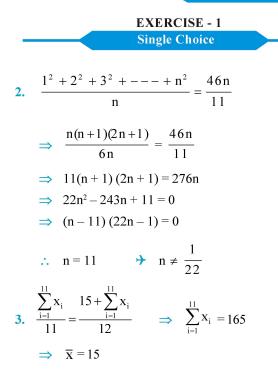
HINTS & SOLUTIONS



8. Req. mean

=

$$\frac{a + (a + d) + (a + 2d) + \dots + \{a + (n - 1)d\}}{n}$$

$$=\frac{\frac{n}{2}[a+a+(n-1)d]}{n}=a+\frac{(n-1)d}{2}$$

11. First we changed the classes into continuous form, we have

 Class
 0.5 - 10.5
 10.5 - 20.5
 20.5 - 30.5
 30.5 - 40.5
 40.5 - 50.5

 fi
 5
 7
 8
 6
 4

Here model class is 20.5 - 30.5

$$\therefore \quad \text{Mode} = \mathbf{\bullet} + \frac{(\mathbf{f}_0 - \mathbf{f}_1)}{(2 \mathbf{f}_0 - \mathbf{f}_1 - \mathbf{f}_2)} \times \mathbf{I}$$

$$= 20.5 + \frac{(8-7)}{(16-7-6)} \times 10 = 23.83$$

12. Here number of terms = n + 1 (odd)

:. Median =
$$\left(\frac{n+2}{2}\right)$$
 th term = $\left(\frac{n}{2}+1\right)$ th term = ${}^{2n}C_{n/2}$

Median =
$$\frac{44^{\text{th}} \text{ value} + 45^{\text{th}} \text{ value}}{2} = \frac{56 + 57}{2} = 56.5$$

M.D.(median)

$$=\frac{\sum_{i=1}^{88} |x_i - 56.5|}{88} = \frac{43.5 + 42.5 + \dots + 0.5 + 0.5 + \dots + 43.5}{88}$$
$$=\frac{1 + 3 + 5 + \dots + 85 + 87}{88} = 22$$

14.
$$\Rightarrow$$
 S.D. = $\sqrt{\frac{1}{n} \Sigma x_i^2 - \left(\frac{1}{n} \Sigma x_i\right)^2}$

So, S.D. of first n natural numbers

$$= \sqrt{\frac{1}{n}\Sigma n^2 - \left(\frac{1}{n}\Sigma n\right)^2}$$

$$\sqrt{\frac{1}{n}} \cdot \frac{n(n+1)(2n+1)}{6} - \left\{\frac{1}{n} \cdot \frac{n(n+1)}{2}\right\}^2$$

$$=\sqrt{\frac{(n+1)(2n+1)}{6}} - \frac{(n+1)^2}{4} = \sqrt{\frac{(n+1)(n-1)}{12}}$$

$$=\sqrt{\frac{n^2-1}{12}}$$

16.
$$T_n = (2n-1)(2n+1)(2n+3)$$

Req. A.M.
$$= \frac{S_n}{n} = \frac{\Sigma T_n}{n} = \frac{1}{n} [\Sigma(8n^3 + 12n^2 - 2n - 3)]$$

$$= \frac{1}{n} [8\Sigma n^{3} + 12\Sigma n^{2} - 2\Sigma n - \Sigma 3]$$
$$= 2n^{3} + 8n^{2} + 7n - 2$$

19.
$$\Rightarrow \quad \sigma = \sqrt{\frac{\Sigma x_i^2}{n} - \left(\frac{\Sigma x_i}{n}\right)^2} = \sqrt{\frac{\Sigma x_i^2}{n} - \overline{x}^2}$$

 $\Rightarrow \quad \Sigma x_i^2 = n(\sigma^2 + \overline{x}^2)$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

21. Here
$$N = 10$$
, $u_i = \frac{x_i - 25}{10}$
 $\therefore \Sigma f_i u_i = 1 \times (-2) + 3 \times (-1) + 4 \times 0 + 2 \times 1 = -3$
and, $\Sigma f_i u_i^2 = 1 \times 4 + 3 \times 1 + 4 \times 0 + 2 \times 1 = 9$
 $\sigma = h \sqrt{\frac{\Sigma f_i u_i^2}{N} - \left(\frac{\Sigma f_i u_i}{N}\right)^2} = 10 \sqrt{\frac{9}{10} - \left(\frac{-3}{10}\right)^2} = 9$
23. First we arranged the observations in ascending order
34, 38, 42, 44, 46, 48, 54, 55, 63, 70

Here
$$n = 10$$
 (even)

Median (M)

$$= \frac{\left(\frac{n}{2}\right)th \text{ term } + \left(\frac{n}{2} + 1\right)th \text{ term}}{2}$$

$$=\frac{46+48}{2}=47$$

 $\Sigma |\mathbf{x}_i - \mathbf{M}| = 13 + 9 + 5 + 3 + 1 + 1 + 7 + 8 + 16 + 23 = 86$

: Mean deviation from Median

$$=\frac{\Sigma |\mathbf{x}_i - \mathbf{M}|}{n} = 8.6$$

24. Let the number of terms of two series are n, and n, whose means are \overline{x}_1 and \overline{x}_2 resp.

$$\overline{\mathbf{x}} = \frac{\mathbf{n}_1 \overline{\mathbf{x}}_1 + \mathbf{n}_2 \overline{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2}$$

by (i) & (ii) $\overline{x}_1 < \overline{x} < \overline{x}_2$

Now $\overline{\mathbf{x}} - \overline{\mathbf{x}}_1 = \frac{\mathbf{n}_2(\overline{\mathbf{x}}_2 - \overline{\mathbf{x}}_1)}{(\mathbf{n}_1 + \mathbf{n}_2)} > 0 \quad (\mathbf{r} \quad \overline{\mathbf{x}}_2 > \overline{\mathbf{x}}_1)$

$$\Rightarrow \overline{x} > \overline{x}_{1} \dots (i)$$
Again $\overline{x} - \overline{x}_{2} = \frac{n_{1}(\overline{x}_{1} - \overline{x}_{2})}{(n_{1} + n_{2})} < 0 \quad (\Rightarrow$

$$\Rightarrow \overline{x} < \overline{x}_{2} \dots (ii)$$

26. Arrange the given observations in ascending order

l

31

40, 54, 62, 68, 76, 90
no. of terms (n) = 6 (even)

$$\therefore$$
 Median (M)

$$= \frac{\left(\frac{n}{2}\right)^{\text{th term}} + \left(\frac{n}{2} + 1\right)^{\text{th term}}}{2} = \frac{62 + 68}{2} = 65}{\Sigma|x_i - M| = 25 + 11 + 3 + 3 + 11 + 25 = 78}$$
M.D. from median = $\frac{\Sigma|x_i - M|}{n} = \frac{78}{6} = 13$
 \therefore Coefficient of M.D. = $\frac{\text{M.D.}}{\text{median}} = \frac{13}{65} = 0.2$
31. $\sigma_x = 3 \implies \sum \frac{\Sigma x_i^2}{100} - (\overline{x})^2 = 9$
 $\implies \sum x_i^2 = 23400$
 $\sum z_i = 250 \times 15.6 = 3900$
 $\therefore \Sigma y_i = \Sigma z_i - \Sigma x_i = 3900 - 1500 = 2400$
 $\sigma_z^2 = 13.44 \implies \frac{\Sigma x_i^2 + \Sigma y_i^2}{250} - (15.6)^2 = 13.44$
 $\implies \sum y_i^2 = 40800$
 $\implies \sigma_y = \sqrt{\frac{\Sigma y_i^2}{150} - \left(\frac{\Sigma y_i}{150}\right)^2} = \sqrt{\frac{40800}{150} - \left(\frac{2400}{150}\right)^2} = 4$
32. Let the no. of boys and girls are n, and n, resp., then

$$\frac{65n_1 + 55n_2}{n_1 + n_2} = 61$$

$$\Rightarrow 4n_1 = 6n_2 \Rightarrow n_1 : n_2 = 3 : 2$$

36. Coefficient of variation = $\frac{\sigma}{\overline{x}} \times 100$

45.
$$\Rightarrow \frac{x_1 + x_2 + \dots + x_{10}}{10} = 20$$
 ...(1)

Req. mean = $\frac{(x_1 + 4) + (x_2 + 8) + ... + (x_{10} + 40)}{10}$

$$= \frac{(x_1 + x_2 + \dots + x_{10})}{10} + \frac{4(1 + 2 + \dots + 10)}{10}$$
$$= 20 + 22 = 42$$
 [by eq. (1)]

 $\overline{\mathbf{X}}_{1} < \overline{\mathbf{X}}_{2}$)

49. W.M. =
$$\frac{0 \times 1 + 1 \times {}^{n}C_{1} + 2 \times {}^{n}C_{2} + \dots + n \times {}^{n}C_{n}}{1 + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n}}$$

= $\frac{1 \times {}^{n}C_{1} + 2 \times {}^{n}C_{2} + \dots + n \times {}^{n}C_{n}}{{}^{n}C_{0} + {}^{n}C_{1} + \dots + {}^{n}C_{n}} = \frac{\sum_{r=1}^{n} r \cdot {}^{n}C_{r}}{2^{n}}$
= $\frac{\sum_{r=1}^{n} r \cdot \frac{n}{r} \cdot {}^{n-1}C_{r-1}}{2^{n}} = \frac{n \sum_{r=1}^{n} \cdot {}^{n-1}C_{r-1}}{2^{n}} = \frac{n \cdot 2^{n-1}}{2^{n}} = \frac{n}{2}$

Т

51. Since mean deviation is minimum when it is taken by median, so here K is median of given observations.

$$K = median = \left(\frac{n+1}{2}\right) th observation$$
$$= 51^{th} observation$$

$$\therefore$$
 K = x₅₁

52. Average speed =
$$\frac{\text{total distance}}{\text{total time}} = \frac{d+d+d}{t_1+t_2+t_3}$$

= $\frac{3d}{\frac{d}{v_1} + \frac{d}{v_2} + \frac{d}{v_3}} = \frac{3}{\frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}} = \text{H.M. of } v_1, v_2, v_3$

54. On arranging the values in the ascending order

$$\alpha - \frac{7}{2}, \alpha - 3, \alpha - \frac{5}{2}, \alpha - 2, \alpha - \frac{1}{2}, \alpha + \frac{1}{2}, \alpha$$

Here number of observations n = 8 (even)

Median =
$$\frac{1}{2} \left[\left(\frac{n}{2} \right) \text{th obser.} + \left(\frac{n}{2} + 1 \right) \text{th obser.} \right]$$

= $\frac{1}{2} \left[(\alpha - 2) + \left(\alpha - \frac{1}{2} \right) \right] = \alpha - \frac{5}{4}$

56. For S.D. of first n odd natural numbers

1, 3, 5,,
$$(2n - 1)$$

 $\Sigma x_i = 1 + 3 + 5 + \dots + (2n - 1) = n^2$
 $\Sigma x_i^2 = 1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2$

$$= [1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2}] - [2^{2} + 4^{2} + \dots + (2n)^{2}]$$

$$= [1 + 2^{2} + 3^{2} + \dots + (2n)^{2}] - 2^{2}[1^{2} + 2^{2} + \dots + n^{2}]$$

$$= \frac{2n(2n+1)(4n+1)}{6} - 4 \cdot \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{n(2n+1)}{3} [(4n+1) - 2(n+1)]$$

$$= \frac{n(2n+1)(2n-1)}{3} = \frac{n(4n^{2} - 1)}{3}$$

$$\therefore \text{ Req. S.D.} = \sqrt{\frac{\sum x_{i}^{2}}{n} - \left(\frac{\sum x_{i}}{n}\right)^{2}}$$

$$= \sqrt{\frac{4n^{2} - 1}{3} - n^{2}} = \sqrt{\frac{n^{2} - 1}{3}}$$

58. 3 occurs maximum number of times so mode is 3.

59. S.D. =
$$\sqrt{\frac{\Sigma(\mathbf{x}_i - \overline{\mathbf{x}})^2}{n}}$$
 and M.D. = $\frac{\Sigma |\mathbf{x}_i - \overline{\mathbf{x}}|}{n}$
let $|\mathbf{x}_i - \overline{\mathbf{x}}| = \mathbf{y}_i$
i.e. $(\mathbf{x}_i - \overline{\mathbf{x}})^2 = |\mathbf{x}_i - \overline{\mathbf{x}}|^2 = \mathbf{y}_i^2$
Now $(S.D.)^2 - (M.D.)^2 = \frac{\Sigma(\mathbf{x}_i - \overline{\mathbf{x}})^2}{n} - \left(\frac{\Sigma |\mathbf{x}_i - \overline{\mathbf{x}}|}{n}\right)^2$
 $= \frac{\Sigma \mathbf{y}_i^2}{n} - \left(\frac{\Sigma \mathbf{y}_i}{n}\right)^2 = \sigma_y^2 > 0$

- ($\rightarrow \sigma^2$ is non negative and all values are not same)
- $\Rightarrow (S.D.)^2 (M.D.)^2 > 0$ $\Rightarrow S.D. > M.D.$
- **61.** Let x_1, x_2, \dots, x_n are n positive numbers such that

$$\mathbf{x}_1 \times \mathbf{x}_2 \times \dots \times \mathbf{x}_n = 1 \qquad \dots (1)$$

$$\bigstar A.M. \geq G.M.$$

So
$$\frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n} \ge (\mathbf{x}_1 \times \mathbf{x}_2 \times \dots \times \mathbf{x}_n)^{1/n}$$

 $\Rightarrow \mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n \ge n \qquad \text{by (1)}$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141 **63.** Here $u = \frac{x}{h} - \frac{a}{h}$

✤ S.D. is not depend on change of origin but it is depend on change of scale.

$$\therefore \quad \sigma_{u} = \frac{\sigma_{x}}{h}$$

64. Let $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$

New Mean =
$$\frac{(x_1 + 1) + (x_2 + 2) + \dots + (x_n + n)}{n}$$

- $=\frac{(x_{1}+x_{2}+....+x_{n})}{n}+\frac{(1+2+....+n)}{n}=\overline{x}+\frac{n+1}{2}$
- **65.** $\sum_{i=1}^{10} (x_i 15) = 7 \implies \sum x_i 150 = 7 \implies \frac{\sum x_i}{10} = 15.7$

$$66. \ \sigma = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n}}$$

Let
$$y_i = \frac{ax_i + b}{c} = \left(\frac{a}{c}\right)x_i + \frac{b}{c}$$

$$\Rightarrow \quad \overline{y} = \left(\frac{a}{c}\right)\overline{x} + \frac{b}{c} \quad \Rightarrow \quad y_1 - \overline{y} = \frac{a}{c}(x_1 - \overline{x})$$

$$\Rightarrow$$
 Req. S.D. = $\sqrt{\frac{\Sigma(y_i - \overline{y})^2}{n}}$

$$=\sqrt{\frac{\sum\left[\frac{a^2}{c^2}(x_i-\overline{x})^2\right]}{n}} = \left|\frac{a}{c}\right|\sqrt{\frac{\sum(x_i-\overline{x})^2}{n}} = \left|\frac{a}{c}\right|\sigma$$

EXERCISE - 2 Part # I : Matrix Match Type

- 1. (A) Due to low value 1, mean is not preferred
 - (B) Mean, Median, Mode and S.D. are dependent on change of scale.
 - (C) S.D. is independent of change of origin.
 - (D) Range is always greater than or equal to S.D.

Part # II : Comprehension

Comprehension #2

L

2. As data has outliners at 90,000 and 95,000 we should use median in place of mode

& Median =
$$\frac{10^{\text{th}} \text{ value} + 11^{\text{th}} \text{ value}}{2} = 12000$$

3. For a normally distributed data, we many use either mean or median. However, mean is preferred as it include all the values in the data set for its calculation and any change in any of the scores will affect the value of the mean which is not the case with median or mode.

2. Given n = 15, $\Sigma x = 170$, $\Sigma x^2 = 2830$

Since one observation 20 was found be wrong and it replaced by its correct value 30

correct sum of observation = 170 - 20 + 30 = 180

correct sum of squares of observations

$$= 2830 - 20^2 + 30^2 = 3330$$

The correct variance $=\frac{3330}{15} - \left(\frac{180}{15}\right)^2 = 78$

6. Number of observations = 2n

and observations are

a, a, ----- n times, -a, -a, ---- n times

Here
$$\overline{\mathbf{x}} = \frac{\mathrm{na} + (-\mathrm{na})}{2\mathrm{n}} = 0$$

 $\Rightarrow \mathrm{S.D.} = \sqrt{\frac{\Sigma(x_i - \overline{x})^2}{n}} = \sqrt{\frac{\Sigma x_i^2}{2n}} \quad (\mathbf{Q} \ \overline{\mathbf{x}} = 0)$
 $2 = \sqrt{\frac{2\mathrm{na}^2}{2\mathrm{n}}} = |\mathbf{a}| \quad (\Rightarrow \ \mathrm{S.D.} = 2)$

10. Population A has 100 obser 101, 102, 200 and variance V_A.
Population B has 100 obser. 151, 152, 250
i.e. (101+50), (102+50), (200+50) and variance V_B

✤ Variance is independent of change of origin.

i.e. $V_B = V_A \implies \frac{V_A}{V_B} = 1$

11. Let number of boys and girls are n_1 and n_2 resp.

$$\Rightarrow \overline{\mathbf{x}} = \frac{\mathbf{n}_1 \overline{\mathbf{x}}_1 + \mathbf{n}_2 \overline{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2} \Rightarrow 50 = \frac{52 \mathbf{n}_1 + 42 \mathbf{n}_2}{\mathbf{n}_1 + \mathbf{n}_2}$$
$$\Rightarrow \mathbf{n}_1 = 4\mathbf{n}_2 \qquad \dots (1)$$
$$\therefore \text{ Percentage of boys} = \frac{\mathbf{n}_1}{\mathbf{n}_1 + \mathbf{n}_2} \times 100 = 80$$
$$[\text{using (1)}]$$

$$\Rightarrow \frac{\Sigma x_i}{n} = \overline{x}$$

$$\Rightarrow \frac{a+b+8+5+10}{5} = 6 \Rightarrow a+b=7 \dots (1)$$
and $\frac{\Sigma x_i^2}{n} - \overline{x}^2 = \sigma^2$

$$\Rightarrow \frac{a^2+b^2+64+25+100}{5} - 36 = 6.8$$

$$\Rightarrow a^2+b^2 = 25 \dots (2)$$
On solving equation (1) & (2) a = 4, b =

On solving equation (1) & (2) a = 4, b = 3 or a = 3, b = 4

13. Sum of first n even natural numbers

$$\Sigma x_i = 2 + 4 + 6 + \dots + 2n$$

12.

$$= 2[1 + 2 + 3 + \dots + n] = n(n+1)$$

Sum of square of first n even natural numbers

$$\Sigma x_i^2 = 2^2 + 4^2 + 6^2 + \dots + (2n)^2$$
$$= 2^2 [1^2 + 2^2 + 3^2 + \dots + n^2]$$
$$= \frac{2n(n+1)(2n+1)}{3}$$

Variance of first n even natural numbers

$$\sigma^{2} = \frac{\Sigma x_{i}^{2}}{n} - \left(\frac{\Sigma x_{i}}{n}\right)^{2}$$
$$= \frac{2(n+1)(2n+1)}{3} - (n+1)^{2} = \frac{n^{2}-1}{3}$$

So, statement-1 is false and statement-2 is true.

14. \rightarrow M.D. of A.P. a, a + d, a + 2d, a + 2nd about mean is

$$M.D. = \frac{n(n+1)}{2n+1} \left| d \right|$$

given numbers 1, 1 + d, 1 + 2d, 1 + 100d are in A.P. and its M.D. is 255.

$$\therefore \quad \frac{50 \times 51}{101} |\mathbf{d}| = 255 \quad \Rightarrow \quad \mathbf{d} = 10.1$$

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

15. Here
$$n_1 = n_2 = 5$$
, $\sigma_1^2 = 4$, $\sigma_2^2 = 5$, $\overline{x}_1 = 2$, $\overline{x}_2 = 4$

Variance of combined set

$$\sigma^{2} = \frac{n_{1}\sigma_{1}^{2} + n_{2}\sigma_{2}^{2}}{n_{1} + n_{2}} + \frac{n_{1}n_{2}}{(n_{1} + n_{2})^{2}}(\overline{x}_{1} - \overline{x}_{2})^{2}$$
$$= \frac{5 \times 4 + 5 \times 5}{(5 + 5)} + \frac{5 \times 5}{(5 + 5)^{2}}(2 - 4)^{2} = \frac{9}{2} + 1 = \frac{11}{2}$$

Т

16. Mediam = 25.5 a

$$x_{i} : a 2a 3a \dots 50 a$$

$$|x_{i}-M| : 24.5a 23.5a \dots 24.5a$$

$$\sum |x_{i}-M| = [24.5a+23.5a+\dots+0.5a+0.5a+\dots+24.5a]$$

$$= 2a [0.5+1.5+\dots+24.5]$$

$$\sum |x_{i}-M| = 25 \times 25 a$$

M. D. = $\frac{25 \times 25a}{50}$
 $50 = \frac{25 \times 25a}{50} \implies a = 4$

17. $\overline{\mathbf{x}} = \text{mean} = \frac{\Sigma \mathbf{x}_i}{n}$

mean of x_i is given as 30 gm

If each data is increased by some number

(i.e. 2) the mean is also increased by 2.

i.e. corrected mean = 30 + 2 = 32 gm

 $\sigma = \text{standard deviation} = \sqrt{\frac{\Sigma |\mathbf{x}_i - \overline{\mathbf{x}}|^2}{n}}$

standard deviation does not depend on change of origin so if every data is increased by same number (i.e. 2) then standard deviation remains same.

So the corrected standard deviation = 2gm.

21. Variance

$$= \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2 = \frac{4+9+a^2+121}{4} - \left(\frac{16+a}{4}\right)^2$$
$$= \frac{4(134+a^2) - 256 - a^2 - 32a}{16}$$
$$3a^2 - 32a + 280 = 16 \cdot \left(\frac{7}{2}\right)^2 = 4 \times 49$$
$$3a^2 - 32a + 84 = 0$$

MOCK TEST 1. Assume that x is not even (i.e. it is odd) so that x^2 is not even (i.e., it is odd) x is odd so that you can write $x = 2 \times k + 1$ for some integer k then $x^2 = 4k^2 + 4k + 1$ $= 2 \times (2k^2 + 2k) + 1$ Which is clearly odd. And its Convers is also rule. 2. Each of (a), (b), (c) is equivalent to $p \leftrightarrow q$. 3. Negation of p v q is $(\sim p) \land (\sim q)$. 4. $p \rightarrow (q \rightarrow p) \equiv \sim p \lor (q \rightarrow p)$ $\equiv (\sim p) \lor (\sim q \lor p)$ $\equiv (\sim q) \lor (p \lor \sim p)$ $\equiv (\sim q) \lor T = T$ \therefore p \rightarrow (q \rightarrow p) is a tautology. Also $p \rightarrow (p \lor q) \equiv \sim p \lor (p \lor q)$ $\equiv (\sim p \lor p) \lor q \equiv T \lor q = T$ \therefore p \rightarrow (p \lor q) is also a tautology. Thus, $p \rightarrow (q \rightarrow p)$ is equivalent to $p \rightarrow (p \lor q)$ 5. $p \rightarrow (q \lor r) \equiv (\sim p) \lor (q \lor r)$ $\equiv (\sim p \lor q) \lor (\sim p \lor r)$ $\equiv (p \rightarrow q) \lor (p \rightarrow r)$ Also, $p \rightarrow (q \lor r) \equiv (\sim p) \lor (q \lor r) \equiv (\sim p \lor q) \lor r$

 $\equiv \sim (p \land (\sim q)) \lor r \equiv p \land (\sim q) \rightarrow r$ Interchanging the roles of q and r in the above paragraph, we find

 $p \rightarrow (p \lor r) \equiv p \land (\sim q) \rightarrow r \equiv p \land (\sim r) \rightarrow q$ For p = T, q = F, r = F, p \rightarrow (q \lor r) is F, but (p \land q) \rightarrow (p \lor r) \lor (q \land r) is T.

 $\therefore p \to (q \lor r)$ and $p \land q \to (p \land r) \lor (q \land r)$ Are not equivalent

- 6. $\sim (p \rightarrow q) \equiv \sim (\sim p \lor q) \equiv \sim (\sim p) \land (\sim q)$ [De Morgan's Laws] $\therefore \sim (p \rightarrow q) \equiv p \land (\sim q)$
- 7. Let p: I become a teacher
 q: I will open a school
 Negation of p → q is ~ (p → q) = p ∧ ~ q
 i.e. I will become a teacher and I will not open a school.

8. Contrapositive of
$$p \rightarrow (q \rightarrow r)$$
 is
 $\sim (q \rightarrow r) \rightarrow \sim p$
 $\equiv \sim [\sim (q \rightarrow r)] \lor (\sim p)$
 $\equiv (q \rightarrow r) \lor (\sim p) \equiv (\sim p) \lor (q \rightarrow r) \equiv p \rightarrow (q \rightarrow r)$

9. $p \rightarrow r = p \rightarrow (p \rightarrow q)$ $\equiv (\sim p) \lor (p \rightarrow q) \equiv (\sim p) \lor [(\sim p) \lor q]$ $\equiv [(\sim p) \lor (\sim p)] \lor q$ $\equiv (\sim p) \lor q \equiv p \rightarrow q = r$ Thus, statement-I is not a tautology.

10.

Р	~ p	$\mathbf{p} \Rightarrow \sim \mathbf{p}$	$\sim p \Rightarrow p$	$(p \Rightarrow \sim p) \land$ $(\sim p \Rightarrow p)$	
Т	F	F	Т	F	
F	Т	Т	F	F	
Cl	early	/, (p ⇒ ~	p)∧(~p	⇒ p) is a cor	tradictio

- 11. The event follows binomial distribution with n = 5, = 3/6 = 1/2. q = 1 - p = 1/2; \therefore Variance = npq = 5/4
- 12. $\sum x = 170, \sum x^2 = 2830$ $\sum x^1 = 170 - 20 + 30 = 180$ Increase in $\sum x^2 = 900 - 400 = 500$ then $\sum x^2 = 2830 - 400 + 900 = 3330$

Variance
$$= \frac{1}{2} \sum x^{1^2} - \left[\frac{1}{2} \sum x^1\right]^2$$

 $= \frac{1}{15} \times 3330 - \left(\frac{1}{15} \times 180\right)^2$
 $= 222 - 144 = 78.$

13. (1) np = 4 npq = 2

$$q = \frac{1}{2}, p = \frac{1}{2}$$

 $n = 8$

$$p(x = 1) = {}^{8}C_{1}\left(\frac{1}{2}\right)^{8} = \frac{1}{32}$$

14. (C) $x_i = a$ for i = 1, 2, ..., n and

$$x_i = -a$$
 for $i = n, ..., 2n$

S.D. =
$$\sqrt{\frac{1}{2n} \sum_{i=1}^{2n} (x_i - \overline{x})^2}$$

 $\Rightarrow 2 = \sqrt{\frac{1}{2n} \sum_{i=1}^{2n} x_i^2} \qquad \left(\text{Sin ce } \sum_{i=1}^{2n} x_i = 0 \right)$
 $\Rightarrow 2 = \sqrt{\frac{1}{2n} 2na^2} \qquad \Rightarrow |a| = 2$

15. (D) Mode + 2Mean = 3Median \Rightarrow Mode = 3 × 22 - 2 × 21 = 66 - 42 = 24

16. (A)
$$\sigma_x^2 = \frac{\sum d_i^2}{n}$$
 (Here deviations are taken from the mean)

Since A and B both has 100 consecutive integers, therefore both have same standard deviation and hence the variance.

$$\therefore \frac{V_A}{V_B} = 1 \qquad (As \sum d_i^2 \text{ is same in both the cases})$$

17. (D)

 \Rightarrow

Mean of a, b, 8, 5, 10 is 6

$$\frac{a+b+8+5+10}{5} = 6 \implies a+b=7...(1)$$

Given that variance is 6.8

Variance =
$$\frac{(a-6)^2 + (b-6)^2 + 4 + 1 + 16}{5} = 6.8$$

 $\Rightarrow a^{2} + b^{2} = 25$ $a^{2} + (7 - a)^{2} = 25$ $\Rightarrow a^{2} - 7a + 12 = 0$ $\therefore a = 4.3 \text{ and } b = 3.4$ (using (1))

18. (D) Statement-II is true Statement-I : Sum of even natural numbers = n(n + 1)

Mean (x) =
$$\frac{n(n+1)}{n} = n+1$$

Variance = $\left[\frac{1}{n}\sum_{i=1}^{n} (x_i)^2\right] - (\overline{x})^2$
= $\frac{1}{n}\left[2^2 + 4^2 + + (2n)^2\right] - (n+1)^2$
= $\frac{1}{n}2^2[1^2 + 2^2 + + n^2] - (n+1)^2$
= $\frac{4}{n}\frac{n(n+1)(2n+1)}{6} - (n+1)^2$
= $\frac{(n+1)[2(2n+1)-3(n+1)]}{3}$
 $\frac{(n+1)[4n+2-3n-3]}{3} = \frac{(n+1)(n-1)}{3} = \frac{n^2-1}{3}$
 \therefore Statement 1 false

19. (C) Mean
$$(\bar{x}) = \frac{\operatorname{sum of quantities}}{n} = \frac{\frac{n}{2}(a+1)}{n}$$

$$= \frac{1}{2}[1+1+100d] = 1+50d$$
M.D = $\frac{1}{n}\sum |x_i - \bar{x}|$

$$\Rightarrow 255 = \frac{1}{101}[50d+49d+....d+0+d+.....+50d]$$

$$= \frac{2d}{101}\left[\frac{50 \times 51}{2}\right]$$

$$\Rightarrow d = \frac{255 \times 101}{50 \times 51} = 10.1$$
20. (A) $\sigma_x^2 = 4; \ \sigma_y^2 = 5$ $\bar{x} = 2; \ \bar{y} = 4$
 $\frac{\sum x_i}{5} = 2, \ \sum x_i = 10, \ \sum y_i = 20,$
 $\sigma_x^2 = (\frac{1}{2}\sum x_i^2) - (\bar{x})^2 = \frac{1}{5}(\sum y_i^2) - 16$
 $\sum x_i^2 = 40; \ \sum y_i^2 = 105$
 $\sigma_i^2 = \frac{1}{10}(\Sigma x_i^2 + \Sigma y_i^2) - \left(\frac{\bar{x} + \bar{y}}{2}\right)^2$
 $= \frac{1}{10}(40 + 105) - 9 = \frac{145 - 90}{10} = \frac{55}{10} = \frac{11}{2}$
21. (B) $a_1 = \sqrt{7} < 7$ Let $a_m < 7$
then $a_{m+1} = \sqrt{7 + a_m}$
 $\Rightarrow a_{m+1}^2 = 7 + a_m < 7 + 7 < 14.$
 $\Rightarrow a_{m+1} = \sqrt{14} < 7;$

So $a_n < 7 \forall n : a_n > 3.$

- 22. (D) $S(k) = 1 + 3 + 5 + \dots + (2k-1) = 3 + k^2$ $S(K+1) = 1 + 3 + 5 + \dots + (2k-1) + (2k+1)$ $= (3 + k^2) + 2k + 1 = k^2 + 2k + 4$ [from $S(k) = 3 + k^2$] $= 3 + (k^2 + 2k + 1) = 3 (k+1)^2 = S(k+1)$. Although S(k) in itself is not true but it considered true will always imply towards S(k + 1).
 - 23. (A) By the principle of mathematical induction (A) is true.

24. (C) P(n) =
$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$

$$P(2) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} > \sqrt{2}$$

Let us assume that

$$P(k) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$$
 is true

:
$$P(k+1) = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k-1}$$

has to be true

L.H.S. >
$$\sqrt{k} + \frac{1}{\sqrt{k+1}} = \frac{\sqrt{k(1+k)+1}}{\sqrt{k+1}}$$

Since $\sqrt{k(k+1)} > k$ ($\forall k \ge 0$)
 $\therefore \frac{\sqrt{k(1+k)+1}}{\sqrt{k+1}} > \frac{k+1}{\sqrt{k+1}} = \sqrt{k+1}$
Let $P(n) = \sqrt{n(n+1)} < n+1$
Statement-I is correct $P(2) = \sqrt{2 \times 3} < 3$
If $P(k) = \sqrt{k(k+1)} < (k+1)$ is true
Now $P(k+1) = \sqrt{(k+1)(k+2)} < k+2$
Since $(k+1) =
 $\therefore \sqrt{(k+1)(k+2)} < k+2$
Hence statement-II is not a correct explanation$

Hence statement- II is not a correct explanation of Statement - I

25. (B) 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ... + (361 + 380 + 400) $= \sum \frac{[r^2 + r(r+1) + (r+1)^2](r+1-r)}{(r+1)-r}$ $= 1 + \sum_{r=1}^{19} \frac{(r+1)^3 - r^3}{1}$ $= (1 + 2^3 + 3^3 + 4^3 + ... + 20^3) - (1^3 + 2^3 + 3^3 + ... + 19^3)$ $= \frac{20^2(21)^2}{4} - \frac{19^2(20)^2}{4}$ $= \frac{(20)^2}{4} [441 - 361] = 8000$

26. (C) For n = 2,
$$a_2 = 2^{2^2} + 1 = 17 = 10 + 7$$

let $a_k = 2^{2^k} + 1 = 10m + 7$ be true where $k > 1, m \in \mathbb{N}$
.....(1)

Now

$$a_{k+1} - 2^{2^{k+1}} + 1 = (2^{2^k})^2 + 1 = (10m + 6)^2 - 1$$

(by (1))

 $-10(10m^2+12m+3)+7$ ∴ Digit of one's place of a_n is 7.

- **27.** For n = 1, by $p(n):\cos\theta \cos 2\theta \cos 4\theta \dots \cos[(2^{n-1})\theta]$
 - \therefore P(1): cos θ in option (a) n = 1 we get cos θ .
 - : Ans. (a) $\sin 2^n \theta / 2^n \sin \theta$
- 28. (B) For n = 1, 1/(1.2.3) = 1/6Now, for n = 1, value of only option (b) n(n+3)/4(n+1)(n+2) is 1/6 $\therefore n(n+3)/4(n+1)(n+2)$
- 29. (C) For every n ∈ N, P(n) : $a^n b^n$ P(1) = a - b and P(2) = $a^2 - b^2 = (a - b) (a + b)$ ∴ a - b
- **30.** $p(n): n^2 + n + 1 = n(n+1) + 1$ P(1): 3 which is true. $p(n): n^2 + n + 1 = n(n+1) + 1$ which is always odd number $\therefore \forall n \in N$

