 36) = 2$$

(ii) $9^{1+\log x} - 3^{1+\log x} - 210 = 0$;
where base of log is 3.
Sol. (i) $\log_{10} (x^2 - 12x + 36) = 2$
 $\Rightarrow x^2 - 12x + 36 = 100$
 $\Rightarrow x^2 - 16x + 4x - 64 = 0$
 $\Rightarrow (x - 16) (x + 4) = 0$

$$\Rightarrow x = -4, 16 \text{ Ans.}$$
(ii) $9.9^{\log_3 x} - 3.3^{\log_3 x} - 210 = 0$

$$= 9.3^{2\log_3 x} - 3 x - 210 = 0$$

$$\Rightarrow 9x^2 - 3x - 210 = 0$$

$$\Rightarrow 3x^2 - x - 70 = 0$$

$$\Rightarrow (x - 5) (3x - 14) = 0$$

$$\Rightarrow x = 5 \text{ Ans.}$$

Q.5 Solve for x :

$$\log_{x+1} (x^2 + x - 6)^2 = 4$$

Sol.
$$(x + 1)^4 = (x^2 + x - 6)^2$$

 $(x + 1)^2 = \pm (x^2 + x - 6)$
 $x^2 + 2x + 1 = x^2 + x - 6$
 $\Rightarrow x = -7$
or
 $x^2 + 2x + 1 = -x^2 - x + 6$
 $\Rightarrow 2x^2 + 3x - 5 = 0$
 $\Rightarrow 2x^2 + 5x - 2x - 5 = 0$
 $\Rightarrow 2x(x - 1) + 5(x - 1) = 0$
 $\Rightarrow x = -\frac{5}{2}, 1$

$$\Rightarrow x = 1 \quad (\Theta \ x + 1 > 0)$$

Q.6 Solve
$$\frac{6}{5} a^{\log_a x \cdot \log_{10} a \cdot \log_a 5} - 3^{\log_{10} \left(\frac{x}{10}\right)^2}$$

= $9^{\log_{100} x + \log_4 2}$

Sol. $\Theta \log_a x \log_{10} a = \log_{10} x$

$$\Rightarrow \log_{10} \left(\frac{x}{10}\right) = \log_{10} x - 1$$
$$\Rightarrow \log_{100} x = \frac{1}{2} \log_{10} x$$

and
$$\log_4 2 = \frac{1}{2} \log_2 2 = \frac{1}{2}$$

None the equation can be written as –

$$\frac{6}{5} a^{\log_{10} x \log_{a} 5} - 3^{\log_{10} x - 1} = 9^{\frac{1}{2} \log_{10} x + \frac{1}{2}}$$

or
$$\frac{6}{5} \left(a^{\log_{a} 5} \right)^{\log_{10} x} = 3^{\log_{10} x} .3^{-1} + 3^{\log_{10} x} .3$$

or
$$\frac{6}{5} .5^{\log_{10} x} = 3^{\log_{10} x} \left(\frac{1}{3} + 3 \right) = \frac{10}{3} .3^{\log_{10} x}$$

or $\frac{1}{5^2} 5^{\log_{10} x} = \frac{1}{3^2} 3^{\log_{10} x}$ or $5^{(\log_{10} x-2)} = 3^{(\log_{10} x-2)}$ since base are different so it is true $\log_{10} x - 2 = 0$ $\Rightarrow \log_{10} x = 2, \Rightarrow x = 10^2 = 100$ Ans.

Q.7 Find x satisfying the equation

$$\log^{2}\left(1+\frac{4}{x}\right) + \log^{2}\left(1-\frac{4}{x+4}\right)$$
$$= 2\log^{2}\left(\frac{2}{x-1}-1\right)$$

L.H.S.

Sol.

$$\log^{2}\left(\frac{x+4}{x}\right) + \log^{2}\left(\frac{x}{x+4}\right)$$
$$= \log^{2}\left(\frac{x+4}{x}\right) + \log^{2}\left(\frac{x+4}{x}\right)$$
$$= 2\log^{2}\left(\frac{x+4}{x}\right) + \log^{2}\left(\frac{x+4}{x}\right)$$
$$= 2\log^{2}\left(\frac{x+4}{x}\right) + \log^{2}\left(\frac{x+4}{x}\right)$$
$$= 2\log^{2}\left(\frac{x+4}{x}\right) + \log^{2}\left(\frac{x+4}{x}\right)$$
$$\dots(1)$$
R.H.S.
$$2\log^{2}\frac{3-x}{x-1} + \dots(2)$$
from (1) & (2)
$$\frac{x+4}{x} = \frac{3-x}{x-1} \text{ or } \frac{x-1}{3-x}$$
$$\Rightarrow x^{2} = 2 \text{ or } x^{2} = 6$$
$$x = \pm \sqrt{2}, \pm \sqrt{6}$$
for log defined x $\neq -\sqrt{2}, -\sqrt{6}$

 $\therefore x = \sqrt{2}$, $\sqrt{6}$ Ans.

Q.8 If $4^{A} + 9^{B} = 10^{C}$, where $A = \log_{16}4$, $B = \log_{3}9$ and $C = \log_{x}83$ then find x.

Sol.
$$4^{A} + 9^{B} = 10^{C}$$
 where $A = \log_{16}4$, $B = \log_{3}9$,
 $C = \log_{x}83$.
 $\Rightarrow 4^{\log_{16}4} + 9^{\log_{3}9} = 10^{\log_{x}83}$
 $= 4^{1/2} + 9^{2} = 83^{\log_{x}10}$
 $= 83^{1} = 83^{\log_{x}10}$
 $= \log_{x}10 = 1$
 $\Rightarrow x = 10$

Q.9 Solve the following inequalities

(i)
$$\frac{1}{1 + \log x} + \frac{1}{1 - \log x} > 2.$$

(ii) $\frac{1}{\log_4[(x+1)/(x+2)]} < \frac{1}{\log_4(x+3)}$
Sol. (i) $\frac{1}{1 + \log x} + \frac{1}{1 - \log x} > 2.$
 $\Rightarrow \frac{1 - \log x + 1 + \log x}{1 - \log^2 x} > 2$
 $\Rightarrow \frac{1}{1 - \log^2 x} > 1 \Rightarrow 1 - \log^2 x < 1$
 $\Rightarrow -\log^2 x < 0 \Rightarrow x < 1$
(1) $1 + \log x \neq 0 \Rightarrow \log x \neq -1$
 $\Rightarrow x \neq 10^{-1} \Rightarrow x \neq 1/10 \neq 0.1$
(2) $1 + \log x > 0 \Rightarrow x > 0.1$
(3) $1 - \log x \neq 0 \Rightarrow \log x \neq 1 \Rightarrow x \neq 10$
(4) $1 - \log x > 0 \Rightarrow \log x < 1 \Rightarrow x < 10$
 $x \in (0.1, 1) \cup (1, 10)$ Ans.

Q.10 Solve the inequality

_

$$\log_{\frac{1}{2}} \frac{x^2 + 6x + 9}{2(x+1)} < -\log_2(x+1)$$

Sol.
$$\log_{2^{-1}} \frac{(x+3)^2}{2(x+1)} + \log_2(x+1) < 0$$

$$\Rightarrow \log_{2}^{-1} (x+3)^{2} - \log_{2^{-1}} 2 - \log_{2^{-1}} (x+1) + \log_{2} (x+1) < 0$$

$$\Rightarrow -2 \log_{2} (x+3) + \log_{2} 2 + \log_{2} (x+1) + \log_{2} (x+1) < 0$$

$$\Rightarrow 2 \log_{2} (x+1) - 2 \log_{2} (x+3) + 1 < 0$$

$$\Rightarrow \log_{2} (x+1)^{2} - \log_{2} (x+3)^{2} < -1$$

$$\Rightarrow \log_{2} \frac{(x+1)^{2}}{(x+3)^{2}} < -1 \qquad \Rightarrow \frac{x^{2} + 2x + 1}{x^{2} + 6x + 9} < \frac{1}{2}$$

$$\Rightarrow x^{2} - 2x - 7 < 0$$

$$\Rightarrow \frac{2 \pm \sqrt{4 + 28}}{2} = 2 \pm \sqrt{32} = (1 \pm \sqrt{8})$$

$$x > -1, x > -3$$

$$x > -1 \& x < 1 + 2\sqrt{2}$$

$$(-1, 1+2 \sqrt{2})$$

Q.11 Solve the inequality $x^{\frac{1}{\log_{10} x}} \cdot \log_{10} x < 1$

Sol.
$$x^{\log_{x} 10} \cdot \log_{10} x < 1$$
 ⇒ 10. $\log_{10} x < 1$
⇒ $\log_{10} x < \frac{1}{10}$ for log defined $x > 0$
⇒ $x < 10^{1/10}$ ⇒ $0 < x < 10^{1/10}$
 $0 < x < \frac{1}{10}$ Ans.
Q.12 $\log_{\frac{1}{3}} (x-1) + \log_{\frac{1}{3}} (x+1)$
 $+ \log_{\sqrt{3}} (5-x) < 1$ solve for x.
Sol. $\log_{3^{-1}} (x-1) + \log_{3^{-1}} (x+1) + \log_{3^{1/2}} (5-x) < 1$
 $\Rightarrow -\log_{3} (x-1) - \log_{3} (x+1) + 2 \log_{3} (5-x) < 1$
 $\Rightarrow -\log_{3} (x^{2}-1) + \log_{3} (x+1) + \log_{3} (5-x)^{2} < 1$
 $\Rightarrow -\log_{3} (\frac{5-x)^{2}}{x^{2}-1} < 1$ $\Rightarrow \frac{(5-x)^{2}}{x^{2}-1} < 3$
 $\Rightarrow x^{2} + 5x - 14 > 0$ $\Rightarrow x (x + 7) - 2 (x + 7) > 0$
 $\Rightarrow (x + 7) (x - 2) > 0$ $\Rightarrow x > 2 \& x < 5$
 $\Rightarrow x \in (2, 5)$
Q.13 Solve $x^{(\log_{10} x)^{2} - \log_{10} x^{3}} + 1 > 1000$
Sol. $x^{(\log_{10} x)^{2} - \log_{10} x^{3}} + 1 > 1000$
put $\log_{10} x = t$ and take log of both sides
 $t^{2} - 3t + 1 > \log_{x} 10^{3} = \frac{3\log_{10} 1}{\log_{x}} = \frac{3}{t}$
or $t^{3} - 3t^{2} + t - 3 > 0$
or $(t^{2} + 1) (t-3) > 0$ $\therefore t > 3$
or $\log_{10} x > 3$
or $x > 10^{3} = 1000$
 $\therefore x \in (1000, \infty)$ Ans.
Q.14 If $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$. Find the number of integers in
(i) 5^{200}
(ii) $6^{15} \&$
(iii) the number of zeros after the decimal in 3^{-100}

Sol. (i) 5^{200}

$$= 200 \log_{10} 5 = 200 \log_{10} \frac{10}{2} = 200 \left[1 - \log_{10} 2\right]$$

= 200 [1 - 0.3010]= 139.8 \therefore No. of integers = 139 + 1= 140(ii) 6¹⁵ $= 15 \log 6$ $= 15 [\log 2 + \log 3]$ = 15 [0.3010 + 0.4771]= 11.8065 \therefore No. of integers = 11 + 1 = 120.15 Solve the equations (i) |x-4| - |x+4| = 8(ii) |x-3| + |x+2| - |x-4| = 3(iii) $8x^2 + |-x| + 1 > 0$ (i) $(-\infty, -4]$ Sol. (ii) - 6, 2(iii) $(-\infty, \infty)$ Solve $2^{|x+1|} - 2^{x} = |2^{x} - 1| + 1$ **Q.16** Sol. Case I : $x \le -1$ $2^{-(x+1)} - 2^{x} = -(2^{x} - 1) + 1$ $\Rightarrow 2^{-(x+1)} = 2^1 \therefore - (x+1) = 1$ $\Rightarrow x = -2$ Case II : -1 < x < 0 $2^{x+1} - 2^x = 1 - 2^x + 1$ $\Rightarrow 2^{x+1} = 2^1 \Rightarrow x+1 = 1 \Rightarrow x = 0$ \therefore x = 0 does not satisfy the condition, \therefore x = 0 is not a root Case III: $x \ge 0$ $2^{x+1} - 2^x = 2^x - 1 + 1 \Longrightarrow 2^{x+1} = 2.2^x$ $\Rightarrow 2^{x+1} = 2^{x+1}$ true for $x \ge 0$ \therefore x = -2 & x \ge 0 Ans.

Q.17 Solve the following systems of equations:

(i)
$$2^{\log_{1/2}(x+y)} = 5^{\log_5(x-y)}$$

 $\log_2 x + \log_2 y = \frac{1}{2}$
(ii) $\log_2 xy \cdot \log_2 \frac{x}{y} = -3$
 $\log_2^2 x + \log_2^2 y = 5$
Sol. (i) $2^{\log_{2^{-1}}(x+y)} = 5^{\log_5(x-y)}$

$$\Rightarrow \frac{1}{x+y} = x-y$$

$$\Rightarrow x^{2} - y^{2} = 0$$

$$\Rightarrow x = \pm y \qquad \dots(1)$$

$$\log_{2} x + \log_{2} y = \frac{1}{2}$$

$$\Rightarrow \log_{2} xy = \frac{1}{2}$$

$$\Rightarrow xy = \sqrt{2}$$

$$\Rightarrow y = \frac{\sqrt{2}}{x} \qquad \dots(2)$$

from (1) & (2) $x = \pm \frac{\sqrt{2}}{x}$

$$\Rightarrow x^{2} = \pm \sqrt{2}, \qquad \Rightarrow x = \pm \sqrt{2}$$

($\Theta x > y$) $\therefore x = \sqrt{2}, y = 1$ Ans.
(ii) $\log_{2} xy \cdot \log_{2} \frac{x}{y} = -3$

$$\Rightarrow (\log_{2} x + \log_{2} y)(\log_{2} x - \log_{2} y) = 3$$

$$\Rightarrow \log_{2}^{2} x - \log_{2}^{2} y = -3 \qquad \dots(1)$$

$$\log_{2}^{2} x + \log_{2}^{2} y = 5 \qquad \dots(2)$$

(1) + (2) \Rightarrow

$$2\log_{2}^{2} x = 1, \qquad \Rightarrow \log_{2} x = \pm 1$$

$$\Rightarrow x = 2, \frac{1}{2}$$

$$\Rightarrow y = 4, \frac{1}{4}$$

Part-B Passage based objective questions

Passage-1 (Q.18 to Q.20)

In comparison of two numbers, logarithm of smaller number is smaller, if base of the logarithm is greater than one. Logarithm of smaller number is larger, if base of logarithm is in between zero and one. For example $\log_2 4$ is smaller than $\log_2 8$ and $\log_{1/2} 4$ is larger than $\log_{1/2} 8$.

On the basis of the above information, answer the following questions:

Q.18	Identify the correct order:		
	(A) $\log_2 6 < \log_3 8 < \log_3 6 < \log_4 6$		
	(B) $\log_2 6 > \log_3 8 > \log_3 6 > \log_4 6$		
	(C) $\log_3 8 > \log_2 6 > \log_3 6 > \log_4 6$		
	(D) $\log_3 8 > \log_4 6 > \log_3 6 > \log_2 6$		
Sol. [B] $\log_2 6 = \frac{\log 6}{\log 2}$; $\log_3 6 = \frac{\log 6}{\log 3}$; $\log_4 6 = \frac{\log 6}{\log 4}$			
	$\log 2 < \log 3 < \log 4$		
	Hence, $\log_2 6 > \log_3 6 > \log_4 6$		
	also $\log_3 8 > \log_3 6$		
	also $\log_2 6 > 2$ and $\log_3 8 < 2$		
	so $\log_2 6 > \log_3 8$		
Q.19	$\log_{1/20} 40$ is		
	(A) greater than one		
	(B) smaller than one		
	(C) greater than zero and smaller than one		
	(D) None of these		
Sol.[B]	$\log_{1/20} 40 = -\log_{20} 40 < 0$		
Q.20	$\log_{1/4} (x - 1) < \log_{1/4}(3 - x)$ is satisfied when		
	(A) x is greater than one		
	(B) x is greater than two and smaller than 3		
	(C) x is smaller than three		

- (D) insufficient information
- Sol.[B] $x-1 > 0 \Rightarrow x > 1$ $3-x > 0 \Rightarrow x < 3$ $x-1 > 3-x \Rightarrow 2x > 4 \Rightarrow x > 2$ Hence, $x \in (2, 3)$

Passage-2 (Q.21 to Q.23)

Let
$$f(x) = \log_{\left(\frac{25-x^2}{16}\right)} \left(\frac{24-2x-x^2}{14}\right)$$

On the basis of above information, answer the following:

Q.21 The values of x for which the

$$\sqrt{f(x)} \times \log_{\sec^2(8.5)} \frac{25 - x^2}{16} > 0$$
(A) (-3, 3)
(B) (-1 - $\sqrt{11}$, 3)
(C) (-3, -1 + $\sqrt{11}$)
(D) (-5 - $\sqrt{11}$, -1 + $\sqrt{11}$)

Sol.[C]
$$\sqrt{\log_{\left(\frac{25-x^2}{16}\right)}\left(\frac{24-2x-x^2}{14}\right)}$$

 $\times \log_{\sec^2(8.5)}\left(\frac{25-x^2}{16}\right) > 0$
 $\Rightarrow \log_{\sec^2(8.5)}\left(\frac{25-x^2}{16}\right) > 0$
 $\Rightarrow \sec^2 8.5 > 1$
hence $\frac{25-x^2}{16} > 1$
 $x^2 < 9 \Rightarrow -3 < x < 3$
also $\log_{\left(\frac{25-x^2}{16}\right)}\left(\frac{24-2x-x^2}{14}\right) > 0$
 $\frac{24-2x-x^2}{14} > 1$
 $x^2 + 2x - 10 < 0$
 $x \in (-1 - \sqrt{11}, -1 + \sqrt{11})$
 $-3 \qquad 3$

Q.22 If $\left(\frac{25-x^2}{16}\right) \in (0, 1)$ then values of x for which f(x) > 1 will be (A) (3, 4) (B) (-5, -3) (C) (3, 5) (D) (-6, -3) \cup (3, 4) Sol. [A] $\log_{\frac{25-x^2}{16}} \frac{(24-2x-x^2)}{14} > 1$ $0 < \frac{25-x^2}{16} < 1$ $\frac{24-2x-x^2}{14} < \frac{25-x^2}{16}$ $192 - 16x - 8x^2 < 175 - 7x^2$ $x^2 + 16x - 17 > 0$ $0 < \frac{25-x^2}{16} < 1$ x > 1, x < -17(1)

$$-1 < \frac{x^2 - 25}{16} < 0 \qquad -16 < x^2 - 25 < 0$$

$$9 < x^2 < 25$$

$$\frac{24 - 2x - x^2}{14} > 0 \qquad x \in (-5, -3) \cup (3, 5)$$
...(2)
$$x^2 + 2x - 24 < 0$$

$$(x + 6) (x - 4) < 0$$

$$-6 < x < 4 \qquad(3)$$
Solving (1), (2) & (3); \qquad x \in (3, 4)

Q.23	If $\left(\frac{25-x^2}{16}\right) > 1$ then values of x for which	
	f(x) > 1 will be-	
	(A) (-3, 0)	(B) (-3, 1)
	(C) (-3, 2)	(D) (-3, 3)
Sol.[B]	$\frac{25 - x^2}{16} > 1 \Longrightarrow -3 < x < 1$	< 3
	$\frac{24 - 2x - x^2}{14} > \frac{25 - x^2}{16}$	$\Rightarrow x^2 + 16x - 17 < 0$
	-17 < x < 1	
	solving, x : (-3, 1)	

Passage-3 (Q.24 to Q.26)

Given that N = $7^{\log_{49}900}$, A = $2^{\log_2 4} + 3^{\log_2 4} + 4^{\log_2 2} - 4^{\log_2 3}$ D = $(\log_5 49)$ $(\log_7 125)$ Then answer the following questions . (using the values of N, A, D)

Q.24 If $\log_A D = a$, then the value of $\log_6 12$ is

(in terms of a)

(A)
$$\frac{1+3a}{3a}$$
 (B) $\frac{1+2a}{3a}$
(C) $\frac{1+2a}{2a}$ (D) $\frac{1+3a}{2a}$

Sol.[A] N =
$$7^{\log_{49} 900} = 7^{\frac{1}{2}\log_7 900} = 30$$

A = $2^{\log_2 4} + 3^{\log_2 4} + 4^{\log_2 2} - 4^{\log_2 3}$
= 4 + $3^{\log_2 4} + 4 - 3^{\log_2 4} = 8$
D = $(\log_5 49) (\log_7 125) = \frac{2\log 7}{\log 5} \times \frac{3\log 5}{\log 7} = 6$

$$\log_{A}D = a \Rightarrow \log_{8}6 = a \Rightarrow \frac{\log 6}{\log 8} = a$$
$$\frac{\log 2 + \log 3}{3\log 2} = a \Rightarrow \frac{\log 3}{\log 2} = 3a - 1$$
$$\log_{6}12 = \frac{\log 12}{\log 6} = \frac{2\log 2 + \log 3}{\log 2 + \log 3} = \frac{2 + \frac{\log 3}{\log 2}}{1 + \frac{\log 3}{\log 2}}$$
$$\frac{2 + 3a - 1}{1 + 3a - 1} = \frac{3a + 1}{3a}$$

Q.25 If the value obtained in the previous question is

 $\frac{1 + ma}{na}$ then choose the correct option. (A) $\log_N m < \log_m N = \log_n N$ $(B) \ \log_N m < \log_n N < \log_m N$ (C) $\log_{m} N < \log_{N} m < \log_{n} N$ (D) $\log_{m} N < \log_{N} m = \log_{n} N$ **Sol.**[A] m = n = 3 $\log_{N}m = \log_{30}3$ $\log_{\rm m} N = \log_3 30 = \log_{\rm n} N$ Q.26 The value of $\log_{\left(A-\frac{N}{10}\right)} | N+A+D+m+n | -\log_5 2 \text{ is } -$ (A) 1 (B) 2 (D) 4 (C) 3 **Sol.[B]** $\log_{\left(A-\frac{N}{10}\right)} | N+A+D+m+n| - \log_5 2$ $\log_5(50) - \log_5 2 = \log_5 \left(\frac{50}{2}\right) = 2$

➤ Old IIT-JEE questions

- **Q.1** If $\log_{0.3} (x - 1) < \log_{0.09} (x - 1)$, then x lies in the [IIT 1985] interval- $(A)(2,\infty)$ (B)(1,2)(C)(-2,-1)(D) None of these [A]
- Sol.

 $\log_{0.3}(x-1) < \log_{(0.3)^2}(x-1)$

for log to be defined

- $x 1 > 0 \Longrightarrow x > 1$
- $\Rightarrow \log_{0.3}(x-1) < \frac{1}{2} \log_{0.3}(x-1)$ $\Rightarrow \log_{0.3}(x-1) < \log_{0.3}(x-1)^{1/2}$ \Rightarrow (x - 1) > (x - 1)^{1/2} $\Rightarrow (x-1)^2 > (x-1)$ $\Rightarrow (x-1)^2 - (x-1) > 0$ \Rightarrow (x - 1) (x - 1 - 1) > 0 \Rightarrow (x - 1) (x - 2) > 0 $\Rightarrow x < 1$ or x > 2 $\Rightarrow \therefore x > 2$ $\Rightarrow x \in (2, \infty)$
- **Q.2** Solve for x the following equation: $\log_{(2x+3)}(6x^2 + 23x + 21)$ $=4 - \log_{(3x+7)}(4x^2 + 12x + 9)$

[IIT 1987]

Sol. The given equation is $\log_{(2x+3)}(6x^2 + 23x + 21) = 4 - \log_{3x+7}$ $(4x^2 + 12x + 9)$ $\Rightarrow \log_{(2x+3)} (6x^{2} + 23x + 21) + \log_{(3x+7)} (4x^{2} + 12x + 9) = 4$ $\Rightarrow \log_{(2x+3)}(2x+3)(3x+7) + \log_{(3x+7)}(2x+3)^2 = 4$ $\Rightarrow 1 + \log_{(2x+3)} (3x + 7) + 2 \log_{(3x+7)} (2x + 3) = 4$ [Using log $ab = \log a + \log b$ and $\log a^n = n \log a$] $\Rightarrow \log_{(2x+3)} (3x+7) + \frac{2}{\log_{(2x+3)} (3x+7)} = 3$ [Using $\log_{a}^{b} = \frac{1}{\log_{a}^{a}}$] Let $log_{(2x+3)}(3x + 7) = y$..(1) \Rightarrow y + $\frac{2}{y} = 3$ \Rightarrow y² - 3y + 2 = 0 $\Rightarrow (y-1) (y-2) = 0 \Rightarrow y = 1, 2$ Substituting the values of y in (1), we get

 $\log_{(2x+3)}(3x+7) = 1$ and $\log_{(2x+3)}(3x+7) = 2$

$\Rightarrow 3x + 7 = 2x + 3$	and	$3x + 7 = (2x + 3)^2$
$\Rightarrow x = -4$	and	$4x^2 + 9x + 2 = 0$
$\Rightarrow x = -4$	and	(x+2)(4x+1)=0
$\Rightarrow x = -4$	and	$x = -2, x = -\frac{1}{4}$

As $\log_a x$ is defined for x > 0 and a > 0 ($a \neq 1$), the possible value of x should satisfy all of the following inequalities :

2x + 3 > 0and 3x + 7 > 0 \Rightarrow $3x + 7 \neq 1$ Also $2x + 3 \neq 1$ and Out of x = -4, x = -2 & $x = -\frac{1}{4}$ only $x = -\frac{1}{4}$ satisfies the above inequalities. So only solution is $x = -\frac{1}{4}$.

Q.3 Solve the following equations for x and y: $\log_{100} |\mathbf{x} + \mathbf{y}| = 1/2, \log_{10} \mathbf{y} - \log_{10} |\mathbf{x}| = \log_{100} 4$ [REE 1996]

Sol.
$$\log_{100} |\mathbf{x} + \mathbf{y}| = \frac{1}{2}$$
$$\Rightarrow |\mathbf{x} + \mathbf{y}| = 100^{1/2} = 10$$
and
$$\log_{10} \mathbf{y} - \log_{10} |\mathbf{x}| = \log_{100} 4$$
$$\Rightarrow \log_{10} \frac{\mathbf{y}}{|\mathbf{x}|} = \frac{1}{2} \log_{10} 4 = \log_{10} 2$$
$$\Rightarrow \frac{\mathbf{y}}{|\mathbf{x}|} = 2 \Rightarrow \mathbf{y} = 2 |\mathbf{x}|$$
$$\therefore |\mathbf{x} + 2|\mathbf{x}|| = 10 (\mathbf{x} > 0)$$
$$\Rightarrow 3\mathbf{x} = 10 \Rightarrow \mathbf{x} = 10/3$$
$$\mathbf{x} < 0 |\mathbf{x} - 2\mathbf{x}| = 10$$
$$\Rightarrow |-\mathbf{x}| = 10$$
$$\Rightarrow \mathbf{x} = -10$$
$$\Rightarrow \mathbf{x} = \frac{10}{3}, \mathbf{y} = \frac{20}{3}$$
& & & & \mathbf{x} = -10, \mathbf{y} = 20 Ans.

Find the set of all solution of the equation Q.4 $2^{|y|} - |2^{y-1} - 1| = 2^{y-1} + 1$ [IIT 1997] Sol. Case I : v < 0 $2^{-y} - (-(2^{y-1} - 1)) = 2^{y-1} + 1$ $\Rightarrow 2^{-y} + 2^{y-1} - 1 = 2^{y-1} + 1$ $\therefore 2^{-y} = 2 \Longrightarrow y = -1$ \Rightarrow y = -1 which is true.

Case II: $0 \le y < 1, 2^{y} - (-(2^{y-1} - 1)) = 2^{y-1} + 1$ $2^{y} = 2 \implies y = 1$ which is not true. $\Theta \ 0 \le y < 1$. Case III $y \ge 1$ $2^{y} - (2^{y-1} - 1) = 2^{y-1} + 1$: $2^{y} = 2 \cdot 2^{y-1} = 2^{y}$ for all $y \ge 1$ $\therefore y \in \{-1\} \cup [1, \infty)$ Q.5 Find the no. of solution of $\log_4 (x - 1) = \log_2 (x - 3)$ **[IIT-2001]** (A) 3 **(B)** 1 (C) 2 (D) 0 Sol. **[B]** $\log_4 (x - 1) = \log_2 (x - 3)$ $\Rightarrow \log_{2^2}(x-1) = \log_2(x-3)$ $\Rightarrow \frac{1}{2}\log_2(x-1) = \log_2(x-3)$ $\Rightarrow \log_2 \sqrt{(x-1)} = \log_2 (x-3)$ For log defined x - 1 > 0 & x - 3 > 0 \Rightarrow x > 1 & x > 3 $\Rightarrow x > 3$ $\sqrt{x-1} = x-3$ \Rightarrow x - 1 = (x - 3)² $\Rightarrow x^2 - 7x + 10 = 0$ \Rightarrow (x - 2) (x - 5) 0 \Rightarrow x = 2 & x = 5 $\Theta x > 3$ $\therefore x = 2$ (Rejected) \therefore x = 5 is the reqd. solu. \therefore Number of solution is one. The set of all real numbers x for which Q.6 $x^2 - |x + 2| + x > 0$, is [IITSc.-2002] (A) $(-\infty, -2) \cup (2, \infty)$ (B) $(-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$ $(\mathbf{C}) (-\infty, -1) \cup (1, \infty)$ (D) $(\sqrt{2}, \infty)$ Sol. [B] $x^2 - |x + 2| + x > 0$ if x + 2 > 0 $x^{2} - (x + 2) + x > 0$ $\Longrightarrow x^2 - x - 2 + x > 0$ $\Rightarrow x^2 - 2 > 0$ $\Rightarrow x^2 > 2$ $\Rightarrow x > \pm \sqrt{2}$

If x + 2 < 0 $x^{2} + x + 2 + x > 0$ \Rightarrow x² + 2 x + 2 > 0 \Rightarrow D < 0, no real roots $\therefore x \in (-\infty, -\sqrt{2}) \cup (\sqrt{2}, \infty)$

Q.7 Let (x_0, y_0) be the solution of the following equations

$$(2x)^{\lambda n 2} = (3y)^{\lambda n 3}$$

$$3^{\lambda n x} = 2^{\lambda n y}$$
Then x_0 is [IIT 2011]
(A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 6
Sol.[C] $(2x)^{\lambda n 2} = (3y)^{\lambda n 3}$
 $\lambda n 2 (\lambda n 2 + \lambda n x) = \lambda n 3 (\lambda n 3 + \lambda n y)$
 $\lambda n 2 \cdot \lambda n x - \lambda n 3 \lambda n y = (\lambda n 3)^2 - (\lambda n 2)^2$
.....(1)
 $3^{\lambda n x} = 2^{\lambda n y}$
 $\lambda n x \cdot \lambda n 3 = \lambda n y \cdot \lambda n 2$
 $\lambda n y = \lambda n x \frac{\lambda n 3}{\lambda n 2}$ (2)
Solving (1) & (2)
 $\lambda n x = -\lambda n 2 \Rightarrow x = \frac{1}{2}$
Q.8 The value of
 $6 + \log_{\frac{3}{2}} \left(\frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \sqrt{4 - \frac{1}{3\sqrt{2}} \dots}} \right)$ is
[IIT 2012]

Q.8

Sol. Let
$$x = \sqrt{4 - \frac{1}{3\sqrt{2}}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \sqrt{4 - \frac{1}{3\sqrt{2}}} \dots$$

 $x^2 = 4 - \frac{1}{3\sqrt{2}} x$
 $3\sqrt{2} x^2 + x - 12 \sqrt{2} = 0$
 $x = \frac{-1 + \sqrt{1 + 4.3\sqrt{2}.12\sqrt{2}}}{6\sqrt{2}}$
 $x = \frac{-1 + 17}{6\sqrt{2}} = \frac{8}{3\sqrt{2}}$
 $6 + \log_{3/2} \left(\frac{4}{9}\right) = 6 + \log_{3/2} \left(\frac{3}{2}\right)^{-2} = 6 - 2 = 4$

EXERCISE # 5

Solve $\log_2 (x - 1) - \log_{\sqrt{2}} \sqrt{x + 3}$ Q.1 $= \log_8 (x-a)^3 + \log_{1/2} (x-3)$ $\log_{2} (x - 1) - \log_{2^{1/2}} (x + 3)^{1/2} = \log_{2^{3}} (x - a)^{3} +$ Sol. $\log_{2^{-1}} (x-3)$ $\Rightarrow \log_2(x-1) - \log_2(x+3) = \log_2(x-a) - \frac{1}{2} \log_2(x-a) + \frac{1}{2} \log_2(x-a) - \frac{1}{2} \log_2(x-a) + \frac{1}{2} \log_2(x \log_2(x-3)$ $\Rightarrow \log_2 \frac{x-1}{x+2} = \log_2 \frac{x-a}{x-2}$ $\Rightarrow \frac{x-1}{x+3} = \frac{x-a}{x-3}$ $\Rightarrow x^2 - 4x + 3 = x^2 + (3 - a)x - 3a$ $\Rightarrow \{(3-a)+4\} = 3(a+1)$ $\Rightarrow x = \frac{3(a+1)}{3-a+4} = \frac{3(a+1)}{7-a}$ \Rightarrow x = $\frac{3a+3}{7-a}$ for a \in (3, 7) Ans. and $x = \phi$ for $a \notin (3, 7)$ Ans. Q.2 Solve for x, $\log_{3/4} \log_8 (x^2 + 7) + \log_{1/2} \log_{1/4} (x^2 + 7)^{-1} = -2$ $= \log_{3/4} \left[\left(\frac{1}{3} \log_2 \left(x^2 + 7 \right) \right] + \right]$ Sol. $\log_{1/2} \left[\frac{1}{2}\log_2(x^2+7)\right] = -2$ $(\Theta \log_{b^p} a^n = \frac{n}{p} \log_b a)$ $\log_{2^{-2}} (x^2 + 7)^{-1} = \frac{-1}{2} \log_2 (x^2 + 7)$ Let $\log_2(x^2 + 7) = t$ $\Rightarrow x^2 + 7 = 2^t$ $= \log_{3/4} \left(\frac{1}{2} t \right) + \log_{1/2} \left(\frac{1}{2} t \right) = -2$ $= \frac{\log\left(\frac{1}{3}t\right)}{\log\frac{3}{4}} + \log_{1/2}\frac{1}{2} + \log_{1/2}t = -2$ $= \frac{\log t - \log 3}{\log 3 - \log 4} + \log_{1/2} \frac{1}{2} + \log_{1/2} t = -2$ $= \frac{\log t}{\log 3 - 2\log 2} - \frac{\log 3}{\log 3 - 2\log 2} + 1 - \frac{\log t}{\log 2} = -2$ $\therefore \log t \frac{\log 2 - \log 3 + 2\log 2}{(\log 3 - 2\log 2)\log 2}$ $= -3 + \frac{\log 3}{\log 3 - 2\log 2}$

 $\frac{\log t(3\log 2 - \log 3)}{(\log 3 - 2\log 2)\log 2} = \frac{6\log 2 - 2\log 3}{\log 3 - 2\log 2}$ $\therefore \log t = 2 \log 2 = \log 2^2 = \log 4$ $\therefore t = 4, x^2 + 7 = 2^t = 2^4 = 16 \Longrightarrow x^2 = 9$ \Rightarrow x = ± 3 Ans. Q.3 For $a \le 0$ determine all real roots of the equation $x^2 - 2a |x - a| - 3a^2 = 0$. $x^2 - 2a |x - a| - 3a^2 = 0$ Sol. Case I: When $x > a \Rightarrow (x - a) > 0$ $x^{2} - 2a(x - a) - 3a^{2} = 0 \Rightarrow x^{2} - 2ax - a^{2} = 0$ \therefore x = a (1 ± $\sqrt{2}$) $\therefore \mathbf{x} - \mathbf{a} = \pm \mathbf{a} \sqrt{2}$ Θ a \leq 0 given, $\therefore x-a=-a \sqrt{2} = +ve$ Since $x = a(1 - \sqrt{2})$ satisfies the condition Case II : When $x < a \therefore$ i.e. x - a < 0 $x^{2} + 2a(x - a) - 3a^{2} = 0 \Rightarrow x^{2} + 2ax - 5a^{2} = 0$ $\therefore \mathbf{x} = \mathbf{a} \left(-1 \pm \sqrt{6} \right)$ \therefore x - a = a (-2 ± $\sqrt{6}$) = -ve Θ a ≤ 0 , \therefore x - a = (-2 + $\sqrt{6}$)

: roots are x = a (1 -
$$\sqrt{2}$$
), a (-1 + $\sqrt{6}$) Ans.

Q.4 Solve the following inequalities
(i)
$$\frac{x-1}{\log_3(9-3^x)-3} \le 1$$
.
(ii) $\log_{1/6} (x^2 - 3x + 2) + 1 < 0$.
(iii) $\log_{1/6} (x^2 - 3x + 2) + 1 < 0$.
(iii) $\log_{\frac{3x}{x^2+1}} (x^2 - 2.5x + 1) \ge 0$
Sol. (i) $\frac{x-1}{\log_3(9-3^x)-3} \le 1$.
 $\Rightarrow \frac{x-1}{\log_3(9-3^x)-3} \le 1$.
 $\Rightarrow \frac{x-1}{\log_3(9-3^x)-3} - 1 \le 0$
 $\Rightarrow \frac{x-1-\log_3(9-3^x)+3}{\log_3(9-3^x)-3} \le 0$
(ii) $\log_{1/6} (x^2 - 3x + 2) + 1 < 0$.
 $\Rightarrow \log_{1/6} (x^2 - 3x + 2) < -1$
 $\Rightarrow x^2 - 3x + 2 > 6$
 $\Rightarrow x^2 - 3x - 4 > 0$
 $\Rightarrow (x-4) (x+1) > 0$

$$\frac{-\infty}{1-\frac{1}{4}} + \frac{+\infty}{1-\frac{1}{4}}$$
(A) four solutions if $a = 1$
(B) two solutions if $a = 1/2$
(C) eight solutions if $a = 1/2$
(B) two solutions if $a = 1/2$
(C) eight solutions if $a = 1/2$
(C) eigh

The system of equations |x| + |y| = 1, $x^2 + y^2 = a^2$ will have-

Q.8

ANSWER KEY

EXERCISE # 1

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	С	С	Α	Α	В	D	Α	В	С	Α	В	В	Α	В	В	C	Α	С	Α
Qus.	21																			
Ans.	А																			

22. (i) $\log_2 3$ (ii) $\log_7 11$ (iii) $\log_4 5$ (iv) $\log_3 11$ (v) $\log_{1/2} 1/3$ (vi) $\log_3 5$ **23.** (C) **24.** (B)

EXERCISE # 2

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Ans.	В	В	С	D	D	A,B,C,D	C, D	A,B	A,B,C	A,C	A,C,D	A,B,C	B,C,D	В	А	D	В	Α	В

20. $A \rightarrow P$; $B \rightarrow R$, S; $C \rightarrow Q$; $D \rightarrow P$

22. (i) 1 (ii) 1

21. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$ **23.** x = 2, 4, 8

24. 1

EXERCISE # 3

1.	(i) 2 (ii) 1 (iii) 7 +	$-\frac{1}{196}$	2.	. (i) 6 (ii) – 1/4 (iii) 0 (iv) 9
3.	25/2		4.	(i) 16 or -4 (ii) 5
5.	x = 1		6.	x = 100
7.	$x = \sqrt{2}$ or $\sqrt{6}$		8	x = 10
9.	(i) (0.1, 1) ∪ (1, 10)	(ii) (− 1, ∞)	1	0. $(-1, 1+2\sqrt{2})$
11.	$0 < x < \sqrt[10]{10}$	12. (2, 5) 13. (1	000, ∞) 1 4	4. (i) 140 (ii) 12 (iii) 47
15.	(i) (−∞, − 4]	(ii) (-∞, ∞) (iii) -6, 2	1	6. −2, [0, ∞)
17.	(i) $x = \sqrt{2}$, $y = 1$ (ii)	x = 2, y = 4; x = 1/2, y = 1/4	1	8. (B)
19.	(B)	20. (B)	2	1. (C)
22.	(A)	23. (B)	24	4. (A)
25.	(A)	26. (B)		

			EXEI	RCISE # 4		
1.	(A)	2. $x = -\frac{1}{4}$	3. (x, y) =	$\left(\frac{10}{3}, \frac{20}{3}\right)$, (-10, 20)	4. $y \in \{-1\} \cup [1, \infty)$	
5.	(B)	6. (B)	7. (C)	8. 4		
_			EXEI	RCISE # 5		
1.		$\left(\frac{3a+3}{7-a}\right)$ for $a \in (3, 7)$, φ for	or a ∉ (3, 7)	2. $x = \pm 3$		
3.		$a(1-\sqrt{2}), a(-1+\sqrt{6})$				
4.		(i) [log ₃ 0.9, 2) (ii) (−∞, −1	$) \cup (4, +\infty)$ (iii)	$0, \frac{3-\sqrt{5}}{2} \right) \cup \left[\frac{5}{2}, \frac{3+\sqrt{5}}{2}\right)$		
5.		(i) $x = 2, 4, 1/3$ (ii) $\left(-\infty, -\infty\right)$	$-\frac{2}{3}$ \cup $\left[\frac{1}{2},2\right]$	6. (B, D)	7. (A, B, D)	
8.		(A, C)				