EXERCISE-I

Definition of Function

- Which of the following relation is a function?
 (A) {(1,4), (2,6), (1,5), (3,9)}
 (B) {(3,3), (2,1), (1,2), (2,3)}
 (C) {(1,2), (2,2), (3,2), (4,2)}
 - (D) $\{(3,1), (3,2), (3,3), (3,4)\}$
- 2. If $x, y \in R$, then which of the following rules is not a function-

(A)
$$y = 9 - x^2$$

(B) $y = 2x^2$
(C) $y = \sqrt{x} - |x|$
(D) $y = x^2 + 1$

Domain, Co-domain & Range of Function

3. If $f(x) = \frac{x^2 - 1}{x^2 + 1}$, for every real numbers. then

the minimum value of f

- (A) Does not exist because f is bounded
- (B) Is not attained even through f is bounded
- (C) Is equal to +1
- (D) Is equal to -1
- 4. The domain of the function f(x)=sin⁻¹[log₂(x/2)] is
 (A) [1, 4]
 (B) [-4, 1]
 (C) [-1, 4]
 (D) None of these
- 5. The domain of $f(x) = \frac{\log_2(x+3)}{x^2+3x+2}$ is (A) $R - \{-1, -2\}$ (B) $(-2, +\infty)$ (C) $R - \{-1, -2, -3\}$ (D) $(-3, +\infty) - \{-1, -2\}$
- 6. The function $f(x) = \frac{\sec^{-1} x}{\sqrt{x [x]}}$, where [.] denotes

the greatest integer less than or equal to x is defined for all x belonging to

- (A) R (B) $R \{(-1, 1) \cup (n | n \in Z)\}$
- (C) $R^+ (0, 1)$ (D) $R^+ \{n \mid n \in N\}$
- 7. If the domain of function $f(x) = x^2 6x + 7$ is $(-\infty, \infty)$, then the range of function is
 - (A) $(-\infty, \infty)$ (B) $[-2, \infty)$ (C) (-2, 3) (D) $(-\infty, -2)$

- 8. The domain of the function $f(x) = \sqrt{\log \frac{1}{|\sin x|}}$ is
 - (A) $R \{2n\pi, n \in I\}$ (B) $R \{n\pi, n \in I\}$ (C) $R - \{-\pi, \pi\}$ (D) $(-\infty, \infty)$
- 9. The domain of the function $f(x) = \log(\sqrt{x-4} + \sqrt{6-x})$ is (A) $[4, \infty)$ (B) $(-\infty, 6]$
 - (C) [4, 6] (D) None of these

10. Domain of the function $f(x) = \left[\log_{10} \left(\frac{5x - x^2}{4} \right) \right]^{\frac{1}{2}}$ is

- (A) $-\infty < x < \infty$ (B) $1 \le x \le 4$ (C) $4 \le x \le 16$ (D) $-1 \le x \le 1$
- 11. The domain of the derivative of the function

$$f(x) = \begin{cases} \tan^{-1} x , |x| \le 1 \\ \frac{1}{2} (|x| - 1), |x| > 1 \end{cases}$$

(A) $R - \{0\}$ (B) $R - \{1\}$
(C) $R - \{-1\}$ (D) $R - \{-1, 1\}$

- 12. The domain of the function $f(x) = \log_{3+x}(x^2 1)$ is (A) $(-3, -1) \cup (1, \infty)$ (B) $[-3, -1) \cup [1, \infty)$ (C) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$ (D) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$
- 13. If 'n' is an integer, the domain of the function $\sqrt{\sin 2x}$ is

(A)
$$\left[n\pi - \frac{\pi}{2}, n\pi\right]$$
 (B) $\left[n\pi, n\pi + \frac{\pi}{2}\right]$
(C) $\left[(2n-1)\pi, 2n\pi\right]$ (D) $\left[2n\pi, (2n+1)\pi\right]$

14. Domain of definition of the function $f(x) = \frac{3}{4 - x^2} + \log_{10}(x^3 - x), \text{ is}$ (A) (1, 2) (B) (-1, 0) \cup (1, 2) (C) (1, 2) \cup (2, ∞) (D) (-1, 0) \cup (1, 2) \cup (2, ∞) 15. Domain of the function $f(x) = \sqrt{2 - 2x - x^2}$ is (A) $-\sqrt{3} \le x \le \sqrt{3}$ (B) $-1-\sqrt{3} \le x \le -1+\sqrt{3}$ (D) $-2+\sqrt{3} \le x \le -2-\sqrt{3}$ (C) $-2 \le x \le 2$ 16. Domain of the function $f(x) = \frac{x-3}{(x-1)\sqrt{x^2-4}}$ is (A) (1, 2) (B) $(-\infty, -2) \cup (2, \infty)$ (C) $(-\infty, -2) \cup (1, \infty)$ (D) $(-\infty, \infty) - \{1, \pm 2\}$ 17. Domain of the function $\sqrt{\log\{(5x-x^2)/6\}}$ is (A)(2,3)(B) [2, 3] (C)[1,2](D) [1, 3] 18. Domain of the function $\sqrt{2-x} - \frac{1}{\sqrt{9-x^2}}$ is (A)(-3,1)(B)[-3,1](D) [-3, 1) (C)(-3,2]**19.** The domain of the function $f(x) = \exp(\sqrt{5x - 3 - 2x^2})$ is (A) $\left| 1, -\frac{3}{2} \right|$ (B) $\left|\frac{3}{2},\infty\right|$ (D) $\left[1, \frac{3}{2}\right]$ (C) [−∞, 1] 20. The domain of the function $f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$ is (A) [1, 2) (B)[2,3)(C)[1,2](D) [2, 3] **21.** The range of $f(x) = \sec\left(\frac{\pi}{4}\cos^2 x\right), -\infty < x < \infty$ is (A) $[1, \sqrt{2}]$ (B) [1,∞) (C) $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$ (D) $(-\infty, -1] \cup [1, \infty)$ 22. Range of the function $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$; $x \in R$ is (A) $(1, \infty)$ (B) (1, 11/7](C) (1, 7/3](D) (1, 7/5]23. If $f(x) = a\cos(bx+c) + d$, then range of f(x) is

(A) [d+a, d+2a] (B) [a-d, a+d](C) [d+a, a-d] (D) [d-a, d+a]

24.	Range of $f(x) = [x] - x$	is
	(A) [0, 1]	(B) (-1, 0]
	(C) <i>R</i>	(D) (-1, 1)
25.	The range of $f(x) = \cos(x)$	(x/3) is
	(A) $(-1/3, 1/3)$	(B) [-1,1]
	(C) $(1/3, -1/3)$	(D) (-3, 3)
26.	The range of the function	$f(x) = \frac{x+2}{ x+2 }$ is
	(A) {0, 1}	(B) {-1, 1}
	(C) <i>R</i>	(D) $R - \{-2\}$
27.	The range of $f(x) = \cos x$	$x - \sin x$ is
	(A) (-1, 1)	(B) [-1, 1)
	(C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	(D) $[-\sqrt{2}, \sqrt{2}]$
28.	If $f: R \to R$, then the	range of the function
	$f(x) = \frac{x^2}{x^2 + 1}$ is	
	(A) <i>R</i> ⁻	(B) R^+
	(C) <i>R</i>	(D) $R \times R$
29.	The interval for which	$\sin^{-1}\sqrt{x} + \cos^{-1}\sqrt{x} = \frac{\pi}{2}$
	holds	
	(A) $[0,\infty)$	(B) [0, 3]
	(C) [0, 1]	(D) [0, 2]
30.	Function $\sin^{-1}\sqrt{x}$ is def	ined in the interval
	(A)(-1,1)	(B) [0, 1]
21	(C) [-1, 0]	(D) $(-1, 2)$
31.	The function $f: R \rightarrow R$	R is defined by
	$f(x) = \cos^2 x + \sin^4 x$ for $x \in R$, then $R_f =$	
	$(A)\left(\frac{3}{4},1\right]$	(B) $\left\lfloor \frac{3}{4}, 1 \right\rfloor$
	$(C)\left[\frac{3}{4},1\right]$	$(D)\left(\frac{3}{4},1\right)$
32.	If x is real, then value	ue of the expression
	$\frac{x^2+14x+9}{100}$ lies between	n
	$\overline{x^2 + 2x + 3}$ hes between	11

(B) 5 and -4

(A) 5 and 4

(C) - 5 and 4

33. For $\theta > \frac{\pi}{3}$, the value of $f(\theta) = \sec^2 \theta + \cos^2 \theta$ always lies in the interval (A) (0, 2) (B) [0, 1] (C) (1, 2) (D) [2, ∞)

Types of Functions

34. The graph of the function y = f(x) is symmetrical about the line x = 2, then (A) f(x) = -f(-x) (B) f(2+x) = f(2-x)(C) f(x) = f(-x) (D) f(x+2) = f(x-2)35. $f(x, y) = \frac{1}{x+y}$ is a homogeneous function of

degree

(A) 1 (B) -1 (C) 2 (D) -2

Even / Odd Functions

- **36.** The function $f(x) = \frac{\sin^4 x + \cos^4 x}{x + \tan x}$ is -
 - (A) odd
 - (B) Even
 - (C) neither even nor odd
 - (D) odd and periodic
- **37.** A function is called even function if its graph is symmetrical w.r.t.-
 - (A) origin (B) x = 0(C) y = 0(D) line y = x
- **38.** The even function is-

(A) $f(x) = x^2 (x^2 + 1)$	(B) $f(x) = \sin^3 x + 2$
(C) $f(x) = x (x + 1)$	(D) $f(x) = \tan x + c$

39. Which of the following is an even function ?

(A) x	$\frac{a^{x}-1}{a^{x}+1}$	(B) tan x
(C)	$\frac{a^{x}-a^{-x}}{2}$	(D) $\frac{a^{x}+1}{a^{x}-1}$

40. In the following, odd function is -

(A) $\cos x^2$ (B) $(e^x + 1)/(e^x - 1)$ (C) $x^2 - |x|$ (D) None of these

- 41. The function $f(x) = x^2 |x|$ is -(A) an odd function (B) a rational function (C) an even function
 - (D) None of these
- **42.** Which of the following function is even function

(A)
$$f(x) = \frac{a^x + 1}{a^x - 1}$$
 (B) $f(x) = x \left(\frac{a^x - 1}{a^x + 1}\right)$

(C)
$$f(x) = \frac{a^x - a^{-x}}{a^x + a^{-x}}$$
 (D) $f(x) = \sin x$

43. If
$$f(x) = \log \frac{1+x}{1-x}$$
, then $f(x)$ is

(A) Even function (B) $f(x_1)f(x_2) = f(x_1 + x_2)$

(C)
$$\frac{f(x_1)}{f(x_2)} = f(x_1 - x_2)$$
 (D) Odd function

- 44. The function $f(x) = \sin\left(\log(x + \sqrt{x^2 + 1})\right)$ is
 - (A) Even function
 - (B) Odd function
 - (C) Neither even nor odd
 - (D) Periodic function
- **45.** The function $f(x) = \log(x + \sqrt{x^2 + 1})$, is
 - (A) An even function
 - (B) An odd function
 - (C) A Periodic function
 - (D) Neither an even nor odd function

Periodic Function

46.	The period of $\sin^4 x + \cos^4 x$ is -	
	(A) π	(B) π/2
	(C) 2π	(D) None of these
47.	The period of function	cos 2x is -
	(A) π	(B*) π/2
	(C) 4π	(D) 2π

Functions

48. The period of function $\sin\left(\frac{\pi x}{2}\right) + \cos\left(\frac{\pi x}{2}\right)$ is-(A) 4 (B) 6 (C) 12 (D) 24 **49.** The period of the function $f(x) = \log \cos 2x + \tan 4x \text{ is } -$ (A) π/2 **(B)** π (D) 2π/5 (C) 2π **50.** The period of the function $f(x) = 2 \cos \frac{1}{3} (x-\pi)$ is -(A) 6π (B) 4π (C) 2π (D) π 51. In the following which function is notperiodic-(A) $\tan 4x$ (B) $\cos 2\pi x$ (C) $\cos x^2$ (D) $\cos^2 x$

Value of the Function

52.	If $f(x) = \log x$, then corre	ect statement is-
	(A) $f(x + y) = f(x) + f(y)$	
	(R) f(x + y) = f(x) + f(y) $ (R) f(x + y) = f(y) + f(y)$	
	(D) $f(x + y) = f(x) + f(y)$	
	(C) $I(Xy) - I(X) + I(y)$ (D) $G(x) - G(x) + G(y)$	
	$(D) f(xy) = f(x) \cdot f(y)$	
53.	If $f(x) = \frac{x}{x+1}$, then $= \frac{f}{f}$	$\frac{f(a / b)}{f(b / a)}$
	(A) ab	(B) a/b
	(C) b/a	(D) 1
54.	If $f(x) = \frac{b(x-a)}{(b-a)} + \frac{a(x-a)}{(a-a)}$	$\frac{(b)}{(b)}$, then $f(a+b) =$
	(A) f(a). f(b)	(B) $f(a) - f(b)$
	(C) $f(a) / f(b)$	(D) $f(a) + f(b)$
55.	If $f(x) = \frac{x(x-1)}{2}$, then	the value of $f(x + 2)$
	is-	
	(A) $f(x) + f(x + 1)$	(B) $\frac{(x+2)}{x}$ f(x+1)
	(C) $\frac{(x+1)}{2}$ f(x+1)	(D) $\frac{(x+2)}{2}$ f(x+1)

56.	If $f : N \rightarrow R^+$, $f(x) = -$	\sqrt{x} , then the value of
	$\frac{f(25)}{2}$ is -	
	f(9) + f(16)	
	(A) 0	(B) 1
	(C) 5/7	(D) 9/7
57.	If $f(x) = (ax - c)/(cx - a)$	= y, then f(y) equals-
	(A) x	(B) 1/x
	(C) 1	(D) 0
58.	If $f(x+ay, x-ay) = a$	xy, then $f(x, y)$ is
	equal to	
	(A) <i>xy</i>	(B) $x^2 - a^2 y^2$
	(C) $\frac{x^2 - y^2}{4}$	(D) $\frac{x^2 - y^2}{a^2}$
59.	If $f(x) = \cos[\pi^2]x + \sin[\pi^2]x + \sin[\pi^$	$[-\pi^2]x$, then
	(A) $f\left(\frac{\pi}{4}\right) = 2$	(B) $f(-\pi) = 2$
	(C) $f(\pi) = 1$	(D) $f\left(\frac{\pi}{2}\right) = -1$
60.	If $f(x) = \frac{1}{\sqrt{x + 2\sqrt{2x - 4x^2}}}$	$\frac{1}{4} + \frac{1}{\sqrt{x - 2\sqrt{2x - 4}}}$ for
	x > 2, then $f(11) =$	
	(A) 7/6	(B) 5/6
	(C) 6/7	(D) 5/7
61.	If $f(x) = \frac{x}{x-1} = \frac{1}{y}$, then	f(y) =
	$(\mathbf{A})x$	(B) $x + 1$
	(C) <i>x</i> -1	(D) 1- <i>x</i>
62.	If $y = f(x) = \frac{ax+b}{cx-a}$, the	en x is equal to
	(A) $1/f(x)$	(B) $1/f(y)$
	(C) $yf(x)$	(D) $f(y)$

Mapping

- **63.** Which of the four statements given below is different from others
 - (A) $f: A \rightarrow B$
 - (B) $f: x \to f(x)$
 - (C) f is a mapping of A into B
 - (D) f is a function of A into B
- 64. Let $f: N \to N$ defined by $f(x) = x^2 + x + 1$, $x \in N$, then f is
 - (A) One-one onto (B) Many one onto
 - (C) One-one but not onto (D) None of these
- 65. Let X and Y be subsets of R, the set of all real numbers. The function f: X → Y defined by f(x) = x² for x ∈ X is one-one but not onto if (Here R⁺ is the set of all positive real numbers)
 - (A) $X = Y = R^+$ (B) $X = R, Y = R^+$
 - (C) $X = R^+, Y = R$ (D) X = Y = R
- **66.** Set *A* has 3 elements and set *B* has 4 elements. The number of injection that can be defined from *A* to *B* is

(A) 144	(B) 12
(C) 24	(D) 64

67. Let $f: R \to R$ be a function defined by

$$f(x) = \frac{x-m}{x-n}$$
, where $m \neq n$. Then

- (A) f is one-one onto (B) f is one-one into
- (C) f is many one onto (D) f is many one into
- **68.** The function $f: R \rightarrow R$ defined by $f(x) = e^x$ is
 - (A) Onto
 - (B) Many-one
 - (C) One-one and into
 - (D) Many one and onto
- **69.** Which one of the following is a bijective function on the set of real numbers

(A) 2x-5 (B) |x|

(C) x^2 (D) $x^2 + 1$

- 70. Let $f(x) = \frac{x^2 4}{x^2 + 4}$ for |x| > 2, then the function $f: (-\infty, -2] \cup [2, \infty) \to (-1, 1)$ is
 - (A) One-one into (B) One-one onto
 - (C) Many one into (D) Many one onto
- 71. Let the function $f: R \to R$ be defined by $f(x) = 2x + \sin x, x \in R$. Then f is
 - (A) One-to-one and onto
 - (B) One-to-one but not onto
 - (C) Onto but not one-to-one
 - (D) Neither one-to-one nor onto
- 72. A function f from the set of natural numbers to

integers defined by
$$f(n) = \begin{cases} \frac{n-1}{2}, \text{ when } n \text{ is odd} \\ \frac{n}{2}, \text{ when } n \text{ is even} \end{cases}$$
, is

- (A) One-one but not onto
- (B) Onto but not one-one
- (C) One-one and onto both
- (D) Neither one-one nor onto
- 73. If $f:[0,\infty) \to [0,\infty)$ and $f(x) = \frac{x}{1+x}$, then f is
 - (A) One-one and onto
 - (B) One-one but not onto
 - (C) Onto but not one-one
 - (D) Neither one-one nor onto
- 74. If $f: R \rightarrow S$ defined by $f(x) = \sin x \sqrt{3}\cos x + 1$ is onto, then the interval of S is
 - (A) [-1, 3] (C) [0, 1] (B) [1, 1] (D) [0, -1]
- 75. If *R* denotes the set of all real numbers then the function $f: R \to R$ defined f(x) = [x]
 - (A) One-one only
 - (B) Onto only
 - (C) Both one-one and onto
 - (D) Neither one-one nor onto

- 76. $f(x) = x + \sqrt{x^2}$ is a function from $R \rightarrow R$, then f(x) is (A) Injective (B) Surjective (C) Bijective (D) None of these
- 77. If $(x, y) \in R$ and $x, y \neq 0$; $f(x, y) \rightarrow \frac{x}{y}$, then

this function is a/an

(A) Surjection	(B) Bijection
(C) One-one	(D) None of these

Composite Functions

78.	If $e^{f(x)} = \frac{10+x}{10-x}, x \in (-10, 10)$	and $f(x) = kf\left(\frac{200x}{100 + x^2}\right)$,
	then $k =$	
	(A) 0.5	(B) 0.6
	(C) 0.7	(D) 0.8

79. If
$$f(x) = 2\sin x$$
, $g(x) = \cos^2 x$, then $(f+g)\left(\frac{\pi}{3}\right) =$

(A) 1 (B)
$$\frac{2\sqrt{3}+1}{4}$$

(C)
$$\sqrt{3} + \frac{1}{4}$$
 (D) None of these

80. If $f(x) = \log_a x$ and $F(x) = a^x$, then F[f(x)] is

(A) $f[F(x)]$	(B) $f[F(2x)]$
(C) $F f(2x) $	(D) $F[(x)]$

81. Let f and g be functions defined by

$$f(x) = \frac{x}{x+1}, g(x) = \frac{x}{1-x}, \text{ then } (fog)(x) \text{ is}$$

(A) $\frac{1}{x}$ (B) $\frac{1}{x-1}$
(C) $x-1$ (D) x

82. If from $R \to R$, $f(x) = (x+1)^2$, $g(x) = x^2 + 1$, then (fog)(-3) equals (A) 121 (B) 112

(C) 211 (D) None of these

- **83.** Suppose that $g(x)=1+\sqrt{x}$ and $f(g(x))=3+2\sqrt{x}+x$, then f(x) is (A) $1+2x^2$ (B) $2+x^2$ (C) 1+x (D) 2+x**84.** The composite mapping *fog* of the map $f: R \to R, f(x)=\sin x, g: R \to R, g(x)=x^2$ is (A) $\sin x + x^2$ (B) $(\sin x)^2$ (C) $\sin x^2$ (D) $\frac{\sin x}{x^2}$ **85.** Let f(x)=ax+b and $g(x)=cx+d, a \neq 0, c \neq 0$. Assume a=1, b=2. If (fog)(x) = (gof)(x)for all *x*, what can you say about *c* and *d*
 - (A) c and d both arbitrary (B) c = 1, d arbitrary
 - (C) *c* arbitrary, d = 1 (D) c = 1, d = 1
- 86. If $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$. Then, for what value of α is (A) $\sqrt{2}$ (B) $-\sqrt{2}$

(A)
$$\sqrt{2}$$
 (B) $-\sqrt{2}$
(C) 1 (D) -1

- 87. If $f(x) = \frac{2x+1}{3x-2}$, then (fof)(2) is equal to (A) 1 (B) 3 (C) 4 (D) 2
- 88. If $f(x) = \sin^2 x$ and the composite function $g\{f(x)\} = |\sin x|$, then the function g(x) is equal to

(A)
$$\sqrt{x-1}$$
 (B) \sqrt{x}
(C) $\sqrt{x+1}$ (D) $-\sqrt{x}$

Inverse of a Functions

89. If $f : R \rightarrow R$, $f(x) = x^2 + 3$, then pre- image of 2 under f is -

(A) {1,-1}	(B) {1}
(C) {-1}	(D) ø

- **90.** Which of the following functions has its inverse-
 - (A) $f : R \to R$, $f(x) = a^{X}$ (B) $f : R \to R$, f(x) = |x| + |x - 1|(C) $f : R_{0} \to R^{+}$, f(x) = |x|(D) $f : [\pi, 2\pi] \to [-1,1]$, $f(x) = \cos x$
- 91. The inverse of the function $f(x) = \frac{e^x e^{-x}}{e^x + e^{-x}} + 2$

2 is given by -

- (A) $\log \left(\frac{x-2}{x-1}\right)^{1/2}$ (B) $\log \left(\frac{x-1}{x+1}\right)^{1/2}$ (C) $\log \left(\frac{x}{2-x}\right)^{1/2}$ (D) $\log \left(\frac{x-1}{3-x}\right)^{1/2}$
- 92. If $f: [1, \infty) \to [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$

then $f^{-1}(x)$ equals -

(A)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$
 (B) $\frac{x}{1 + x^2}$
(C) $\frac{x - \sqrt{x^2 - 4}}{2}$ (D) $1 + \sqrt{x^2 - 4}$

93. If $f(x) = x^3 - 1$ and domain of $f = \{0,1,2,3\}$, then domain of f^{-1} is -(A) $\{0,1,2,3\}$ (B) $\{1,0,-7,-26\}$ (C) $\{-1,0,7,26\}$ (D) $\{0,-1,-2,-3\}$ 94. If $f(x) = \{4 - (x - 7)^3\}^{1/5}$, then its inverse is-(A) $7 - (4 - x^5)^{1/3}$ (B) $7 - (4 + x^5)^{1/3}$

(C) $7 + (4 - x^5)^{1/3}$

- (D) None of these
- **95.** If $f : R \to R$, $f(x) = e^x$ and $g : R \to R$, g(x) = 3x 2, then the value of $(fog)^{-1}(x)$ is equal to

(A)
$$\log (x-2)$$
 (B) $\frac{2 + \log x}{3}$
(C) $\log \left(\frac{x+3}{2}\right)$ (D) None of these

- **96.** Which of the following function is invertible
 - (A) $f(x) = 2^x$ (B) $f(x) = x^3 x$
 - (C) $f(x) = x^2$ (D) None of these