EXERCISE-I

ANAEROBIC RESPIRATION

1.	Fermentation	is

- (A) Anaerobic respiration
- (B) Incomplete oxidation of carbohydrates
- (C) Complete oxidation of carbohydrates
- (D) None of the above
- **2.** Conversion of pyruvic acid into ethyl alcohol is facilitated by the enzymes
 - (A) Carboxylase
 - (B) Dehydrogenase
 - (C) Decarboxylase and dehydrogenase
 - (D) Phosphatase
- 3. During anaerobic respiration in yeast
 - (A) Water and CO₂ are end products
 - (B) CO₂, C₂ H₅ OH and energy are end products
 - (C) H_2 S, C_6 H_{12} O_6 and energy are the end products
 - (D) H₂O, CO₂ and energy are the only end products
- 4. Anaerobic respiration takes place in the
 - (A) Mitochondria (B) Cytoplasm
 - (C) Lysosomes (D) ER
- 5. Anaerobic synthesis found in bacteria is
 - (A) Endergonic (B) Exergonic
 - (C) Isothermal (D) None of the above
- 6. In anaerobic respiration in plants
 - (A) Oxygen is taken in
 - (B) Oxygen is given out
 - (C) Carbon dioxide is given out
 - (D) Carbon dioxide is taken in
- 7. Anaerobic respiration was first of all reported by

(A) Maguenne	(B) Kostychev
(C) Klein	(D) Pfeffer

- 8. What is the total gain of energy during anaerobic respiration(A) One molecule of ATP
 - (B) Two molecules of ATP
 - (C) Four molecules of ATP
 - (D) Eight molecules of ATP
- **9.** In fermentation, yeast secrets one of the following enzyme
 - (A) Invertase (B) Zymase
 - (C) Dehydrogenase (D) Anolase
- **10.** Which molecule listed below is a product of fermentation of glucose by yeast

(A)
$$(C_6H_{10}O_5)n$$
 (B) C_2H_5OH
(C) $C_6H_{12}O_6$ (D) CH_3OH

- **11.** On utilisation of which substance in respiration, it is called floating respiration
 - (A) Carbohydrates and fats
 - (B) Fats and proteins
 - (C) Carbohydrates, Fats and proteins
 - (D) All the above
- **12.** Complete oxidation of 1 gm. mole of glucose gives rise to
 - (A) 68600000 cal.
 (B) 686000 cal.
 (C) 68600 cal.
 (D) 6860 cal.
- How many ATP obtain through anaerobic respiration
 (A) 8 ATP
 (B) 4 ATP
 (C) 3 ATP
 (D) 2 ATP
- **14.** Which of the following show higher rate of respiration
 - (A) Collenchyma(B) leaf(C) Dry seeds(D) Germinating seeds
- **15.** On which substrate enzyme lipase works (A) Fat (B) Protein
 - (C) Carboydrate (D) All the above
- **16.** ATP stands to
 - (A) Adenosine triphosphate
 - (B) Adenine diphosphate
 - (C) Adenosine tetraphosphate
 - (D) Adenine triphosphate

17.	Respiration differs from c following	combustion in which of the	26.	Which group of the follow the EMP pathway of glyce	ving scientists discovered olysis
	(A) Energy is released in	respiration		(A) Embden, Meyerhof a	and Parnas
	(B) Substance is oxidised			(B) Emerson, Hoffman ar	nd Petrison
	(C) Enzymes are involved	d		(C) Embden, Morrison an	nd Picher
	(D) All the above			(D) Avery, Macleod and	Mecarthy
18.	Protein is used as respira	tory substrate only when	27.	Which is not true for glyco	olysis
10.	(A) Carbohydrates are a	hsent		(A) End product is CO_2 ,	H ₂ O
	(B) Fats are absent	oson		(B) Substrate level phosp	horylation
	(C) Both exhausted			(C) Production of ATP	
	(D) Fats and carbohydra	tes are abundant	20	(D) Expenditure of AIP	6 1 1
19.	Different steps in respirat	tion are controlled by	28.	The formula for the proce	ess of glycolysis is
17.	$(\Delta) \Delta u v i n$	(B) Sugar		(A) $C_6 H_{12} O_6 \rightarrow 2 C_3 H_4$ (B) C H O (CO)	$O_3 + 4H$
	(C) Enzyme	(D) Kinetin		$(B) C_6 H_{12} O_6 + 6 C O_2 \rightarrow$	$6H_2 + 6H_2^{\circ}$
20	Respiration occurs			(C) $6H_2O + 6CO_2 \rightarrow C_0$ (D) None of these	$_{5}H_{12}O_{6}+6O_{2}$
20.	(A) Only in non-green cel	lle in light	29	Glycolysis occurs in	
	 (A) Only in non-green cells both in light (B) Only in non-green cells both in light and dark (C) In all living cells both in light and dark (D) In all living cells only in light How many ATPs are used in phosphorylation of 		<u> </u>	(A) Generally in all the cells (B) In only eukaryotes	
				(C) Only in prokaryotes	
				(D) Only in higher animals	8
21.			30.	Which of the following	is formed in presence of
	glucose			pyruvate kinase	
	(A) One	(B) Two (D) Four		(A) Phosphoenol pyruvic	acid
22	(C) Three			(B) Pyruvic acid	
22.	In anaerobic glycolysis, r	et gain of AIP1s		(C) Both (A) and (B) $($	
	(A) four	(B) Two (D) None of these		(D) None of these	
	(C) Eight	(D) None of these		INTRODUCTION A	ND TYPES OF
23.	calculate total produc	ation of ATP in aerodic		RESPIR	RATION
		(B) four	31.	Aerobic respiration is call	ed
	(C) Fight	(D) Ten	011	(A) Fermentation	(B) Chemosynthesis
24	Glycolysis occurs in			(C) Bio-oxidation	(D) Photorespiration
4 7.	(A) Mitachondria	(P) Colgi hadu	32.	Old trees obtain Ω_2 from	
	(A) Infloctionaria	(D) Chloroplast	020	(A) Stomata	(B) Lenticels
25	The end product of a	neerobic respiration in		(C) Leaf scars	(D) All the above
<i>4</i> J.	nlants is		33.	Apple and potato obtain	$O_{\rm through}$
	(A) Puruvic acid	(B) Malic acid		(A) Stomata	(B) Cork
	(C) Ethyl alcohol	(D) Methyl alcohol		(C) Lenticels	(D) Epidermis
	<-/				

34.	Respiratory exchange of ga	ases in hydrophytes occur	43.	To a living organism which	h of the following has the
	through	• • •		greater amount of availabl	e energy per molecule
	(A) Stomata	(B) Cuticle		(A)ATP	(B) ADP
	(C) Lenticels	(D) General surface		(C) CO ₂	(D) H ₂ O
35.	Roots of a plant when ke	pt in a phenolphthalein	44.	Which cell organelle is req	uired in photorespiration
	containing weak alkaline	solution, decolorises it.		(A) Chloroplast	(B) Mitochondria
	This is due to			(C) Peroxisome	(D) All the above
	(A) Absorption of phenolp	hthalein	45.	Instantaneous source of er	nergy is
	(B) Absorption of alkali			(A) Glucose	(B) Fats
	(C) Respiration of roots			(C) Proteins	(D) Amino acids
	(D) Utilization of O_2		46.	Energy given by one mole	cule of ATP is
36.	Respiratory exchange in s	eeds occur through		(A) 7.3 kcal	(B) 721 kcal
	(A) Testa	(B) Stomata		(C) 760 kcal	(D) 1000 kcal
	(C) Micropyle	(D) Hilum	47.	Respiration is an	
37.	Compensation point is dev	veloped in		(A) Endothermic process	(B) Exothermic process
	(A) Day light	(B) Twilight		(C) Anabolic process	(D) Endergonic process
•••	(C) Night time	(D) Noon hours	48.	Who among the following	ng can be said to be the
38.	When 100% carbon	is oxidized to CO_2 ,		"Father of Indian Physiolog	gy"
	the efficiency of such a res $(A) 40\%$	$(\mathbf{P}) \in \mathbf{O}$		(A) B.P. Pal	(B) K.C. Mehta
	(A) 40%	(D) 100%		(C) M.S. Swaminathan	(D) J.C. Bose
20	(C) 90%	(D) 10070	49.	The energy yield as a resul	t of total oxidation of one
39.	used in	energy is most extensivery		glucose molecule during	cellular respiration is to
	(A) Cambium	(B) Crok		(A) 28 molecular of ADB	nto 29 molecules of ATD
	(C) Xylem	(D) Root parenchyma		(A) 30 molecules of ADP	nto 30 molecules of ATP
40.	Which of the following	process is immediately		(B) 30 molecules of ADP i	nto 30 molecules of ATP
	affected by the loss of ATI	P		(C) 30 molecules of ADP (C) 22 malagulas of ADP	nto 30 molecules of ATP
	(A) Diffusion	(B) Osmosis	50	(D) 52 molecules of ADP	nto 52 molecules of ATP
	(C) Uptake	(D) Kreb's cycle	50.	is essentially an oxidat	ion-reduction process
41.	The net gain of energy fro	m one gram molecule of		involving removal of energy	v from
	glucose during aerobic res	piration is		(A) Oxygen	(B) Phytochrome
	(A) 2 ATP	(B) 36 ATP		(C) Cytochrome	(D) Electrons
	(C) 38 ATP	(D) 15 ATP			
42.	12. If carbon dioxide contents of the atmosphere is as			GLYCOL	YSIS
	(A) All plants will be killed	1	F1		1 (* 1)
	(B) The plants would not	row properly	51.	In cellular respiration O_2 i	s used as a final receptor
	(C) Plants would grow for	some times and then die		$(\Delta) \Delta TP and N \Delta DH$	(B) H and e
	(D) The plants would thriv	e well		$(C) F_{e}$	(D) Cytochromo
	(~) The planes would ulliv				

- **52.** First stage in respiration is
 - (A) Aerobic oxidation of pyruvic acid
 - (B) Liberation of CO₂
 - (C) Glycolysis
 - (D) Electron transport system
- **53.** Besides the net gain of 2 ATP molecules in glycolysis which other molecules are simultaneously formed
 - $(A) FADH_2 (B) NADPH_2$
 - $(C) NADH_2 (D) FAMH_2$
- **54.** Which of the following is the product of phosphorylation
 - (A) PGA
 - (B) Fructose 1, 6 diphosphate
 - (C) DPGA
 - (D) Pyruvic acid
- 55. In glycolysis, the end product is
 - (A) Protein is converted to glucose
 - (B) Glucose is converted into fructose
 - (C) Starch is converted into glucose
 - (D) Glucose is converted into pyruvic acid
- **56.** Total ATP production during EMP pathway is
 - (A) 24 ATP molecules (B) 8 ATP molecules
 - (C) 38 ATP molecules (D) 6 ATP molecules
- **57.** Glycolysis takes place in
 - (A) Mitochondria
 - (B) Cytoplasm
 - (C) Both mitochondria and cytoplasm
 - (D) Vacuole
- **58.** Pyruvate (pyruvic acid) dehydrogenase is used in converting
 - (A) Pyruvate to glucose
 - (B) Glucose to pyruvate
 - (C) Pyruvic acid to lactic acid
 - (D) Pyruvate (pyruvic acid) to acetyl CoA
- **59.** The number of molecules of pyruvic acid formed from one molecule of glucose at the end of glycolysis is

(A) 1	(B) 2
(C) 3	(D) 4

- **60.** What is the other name of glycolysis
 - (A) EMP pathway(B) TCA pathway(C) HMS pathway(D) None of the above

LINK REACTION AND KREBS CYCLE

- 61. When is NADH.H⁺ not formed in Kreb's cycle(A) During formation of Oxalosuccinic acid from Isocitric acid
 - (B) During formation of succinyl CO-A from α-Ketogluteric acid
 - (C) During formation of Fumaric acid from Succinic acid
 - (D) During formation of Oxaloacetic acid from malic acid
- **62.** α -Ketogluteric acid formed in Kreb's cycle is
 - (A) 4 Carbon compound
 - (B) 5 Carbon compound
 - (C) 6 Carbon compound
 - (D) 3 Carbon compound
- **63.** How many molecules of ATP are formed from one Acetyl CO-A through kreb cycle?

(A) 15	(B) 12
(C) 8	(D) 4

- **64.** How many NADH. H^+ are formed from pyruvic acid
 - (A) Two(B) Three(C) Four(D) Five
- **65.** How many total ATPs are formed from one pyruvic acid
 - (A) 8 (B) 10 (C) 12 (D) 15
- 66. Enzymes of oxidative phosphorylation are found in (A) Endoplasmic reticulum (B) Chloroplast
 - (C) Mitochondria (D) Golgi bodies
- **67.** How many ATP will be produced during the production of one molecule of Acetyl Co A from one molecule to pyruvic acid

(A) 3 ATP	(B) 5 ATP
(C) 8 ATP	(D) 38 ATP

68.	The connecting link betwee	een glycolysis and krebs	78.	The last or terminal cyt	ochrome in respiratory
	cycle is			chain is	
	(A) Citric acid	(B) Acetyl Co-A		(A) Cyt b	(B) Cyt a ₃
	(C) Succinic acid	(D) Fumeric acid		(C) Cyt a	(D) Cyt c
69.	Cofactor which is essential	for the synthesis of Acetyl	79.	Which transfer electrons in	E.T.S. (electron transport
	Co -A			system)	
	(A) TPP	(B) Mg ⁺² & Co- A		(A) Phytochrome	(B) F_1 particles
	(C) Lipoic acid	(D) All the above		(C) Fe - S	(D) None of these
70.	Which one of the follow	ving enzyme absent in	80.	The enzymes for electro	on transport system are
	mitochondria			located in the	1 5
	(A) Fumerase	(B) Hexokinase		(A) Plastid	
	(C) Malic dehydrogenase	(D) Aconitase		(B) Endoplasmic reticulum	1
71.	Which complex is formed	l by Cyt. a and Cyt.a ₃		(C) Ribosomes	L
	(A) Complex–I	(B) Complex–II		(D) Mitochondria	
	(C) Complex–III	(D) Complex-IV	8 1	What is the $\mathbf{R} \mathbf{O}$ of protein	ne generally
72.	Total how many protons	are released on entry of	01.	(Λ) One	(P) Loss than one
	NADH.H ⁺ in electron tran	sport system ?		(A) Olic	(D) Infinite
	(A) 2 Protons	(B) 4 Protons	01	What is the D O of organi	
	(C) 6 Protons	(D) 8 Protons	04.	(A) One	(B) Less then one
73.	From which place H ⁺ (pro	otons) enter matrix from		(C) More than one	(D) Zero
	outside of inner membrane	of mitochondria	83	What is the $\mathbf{R} \mathbf{O}$ value in s	anaerobic respiration
	(A) Any part of the membr	rane	05.	(Λ) One	(P) L age then one
	(B) Through elementary	particles/oxysomes of		(A) One (C) More than one	(D) Infinite
	membrane		Q1	At high tomporature in our	objertering why the
	(C) From terminal end of	cristae	04.	R O value becomes more	than one
	(D) None of the above			(A) Paguiroment of Ω is	arangas but due to less
74.	The most important hydro	ogen acceptor substance		(A) Requirement of O_2 in availability of O_2 partic	al replacement of aerobic
	in electron transport system			respiration takes place	by anaerobic respiration
	(A) FAD	$(B) NAD^{+}$		(B) O ₂ requirement de	creases hence due to
75	(C) ODP			availablity of more O ₂	than required
15.	(A) Cytochrome $a = a$	$(\mathbf{B}) \mathbf{O}$		(C) By formation of more α	prognic acids which enter
	(C) Cytochrome	(D) Ubiquinone		in respiration	siguine delas which enter
76.	Which transfer electrons in	ETS		(D) None of the above	
/0.	(A) Phytochromes	(B) F_1 particles	85	The fruit in which rate of re	spiration increases during
	(C) Fe - S	(D) Cytochromes	05.	ripening is called	spiration increases during
77.	The full form of NAD is	< / •		(A) Respiratory fruit	(B) Climactric fruit
	(A) Nicotine adenosine dir	ohosphate		(C) Climax fruit	(D) Ethylinated fruit
	(B) Nicotinamide adenosir	ne dinucleotide	86	$\mathbf{R} \mathbf{O}$ of germinating seed.	of castor is
	(C) Nicotinamide adenine	dinucleotide	00.	(A) 1	(B) > 1
	(D) Nicrotinamide adenine	e diphosphate		(C) < 1	(D) 0
				(-)	(-) •

87.	7. What is common between photosynthesis and		98. The high-energy bond of ATP are between		
	respiration			(A) C-C	(B) C-O
	(A) Cytochromes	(B) Light		(C) C-N	(D) O-P
	(C) H ₂ O	(D) Temperature	99.	Who among the following	ng can be said to be the
88.	R.Q. of malic acid is			"Father of Indian Physiolo	gy"
	(A) 0.7	(B) 1		(A) B.P Pal	(B) K.C Mehta
	(C) 1.33	(D) 4		(C) M.S Swaminathan	(D) J.C Bose
89.	Vinegar is synthesized from	n the alcohol by	100	.TPP means	
	(A) Lactobacillus bacteria	(B) Bacilli aceti bacteria		(A) Thiamine pyrophospha	ate
	(C) Azotobactor	(D) Rhizobium		(B) Thymine pyrophospha	te
90.	Lactic acid fermentation is	s characterised by lack of		(C) Thymine pentaphosph	ate
	production of			(D) None of these	
	(A)ATP	(B) NADH.+ H^+	101	•Cytochrome is related to	
	(C) CO_2 and NADH.+H ⁺	$(D) CO_2$		(A) Cellular digestion	(B) Protein synthesis
91.	Fermentation takes place i	n		(C) Cell division	(D) Cellular respiration
	(A) All micro organisms		102	. Which of the following is t	he phosphorylating unit
	(B)All fungi			(A) Oxysome	(B) Mesosome
	(C) All bacteria	haatamia		(C) Peroxisome	(D) Mitochondria
03	(D) Some lungi and some		103	.Which of the following i	s formed in presence of
92.	Anaerobic process alter gi			pyruvate kinase	
	(A) ICA (C) Krab's cycle	(B) Calvin cycle (D) Formontation		(A) Phosphoenol pyruvic a	acid
03	C) Kieb Scycle	(D) Permentation		(B) Pyruvic acid	
93.	(A) Creatining phasehold	15 (D) ATD		(C) Both (A) & (B)	
	(A) Creatinine phosphate	(D) Fat		(D) None of the above	
Q /	"Mitchell's chemiosmotic	theory" helongs to	104	The state upto which glyco	olysis and fermentation is
74.	(A) Krob's cyclo	uncory belongs to		common	
	(A) Nico Scycle	tion		(A) Dihydroxy acetone	
	(C) Characheric	uion		(B) 3-phosphoglyceraldeh	lyde
	(C) Orycorysis (D) None of the above			(C) Pyruvate	
95	Which of the following is it	wolved in the catalysis of		(D) Glucose-6-phosphate	
<i>)</i> .	link reaction during aerobi	c respiration	105	Which of the following i	nvolves the loss of two
	(A) Vitamin A	(B) Vitamin B		protons and two electrons	
	(C) Vitamin \mathbf{B}_{ϵ}	(D) Vitamin K		(A) Deamination	(B) Dehydrogenation
96.	The tissue of highest respir	atory activity is	107	(C) Carboxylation	(D) None of these
	(A) Meristems	(B) Ground tissue	106	• Which of the following is t	he first step of glycolysis
	(C) Pholem	(D) Mechanical tissue		(A) Breakdown of glucose	2
97.	Salt respiration is also call	ed as		(B) Phosphorylation of glu	icose
	(A)Anion respiration	(B) Cation respiration		(C) Conversion of glucose	into fructose
	(C) Photorespiration	(D) None of the above		(D) Dehydrogenation of gl	ucose

107. The details of tricarboxylic acid path was worked		116. Food is converted to energy in	
out by		(A) Chloroplast	(B) Nucleus
(A) Meischer	(B) Hans krebs	(C) Mitochondria	(D) None of the above
(C) Pasteur	(D) None of these	117. Which of the following	is correct sequence in kreb's
108. The number of carbon a	tom in citric acid is	cycle	
(A) 8 (C) 10	(B) 6 (D) 2	(A) Isocitric acid \rightarrow C ketoglutaric acid	Dxalosuccinic acid $\rightarrow \alpha$ -
109. Which intermediate co synthesis of amino acids	mpound is involved in the	(B) Oxalosuccinic ac ketoglutaric acid	cid \rightarrow Isocitric acid α -
(A) Malic acid (C) α - ketoglutaric acid	(B) Citric acid(D) Isocitric acid	(C) α - ketoglutaric a Oxalosuccinic acid	acid \rightarrow Isocitric acid \rightarrow
110. During one Krebs' cycle released is -	e number of CO_2 molecules	(D) Isocitric acid \rightarrow Oxalosuccinic acid	α - ketoglutaric acid \rightarrow
(A) 1	(B) 2	118. The formation of acetyl	coenzyme-A from pyruvic
(C) 3	(D) 4	acid is the result of its	
111. FAD is electron accepto	r during oxidation of which	(A) Reduction	
of the following		(B) Dehydration	
(A) α - ketoglutarate \rightarrow	succinyl CoA	(C) Dephosphorylation	
(B) Succinic acid \rightarrow Fur	maric acid	(D) Oxidative decarbox	ylation
(C) Succinyl CoA \rightarrow suc	ccinic acid	119.Oxidative phospho	orylation and photo-
(D) Fumaric acid \rightarrow mal	lic acid	phosphorylation both re	equire the electron carrier
112. Synthesis of ATP in mito	ochondria require	(A) Cytochrome	(B) Oxygen
(A) Oxygen	(B) NADP	(C) Carbon dioxide	(D) Water
(C) FMN	(D) Pyruvic acid	120. Which of the following	energy storing compound is
113. Which one is not correct	ct about Krebs' cycle	formed when succinyl Co	oA is converted into succinic
(A) It is also called citri	c acid cycle	acid	
(B) The intermediate	compound which links	(A) ADP	(B)ATP
glycolysis with kreb	s' cycle is malic acid	(C) AMP	(D) GIP
(C) It occurs in mitocho	ndria	121. During which stage in	the complete oxidation of
(D) It starts with six car	bon compound	formed from ADP	number of ATP molecules
114.Largest amount of pl	nosphate bond energy is	(A) Conversion puruvi	e acid to acetyl CoA
produced in the process	of respiration during	(B) Electron transport of	hain
(A) Anaerobic respiration	on (B) Glycolysis	(C) Glycolysis	num
(C) kreb's cycle	(D) None of the above	(D) Kreb's cycle	
115. Krebs' cycle starts with	the formation of six carbon	122. The reaction of pentose	phosphate pathway (PPP)
compounds by reaction between		take place in	
(A) Malic acid and acetyl CoA		(A) Mitochondrion	
(B) Succinic acid and p	yruvic acid	(B) Cytoplasm	
(C) Fumaric acid and p	yruvic acid	(C) Chloroplast, peroxis	some and mitochondrion
(D) Acetyle CoA and ox	kaloacetic acid	(D) Chloroplast, glyoxy	some and mitochondrion

123. Which of the following is a direct oxidation pathway		128. The respiratory quotient during cellular respiration	
being performed without glycolysis		would depend on	
(A) TCA cycle	(B) HMP pathway	(A) The nature of enzymes involved	
(C) Both (A) & (B)	(D) None of the above	(B) The nature of the substrate	
124.HMP shunt is an alternation	tive to	(C) The amount of carbondioxide released	
(A) Kreb's cycle	(B) Aerobic glycolysis	(D) The amount of oxygen utilised	
(C) Calvin cycle	(D) C_4 pathway	129. The correct relationship of value of Respiratory	
125.Pentose phosphate pathy	way, an alternative pathway	Quotient is	
of respiration was elucio	lated by	(A) Glucose symble > Fats > Organic acid	
(A) Horecker		(B) Glucose < Fats < Organic acid	
(B) Warburg and Dickens		(C) Fats symble > Glucose > Organic acid	
(\mathbf{C}) Black man		(D) Fats < Glucose < Organic acid	
(D) Kelvin		130.R.Q (respiratory quotient) is defined as	
126.Common enzyme in glycolysis and pentose		(A) Volume of CO_2 evolved = volume of O_2 consumed	
(A) Hexokinase	(B) Aconitase	(B) $\frac{\text{Volume of O}_2 \text{ consumed}}{\text{Volume of CO}_2 \text{ evolved}}$	
127. The value of RQ at compensation point is		(C) $\frac{\text{Volume of CO}_2 \text{ evolved}}{\text{Volume of O}_2 \text{ consumed}}$	
(A) Unity	(B) Infinity	(D) Volume of O_2 evolved	
(C) > 1	(D) Zero	(D) Volume of CO_2 consumed	