SOLVED EXAMPLES

- Ex. 1 If the mean of the series $x_{ij}, x_{jj}, \dots, x_{ij}$ is χ , then find the mean of the series $x_{ij} = 2i, i + 1, 2, \dots, n_{ij}$
- Sol. As given $\overline{\mathbf{x}} = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \dots + \mathbf{x}_n}{n}$ (1) If the mean of the series $\mathbf{x} + 2^2$, $i = 1, 2, \dots$, if by $\overline{\mathbf{x}}$, then

$$\overline{X} = (X_1 - 2) + (X_1 + 2 \cdot 2) + (X_2 - 2 \cdot 3) - \dots - (X_2 - 2 \cdot 1)$$

 $= \frac{x_1 + x_2 + \dots + x_r}{n} + \frac{2(1 + 2 + 3 + \dots + n)}{n}$ $= \frac{x}{n} + \frac{2n(n-1)}{2n} \qquad \text{form}(i)$ = x + n - 1

Ex.2 Find the mean of the following distribution :

	<u> </u>	ti ti	y	10	15
f	5	10	10	7	8

Calculation of Arithmetic Mean

λ.		ix.
4	2	20
6	10	× 60
4	10	90
10	7	70
15	8	120
	$N = \Sigma f_1 = 40$	$\Sigma f_i x_i = 360$

Ex.3 The following table shows marks secured by 140 students in an examination :

Macks	- \$4 M	10-20	20430	3(000)	40-50
Number of Students	20	24	30	- 25	20

Calculate mean marks by using all the three methods, i.e., direct method, assumed mean method and step-deviation method.

Sol. Direct method

· -

Sul

Marks	Number of Students (ii)	Viid Point (si)	110
0.40	- 20	5	100
10.20	21	15	360
20-30	10	25	1000
30-10	35	35	1260
40-50	3 7)	45	9.6
Total	140		3620

Hence, mean
$$\bar{x} = \frac{1}{\pi} \sum_{i=1}^{3} f_i x_i = \frac{3620}{140} - 25.86$$
 marks

STATISTICS

Assumed Mean Method

Maries	Number of Students (li)	Viid-Point (xi)	Deviation d: $-x_i - 25$	6 = di
0-10	20	101	20	÷00
10-20	24	15	10	240
20-30	20	a – 25	0	0
30-40	36	12	10	360
40-50	20	45	20	400
Total	140			120

Hence, there
$$x=a-\frac{1}{n}\sum_{i=1}^{d}f_{i}d_{i}=25-\frac{120}{140}=25.86$$
 that
is :

Step-Deviation Method

Marks	Number of Students (f)	Mid-Point (xi)	Deviation ur- (x; 25)/10	fin
0-10	20	ž.	2	- 0
10-20	74			- 74
20-30	(40)	a – 75	0	0
30-40	36	15	1	46
40-50	- 30	45	- 1	20
Total	140			12

Hence,
$$\mathbf{x} = \mathbf{a} - \mathbf{h} \times \frac{1}{r} \sum_{i=1}^{r} f_i \mathbf{u}$$
, [where $\mathbf{h} = 10$]

$$-25 - 10 \times \frac{12}{1 \cdot 0} - 25.86$$
 marks

Ex.4 If ϵ variable takes the value 0, 1, 2,..., n with frequencies proportional to the binomial coefficients C_a , C_p , ..., C_q then find the mean of the distribution.

Sol.
$$N = \sum f_i = k [PC_0 - K^2] + \dots + PC_i] = k2^n$$

$$\sum \left[\left[s_{1} + k \right] \left[1 + C_{1} + 2 + 3C_{2} \right] \right] = -\pi \left[c_{1} C_{1} \right] + \left[s_{1} \sum_{i=1}^{n} c_{i}^{-i} C_{i} + s_{1} \sum_{i=1}^{n} c_{i}^{-i} C_{i+1} + k \alpha^{2n-1} \right]$$

Thus $\overline{x} = \frac{1}{2^2} \ln (2^2 - 3 + \frac{u}{2})$.

Fx.5 Find the mean age in years from the frequency distribution given below ;

Class Interval of Age in Years	trequency li
25 29	: 4
V0-14	14
35-39	- 22
10-14	16
45-49	-6
50.54	5
55-59	
Total	-70

Closs Interval of Age in Years	Frequency II	Mid-Point (N)	$\begin{array}{c} Deviation \\ u_i = (v_i - 42)/5 \end{array}$	lius
75-79	<u></u>	27	1	13
30-34			2	28
35 39	23	37.	1.	22
40-44	16	a - 42	0	0
45-49	86	47	Ec.	6
oU-o1	2	52	2	10
55-54	3	57	3	9
Tutal	70			-37

Hence, mean
$$x_i = a - b = \frac{1}{3} \sum_{i=1}^{2} f_i u_i$$
 for one $b = 5$

$$-4215 \times \frac{37}{70} - 39.36$$
 years

Ex.6 Find the mean wage from the following data :

Wage (in Rs)	ROOT	8 70	860	900	920	980	. DB0
No. of workers	7	14	19	25	20	10	S

Sol. Let the assumed mean be $\Lambda = 900$ and h = 20.

Calculation of Mean

Wage (in Rs) ti	No. of workers fi	$\varphi=x_1+\alpha=x_1+900$	$y = \frac{X_1 + 900}{20}$	hin
501		-100	-5	-35
300	-11	-107		-16
sor	La .	40	20	38
200	26		. D	Į,
sg);	20	2.0	1	26
950	12	6)	- 22	10
000	5	100	5	25
NAME OF C	$N = \sum f_1 = 100$	10		∑.frm = -

We have,

$$N = 100, \Sigma f_{11} = -44, \Lambda = 900$$
 and $b = 20$

$$dt \qquad Mean = \mathbf{X} - \mathbf{A} + \mathbf{b} \left(\frac{1}{N} \sum_{i=1}^{N} \mathbf{u}_{i} \right)$$

$$\Rightarrow$$
 X 900+20 × $\frac{-44}{100}$ 900 8.5 891.2

Honee, mean wage = Rs. 891.2

64.7 Find the mean marks from the following data:

Marks	Number of Students
Balow 10	
Balow 20	9
Balow 30	17
Balow 40	-29
Balow 50	015
Balow 60	dið
Below 70	70
Delow 80	78
Helow 90	83
Below 100	85

-¥kir ks	Number of Students f	Mid-Doint (X)	Desiation u; = (x - 55)/10	lim
0-10	5	5	5	25
10/20	9 5-4	1.5	4	16
20/30	17 - 9 - 8	25	- 3	- 24
30.40	-29-17=12	35	-2	-24
40.50	43 - 29 - 16	45	1	16
50-60	60 - 45 - 15	a = 55	0	0
60-70	70 - 60 - 10	65	1	10
70-80	$78 \pm 70 - 8$	75	2	16
80-90	83 - 78 = 5	85	3	15
90-100	85 83 = 2	95	4	8
Total	85		10	- 56

Hence,
$$\overline{\mathbf{X}} = \mathbf{s} - \mathbf{h} \times \frac{1}{n} \sum_{n=1}^{\infty} \tilde{\mathbf{f}} \mathbf{u}$$
 (where $\mathbf{h} = [\mathbf{u}]$

$$-55 + 10 \times \frac{-56}{85} = 48.41$$
 there's

1	Ξ.		44	
1	•••	۲.	æ	
			-	

I ind the mean deviation about mean from the following data

M	×5	9	17	21	27
fi.	3	10	12	9	5

Sol.

3i	- A	fixi	$\left x_i - \overline{x} \right $	$f_{i} = x_{i} - \overline{x}$
3	8	21 -	12	46
4	10	90	6	60
17	12	205	2	-24
27	- (9-1	307	8	72
27	2	1.35	12	- 60
	N-4-	$\sum l(x - 6nd)$		$\sum [i_1 \cdot x_1 - \overline{x}] = 712$

$$Mean_{1}(\overline{x}) = \frac{\Sigma(x_{1})}{N} = \frac{660}{44} = 15$$

Mean deviation = $\frac{\Sigma f_i ||\mathbf{x}_i - \overline{\mathbf{x}}||}{N} = \frac{312}{44} = 7.09$

Ex.9 Find the mean age of 100 residents of a colony from the following data

Age in years (Greater them or equal to)	Number of Persons
ш	30
31	66
20	75
20	- 30
40	76
20	<i>.</i>
80	
<u>ره</u>	- Q

Age	Number of Persons fi	MichPoint 13(1	Deviation $u = (x_i - 38)(10)$	- faus	
0-10	100 90 - 10	5	3	30	
10-20	50 75-15	· 5	2	30	
20-30	75 50-25	- 25	1 I I	25	
3(-40	50-25-25	s = 35	0		
/10-50	25-15 10	15		E,	
50-00	15 5=10	55	(<u>†</u>)	22	
60-70	5-0-5	65	3	15	
Total	100			- 40	

Hence,
$$\overline{\mathbf{X}} = \mathbf{a} - \mathbf{b} \times \frac{1}{n} \sum_{i=1}^{n} [\mathbf{u}_{i+1}^{(i)} - \mathbf{b}]$$
 [where $\mathbf{b} = -\mathbf{0}$]

$$-35 \pm 10 \times \frac{40}{100} = 31$$
 years

STATISTICS

Ex, 10 Pind the mean of the following frequency distribution :

Class-interval	0 10	10 20	20 30	30 40	40 50
No. of workers F	Ψ.	10	15	3	10

Sol.

				1.00	
1.1	201	lat:	UD I		VIEW

Class-internal Mid-values (w)		Frequency C di - si - 25		$u_0 + \frac{u-25}{10}$	lia	
<u>3) 3</u>	1	963	20	2	4	
6 26	(15)	-10	0	18	0	
26 - 36	25	45	39	a	0	
30 10	330	8	312	a 🦯	8	
40 50	2430	10	23	2	20	
		$N = \sum (1 - 5)$			∑ fiu, +*	

We have,

2

$$A = 25$$
, $k = 10$, $N = 50$ and $N_{eff} = 4$

$$\Rightarrow \qquad \text{Mean} \quad \frac{\mathbf{A} + \mathbf{b}^{-1} \mathbf{N}^{-1} \mathbf{0} \mathbf{v}^{-1}}{\text{mean}} \\ \Rightarrow \qquad \text{mean} \quad 25 - 10 * \frac{4}{50} \quad 25.8 \\ \end{cases}$$

Ex.11 If the mean of the full owing data is 21.5, find the value of k

.81	5 🦷	15	25	35	45	
ti.	6	4	3	k	7	

X ₁	蒋	NA E
5	6	30
15	4	60
79	3	75
55	k	35 k
45	2	
Total	15 + k	255 - 35 k

Mean $\frac{\sum x_i f_i}{\sum f_i}$		
$\frac{155+355}{15+5}$ = 21.5		
21.5(15 k)-255 135k		
21.5 × 15 + 21.5k + 255 + 35k		
35k 21.5k-322.5 255	\rightarrow	3.5k-67.5
$k = \frac{67.5}{13.5} = 5$		

Ex. 12 Find the coefficient of earlation of first n natural numbers-

Sol. For first a natural numbers.

$$\operatorname{Mean}\left(\overline{x}\right) = \frac{n+1}{2}, \text{ S.D.}(\sigma) = \sqrt[n]{\frac{n^2 - 1}{12}}$$

$$\therefore \qquad \operatorname{coeflicient of variance} = \frac{\sigma}{x} \times 100 = \sqrt[n]{\frac{n^2 - 1}{12}} \times \frac{1}{\left(\frac{n+1}{2}\right)} \times 100 = \sqrt[n]{\frac{(n-1)}{3(n+1)}} \times 100$$

Es. 13 Calculate the median from the fullowing distribution :

Class	5 - 10	10 - 15	15-70	20-25	25 - 30	30 - 35	35 - 40	40 - 45
Frequency	5	6	1.5	10	5	1	2	2

Sol.

Class	Frequency	Connotative Brequency
5-10	5	5
10 - 15	6	
15 20	15	26
20 - 25	10	36
25 30	5	41
30-35	-1	15
35 - 40	2	47
40 - 45	2	49
1998 - Mile	N-49	

We have, N - 49

$$\frac{N}{2} = \frac{19}{2} = 24.5$$

The cumulative frequency just greater than $\frac{N}{2}$ is 26 and the corresponding class 5 15-20.

Thus 15-20 is the median class such that $\bullet = 15$, f = 15, f = 11 and h = 5

$$\therefore \qquad \text{Median} \quad \Phi = \frac{\frac{2}{2} - F}{f} \approx h - 15 - \frac{24.5 - 11}{15} \approx 5 - 15 + \frac{15.5}{3} - 19.5$$

Ex. 14 Find the values of f, and f, of the frequency, if the mean of the following frequency distribution is 2...4 and the total frequency is 40.

Class-interval	Frequency
0-8	5
8-16	ĥ
16-21	10
21-32	Q
.(2-40	9

Sol. Take $\varepsilon = 10$ and h = 3

Class-interval	Mid-Point xi	6	66
0-8	4	6	74
8-16	12	n.	12 F
16-27	20	10	200
3/-32	28	1.	7.8 f2
32-40	36	9	324
		$25 - f_1 + f_2 = 40$	$548 \pm 12\hat{r}_1 \pm 28\hat{r}_2$

.....(1)

-215	°	0
5. 21.4	8+126 +28 40	ť,
856 - 518	126 286	
M = 7f, -	• 77	
(3) × eq	(i) 🔷 🔿	
3° 7f ₂ -	-77	
ાં ગાં₂-	45	
-4f ₂ −	32	
£ - 8		15-8-7

548 | 121 | 281,

(ii)

Fix. 15 The mean square deviation of a set of nubservations x_1, x_2, \dots, x_n about a point c is defined as $\frac{1}{n} \sum_{i=1}^{n} (x_i - c)^{i}$. The mean square deviation about -2 and 2 are 18 and 10 respectively, then find standard deviation of this set of observations.

Sol.

$$\frac{1}{n} \Sigma (x_i + 2)^2 = 18 \quad \text{and} \quad \frac{1}{n} \Sigma (x_i + 2)^2 = 10$$

$$\implies \Sigma (x_i + 2)^2 = 18r \text{ and } \Sigma (x_i + 2)^2 = 10r$$

$$\implies \Sigma (x_i + 2)^2 = \Sigma (x_i + 2)^2 = 28 \text{ n} \text{ and } \Sigma (x_i + 2)^2 = 5 \text{ n}$$

$$\implies \Sigma (x_i + 2)^2 = \Sigma (x_i + 2)^2 = 28 \text{ n} \text{ and } \Sigma (x_i + 2)^2 = 5 \text{ n}$$

$$\implies \Sigma (x_i^2 + 3n + 28 \text{ r}) \text{ and } 8\Sigma x_i = 8r$$

$$\implies \Sigma (x_i^2 + 10) \text{ r} \text{ and } \Sigma x_i = r \implies \frac{\Sigma x_i^2}{n} = 10 \text{ and } \frac{\Sigma x_i}{n} = 1$$

$$\implies \sigma = \sqrt{\frac{1}{n}} \frac{1}{n} - \left(\frac{\Sigma x_i}{n}\right)^2 = \sqrt{10 - (1)^2} = 3$$

Ex16 Compute the mode for the following frequency distribution :

Size of items	0 - 4	4 - S	8 - 12	12 - 16	16-20	20-24	24 - 28	28 - 32	32 - 36	36 - 40
Frequency	5	7	9	17	12	10	6	1	1	0

Sol. Here, the maximum frequency is 17 and the corresponding class is 12-16 So 12-16 is the modal class. We have: $\bullet -12, h - 4, f - 17, f - 9$ and f - 12

we have:
$$-12, 1-4, j-17, j-9$$
 and j

$$\int Mude - \Phi = \frac{f - f}{2f - f_1 - f_3} \times h$$

$$\Rightarrow$$
 Mode = 12 = $\frac{17 - 9}{34 - 9 - 12} \times 1$

$$\Rightarrow \qquad \text{Mode} = 12 - \frac{8}{13} \times 1 = 12 - \frac{32}{13} = 12 - 10.66 = 32.66$$

Ex. 17 Find the mean deviation from the mean for the following data :

Classes	10 - 30	20 - 30	30-20	40 - 50	59 - 60	60 - 70	70 - 80
Frequencies	$\sim 2^{-5}$	3	8	11	X.	3	2

Sol.

We prepare the table as follows :

Computation of mean deviation from mean

Classes	Mid - values (X))	frequencies T	f i se	$\ x_i\cdot\widetilde{X}\ +\ x_i\cdot45\ $	$f(\alpha \cdot \overline{\lambda} $
10 - 20	15	2	.30	30	00
20 - 30	25		75	20	60
30+-40.	35	8	280	10	80
40 - 50	15	14	630	<u>0</u>	÷0
30 - 60	.55	×	443	10	80
60 - 70	65	3	.95	20	60
70 - 80	75	2	50	30	60
5	1	$r_{\rm c}=\sum f_{\rm c}=40$	$\sum f(x) = 1.800$		$\sum f \mathbf{x} = \overline{\mathbf{x}} = 400$

We have, N=40 and $\sum f_i s_i = 1800$

$$X = \frac{\sum f x_i}{N} - \frac{1800}{10} - 45$$
Now $\sum f_i | \mathbf{x}_i - \overline{\mathbf{X}} | - 400 \text{ and } \mathbf{N} - \sum f_i - 40$

$$M_i D_i - \frac{1}{N} \sum f_i | \mathbf{x}_i - \overline{\mathbf{X}} | - \frac{400}{40} - 10$$

Ex. 18 Calculate the mean and standard deviation for the following data :

Wages upto (in Rs.):	15	30	45	60	75	90	105	120
No. of workers	12	30	65	107	57	302	222	230

Sol. We are given the cumulative frequency distribution. So first we will prepare the frequency distribution as given below:

Class Interval	Commutative frequency	Mid- values	Frequency	$m = \frac{x_1 - 67.5}{15}$	frin	frai
0 - 15	12	7,5	12	4	8	192
15 - 30	30	22.5	18	-3	-54	162
30 - 45	65	37.5	35	-7	70	140
45 - 60	107	52.5	12	2 - -	- 23	42
(0 - 75	157	67.5	50	0	0	0
75 - 90	202	82.5	15	1	45	45
90 - 105	223	97.5	- 30	2	40	80
105 - 170	230	112.5	8	3	7,4	72
		-	$\Sigma f_0 = 230$	×	∑fia 105	∑6al - 733

Here A = 67.5, h = 15, N = 230, $\sum f_{\rm eff} = -105$ and $\sum f_{\rm eff}^2 = 733$

$$\Delta = -M_{280} + \Delta = h \left(\frac{1}{N} \sum f_1 u_1\right) + 67.5 = 15 \left(\frac{-105^{N}}{-330}\right) + 67.5 - 685 - 60.65$$

and $\operatorname{Vac}(\mathbf{x}) = \operatorname{tr}^2 \left[\frac{1}{N} \sum f_{i} \mathbf{u}^2 - \left(\frac{1}{N} \sum f_{i} \mathbf{u}_{i} \right) \right]$

$$\rightarrow \qquad \text{Van}X(=225\left[\frac{733}{230}-\left(\frac{105}{230}\right)^2\right]=225[3,13-0.2025]=669.9375$$

S.D. =
$$\sqrt{Vur(X)} = \sqrt{669.9375} = 25.883$$

- Fa. 19 The median of the observations 11, 12, 14,78, s = 3, s + 4, 30, 32, 35, 41 arranged in ascending order is 24. Find the value of s.
- Sol. The number of observations -n 10. Since n is even,

ModIan =
$$\frac{\left(\frac{n}{2}\right)$$
observation + $\left(\frac{n}{2} - 1\right)$ observation

$$22 = \frac{(5^{\text{th}})\text{observation } \left(6^{\text{th}}\right)\text{observation}}{2} = \frac{(x+2) - (x-4)}{2} = \frac{2x-6}{2}$$

x - 2

- 16x. 20 Find the median of the following 19, 25, 59, 48, 35, 31, 30, 32, 51, 1125 is replaced by 52 and 19 by 29, what will be the new median ?
- Sol. Arranging the data in ascending order (19, 25, 30, 31, 32, 35, 48, 51, 59).
 The number of observations n = 9 (odd).

$$h \qquad \text{Median} = \left(\frac{9+1}{2}\right) \text{observation} = 5 \text{th observation} = 32.$$

Hense modian - 32.

If 25 is replaced by 52 and 19 by 29, the new observations is ascending order are :

29.30,31,32.35.48,51.59

- ... New median 5⁴ observation 35.
- Ex. 21 Find the value of p, if the mean of the following distribution is 20.

×.	15	17	19	20 р	23
ť	2	3	4	Sp	6

¥i	- fi	NB
15	2	.30
17	3	51
19	4	76
20 p	Sp	$100p + 5p^2$
23	6	1.38
Total	15 Sp	5p ² + 100p + 295

$$Mean = x = \frac{1}{n} \Big(\sum x_i \Big)$$

 $20 = \frac{5p^2 - 100p + 295}{15 - 5p}$

5p² + 100p + 295 = 300 - 100p

5p - 5 = 0

5(p* 1) = 0

(p 18p 11-0

p = 1 or p = -1

F.s. 22 Subpose that samples of polyethyleric bags from two manufactures. A and B are tested by a prospective bayer for bursting pressure, with the following results:

Bursting prossure	Number of bags manufactured by manufacturer				
in kg	Δ) <u>B</u>			
5 - 10	2	ų			
10 - 15	9	ü			
15-20	29	18			
20 - 25	54	- 32			
25-30	11	27			
30 - 35	5	13			

Which set of the hag has the highest average bursting pressure ? Which has more uniform pressure ?

561. For determining the set of bags having higher average bursting pressure, we compute mean and for finding on set of bags having more uniform pressure we compute coefficient of variation.

Manufacturer A

Computation of mean and stundard deviation

Bursting pressure	Mid - sulues Xi	y)	$m = \frac{x_1 + 17.5}{5}$	J (0)	$f(0)^2$
5 - 10	7.5	2	-2	્રા	8
0 - 15	2.5	9	-1	-9	9
5 - 20	7.5	29	Ø	0	Ũ
20 - 25	22.5	54	- L	54	54
25 - 30	27.5	н	22	22	- 14
10 35	12.5	5 N = $\Sigma \beta$ = 110	1 ∑11=3	$\frac{15}{\Sigma f(n) = 78}$	45 21 ai = 160

$$\begin{split} \bar{\mathbf{x}}_{x} &= \mathbf{a} + \mathbf{h} \left(\frac{\sum f(\mathbf{a}_{1})}{N} \right) \\ \Rightarrow & \mathbf{X}_{x} = 17.5 - 5 \times \frac{78}{110} \qquad [(2, \mathbf{h} - 5, \mathbf{a} - 17.5)] \\ \Rightarrow & \bar{\mathbf{x}}_{y} = 17.5 - 3.5 - 2 \\ & \sigma_{x}^{2} = \mathbf{h}^{2} \left[\frac{1}{N} \sum f_{1} \mathbf{a}_{1}^{2} - \left(\frac{1}{N} \sum f_{1} \mathbf{a}_{1} \right)^{2} \right] \\ \Rightarrow & \sigma_{x}^{2} = 2s \left[\frac{160}{110} - \left(\frac{78}{N} \sum f_{1} \mathbf{a}_{1} \right)^{2} \right] \\ \Rightarrow & \sigma_{x}^{2} = 2s \left[\frac{160}{10} - \left(\frac{78}{N} \sum f_{1} \mathbf{a}_{1} \right)^{2} \right] \\ \Rightarrow & \sigma_{x}^{2} = 2s \left[\frac{160}{10} - \left(\frac{78}{N} \sum f_{1} \mathbf{a}_{1} \right)^{2} \right] \\ \Rightarrow & \sigma_{x}^{2} = \sqrt{23.79} = 4.87 \\ \land & \text{Coefficient of variation} = \frac{\sigma_{x}}{X_{x}} \times 100 - \frac{4.87}{21} \times 100 - 23.19 \end{split}$$

Manufacturer B

Bursting pressure	Mid-values _{Xi}	ħ	$u_{i} - \frac{x_i - 17.5}{5}$	f i ui	$f(\mathbf{u}_i^2)$
5 - 10	7.5	0	-2	-18	36
10 - 15	12,5	11		-11	11
15 - 20	17.5	18		0	0
20-25	22.5	32	1 1	32	32
25 - 70	27.3	27	2	.34	108
30-35	32.5	13	3	- 39	117
1.000	and and a	$N = \sum f = 110$	<u>∑</u> u =3	$\Sigma f(u) = 96$	∑frui = 304

$$X_{k} = a + b \left(\frac{\sum f_{k} x}{N} \right)$$

$$\Rightarrow \quad X_{k} = 17.5 + 5 \times \frac{96}{110} = 17.5 + 4.36 - 21.81,$$

$$\sigma_{0}^{*} = h^{2} \left[\frac{1}{N} \left(\sum f_{0} v_{1}^{*} \right) - \left(\frac{1}{N} \sum f_{1} v_{1} \right)^{2} \right]$$

$$\Rightarrow \quad \alpha_{0}^{2} = -25 \left[\frac{204}{110} - \left(\frac{96}{110} \right)^{2} \right] \qquad \Rightarrow \alpha_{0}^{2} = -35 \left(\frac{33440 - 9216}{110 \times 110} \right) - 50.04,$$

$$v_{k} = 7.07,$$

$$\therefore \quad \text{Coefficient of variation} \quad \frac{\pi_{0}}{8_{k}} \times 105 - \frac{7.07}{21.81} \times 100 - 32.41,$$

We observe that the average bristling pressure 's higher for manufacturer B. So, bays manufactured by B have higher bursting pressure.

The coefficient of carlation is less for manufacturer A. So bags manufactured by A have more uniform pressure.

E	xercise # 1		Single Correct Choice	Type Questions
	The median of the num	nbais 6, 14, 12, 8, 10, 9,	11,is:-	
	(A) 8	(B) 10	(C) 10.5	(D) 1:
	If the mean of noiser	vations $1^{\prime}, 2^{\prime}, 3^{\prime}_{1,ann}$ r	² is <mark>160</mark> , then n is equal to-	
	(A)1.	(11) 12	(C)23	(0) 22
	An additional observe of the series was	nion 15 is included in a	series of 11 observations and its	mean remains unaffected. The m
	(A) I_	(B) 15	(C) 165	(D)-1
	The geometric mean (i 'the first a terms of the	series a ar. ar, is-	
	(A) 2.42	(B) a^i	(C) ar ^{6, 22}	(T) ar ¹¹
	If standard doviation o	ef variato x, is 10, then v	ariance of the variate (50 + 5x) v	vil. be-
	(A) 50	(11)250	(C) 500	(D) 2500
	Medium is independe:	n of change of :-		
	(A) only Origin		(II) only Sea e	
	(C) Origin and scale l	oofli	(D) Noither origin nor s	cole
	In a batch of 13 studer The median marks are	nts, 4 have failed. The m	aries of successful candidates are	41, 57, 38, 61, 36, 35, 71, 50 and
	(A)10	(B) 50	(O)·	(D) cannot be determined
	Mean of the first oter	ms of the A.P. 1, (a d).	fa 2ć),is-	
	(A) a nd	(II) 3 (n-1)d	<mark>(€)</mark> alın 1jil	(1)) a 1 ma
	The median and stand (A) median and S.D. v (B) median will increa (C) median will remai (D) median and S.D. v	ard deviation (S.D.) of will increased by 2 used by 2 bit, S.D. will re- n same but S.D. will incr vill remain same	a distribution will be, If each terr main same reased by 2	n is increased by 2 -
0.	If values a. b. cj.	p occurs with frequenc	ics ¹⁰ C ₀ , ¹⁰ C ₁ , ¹⁰ C ₂ ,, ¹⁰ C ₁₀	then mode is
	(A)a	(II) e	1(.))	(D)k
I.	The mode of the fallo	wing fireq. dist is :-		
		Class 1-10 fr 5	11-20 21-30 31-40 41-5 7 8 5 4	0
	(A)24	(B) 23.83	(C)27.16	(D) None of these

12.	Median of ⁵⁷ C ₀₇ ⁵⁴ C ₁₅ ⁵⁷ C ₅ (when n 1s even) is -	²⁰ C _a		
	(A) ^{>} C.	(III) ³ ' C _n 2	(C) ^{**} C _{n-1}	(D) None of these
13.	The mean deviation about	ut median of variales 13, 14	4, 15,, 99, 10fcis	
	(A) 1936	(B) 21.5	(C) 23.5	(D) 22
14.	The S.D. of the first nua	atural numbers is-		
	(A) $\sqrt[n^2 - 1]{2}$	(B) $\sqrt[4]{\frac{1}{9}n^2 - 1}{3}$	(C) $v_{1}^{\frac{1}{2}n^{2}-1}$	(D) $\sqrt{\frac{n^2 - 1}{12}}$
15.	A series which have nam	nbers three 4's, cour 5's, five	: 6's, eight 7's, seven 8's and si	x 9's from the mode of numbers is :-
	(A)9	(B) 8	(C)7	(D)é
16.	The A.M. of first n terms	of the series 1.3.5, 3.5.7, 5	.7.9,, is-	
	(A) $\exists r' = 6n' = 7n$	(B) π' + 8n' = √π − 1	$(C) 2n^3 - \delta n^3 - 7n - 2$	$(D) 2n^2 = 8n^2 = 7/n - 2$
17,	The sum of squares of d	eviations for 10 observatio	ons taken trom mean 50 is 250	0. The co-efficient of variation is
	(A) 50%5	(B) 10%5	(C) 40%5	(D) None of these
18.	$The \operatorname{A.M. of PC}_{V^{S}} C_{L^{S}}^{T} C$	'₂¥C_is -		
	2"	211	3"	2"
	(A) <u>u</u>	(B) <u> </u>	<u>(c)</u> <u>n</u> 1	$\frac{(D)}{n-1}$
19.	If the mean and S.D. of	n observations $\mathbf{x}_p, \mathbf{x}_p, \dots, \mathbf{x}_k$	are $\overline{\mathbf{x}}$ and σ resp, then the su	m of squares of observations is :-
	$(\mathbf{A})\mathbf{n}(\mathbf{\sigma}^{*}+\mathbf{\overline{v}}^{*})$	(B)u(σ`-₹`)	$(\mathbf{C})\mathbf{n}(\overline{\mathbf{X}}^*-\sigma^*)$	(D) None of these
20.	The Harmonic mean of 3	.7.8.10.14 is-		
	(A) $\frac{3+7+8+10-14}{5}$		(B) 3 + 7 + 8 + 10 + 14	
	$(C) \begin{array}{c} 1 & 1 & 1 & 1 \\ 5 & 7 & 8 & 1 \\ (C) & 5 & 5 \end{array}$		$\begin{array}{c} (D) \\ \frac{1}{5} - \frac{1}{7} + \frac{1}{8} - \frac{1}{10} - \frac{1}{1} \end{array}$	
31.	The S.D. of the followin	g tree, dist. :-	10 20 20 20 20 20	
		(JASS ()- () / 1	3 4 2	
	(A)3.8	(8) 9	(C) 8.1	(11) 0.9

STATISTICS

22.	For a normal dist :-						
	(A) mean = median	(B) median = mode	(C) mean = mode	(D) mean = median = mode			
23.	Mean deviation of the obse	ervations 70, 42, 63, 34, 44, 5	54, 55, 46, 38, 48 from media	an is :-			
	(A) 7.8	(B) 8.6	(C) 7.6	(D) 8.8			
24.	If \overline{X}_1 and \overline{X}_2 are the me	ans of two series such that	$\overline{X}_1 < \overline{X}_2$ and \overline{X} is the me	an of the combined series, then-			
	(A) $\overline{\mathbf{X}} < \overline{\mathbf{X}}_1$	(B) $\overline{\mathbf{X}} > \overline{\mathbf{X}}_2$	(C) $\overline{X}_1 < \overline{X} < \overline{X}_2$	$(\mathbf{D}) \ \overline{\mathbf{X}} = \frac{\mathbf{X}_1 + \mathbf{X}_2}{2}$			
25.	If the mean of numbers 27, 3	31, 89, 107, 156 is 82, then the	e mean of numbers 130, 126,	68, 50, 1 will be-			
	(A) 80	(B) 82	(C) 75	(D) 157			
26.	The coefficient of mean de	eviation from median of obse	ervations 40, 62, 54, 90, 68,	76 is :-			
	(A) 2.16	(B) 0.2	(C) 5	(D) None of these			
27.	If the mode of a data is 18	and the mean is 24, then me	edian is				
	(A) 21	(B) 24	(C) 22	(D) 18			
28.	The weighted mean of first	st n natural numbers when t	heir weights are equal to co	rresponding natural number, is :-			
	(A) $\frac{n+1}{2}$	(B) $\frac{2n+1}{3}$	(C) $\frac{(n+1)(2n+1)}{6}$	(D) None of these			
29.	The S.D. of a variate x is c	5. The S.D. of the variate w	where $\frac{ax+b}{c}a$, b, c are cons	tants, is			
	$(\mathbf{A})\left(\frac{\mathbf{a}}{\mathbf{c}}\right)\boldsymbol{\sigma}$	(B) $\left \frac{a}{c} \right \sigma$	(C) $\left(\frac{a^2}{c^2}\right)\sigma$	(D) None of these			
30.	The mean deviation from (A) greater than the mean (B) less than the mean dev (C) equal to the mean dev (D) maximum if all values	median is deviation from any other co viation from any other centra iation from any other centra are positive	entral value al value al value				
31.	The first of the two sample	s has 100 items with mean 1	5 and S.D. 3. If the whole gr	oup has 250 items with mean 15.6			
	and S.D. = $\sqrt{13.44}$ then S.D. of the second group is						
	(A) 5	(B) 4	(C) 6	(D) 3.52			
32.	In a group of students, the students of group is 61 kg	mean weight of boys is 65 k , then the ratio of the numb	g. and mean weight of girls per of boys and girls in the g	is 55 kg. If the mean weight of all group is :-			
	(A) 2:3	(B) 3 : 1	(C) 3:2	(D) 4:3			
33.	If the mean of the set of nu	umbers $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ is $\overline{\mathbf{X}}$, 1	then the mean of the number	$\operatorname{rs} \mathbf{x}_{i} + 2\mathbf{i}, \ 1 \le \mathbf{i} \le \mathbf{n} \ \mathbf{is}$			
	(A) $\overline{\mathbf{x}} + 2\mathbf{n}$	(B) $\bar{x} + n + 1$	(C) $\bar{x} + 2$	(D) $\overline{\mathbf{x}} + \mathbf{n}$			
	Add. 41-42	A, Ashok Park Main, 1 + 91 – 93	New Rohtak Road, Ne 50679141	ew Delhi-110035			

34.	If each observation of a dist,, whose variance is σ' , is multiplied by λ , then the S.D. of the new new observations is-					
	$(A)\phi$	(#)Å0	(C)[Ko	(0) λ ² n		
35.	$\lim_{t \to 0} \sum_{i=1}^{n} (s_i - 15) = 12$	$\sum_{i=1}^{10} (x_i - 15)^2 = 18$ then	where $S(D,olobservationsx$, $x_{\frac{1}{2}}$.			
	(A) -	(B) <u>3</u>	(C) $\frac{4}{5}$	(D) None of these		
36.	The best statistical (A) Mean deviation	measure used for comparing	the two series is (B) Rango			
	(C) Coefficient of v	rariation	(D) Coefficient of range			
37.	The mean of a set of	of numbers is 5. If each numb	per is decreased by λ_i the mean i	of the new ser is-		
	(A) 🕅	(II) ₹ + λ	(C) $\lambda = \overline{x}$	$(0) = \lambda - \lambda$		
38.	The H.M. of the re-	siprocal of first matural north	bers is			
	(A) $\frac{n+1}{2}$	(11) $\frac{1}{\left(1-\frac{1}{2}+\frac{1}{2}+\dots+\frac{1}{2}+\dots+\frac{1}{2}\right)}$	$\frac{1}{1}$ (C) $\frac{2}{n+1}$	(D) None of these		
39.	Mode of the follow	ring frequency distribution				
	N	5 6 7 8				
	Г б	7 10 8 3				
	(A)5	(B) é	(C) 8	(<mark>())</mark> 10		
40.	If mean = (3 modiar	r – moder x, then the value of y	c is-			
	(A) I	(B)2	(C) 1/2	(D) 3/2		
41.	Variance is indeper	aden: of change of-				
	(A) only origin	(B) only scale	(C) origin and scale both	(D) none of these		
42.	If the difference be	tween mean and mode is 63. th	he difference between mean and	lenedian is		
	(A) 189	(B)21	(C)31.5	(D)48.5		
43.	The observations 29 value of x is :-	0, 92, 48, 50, x. x = 2, 72, 78, 8	4,95 are arranged in ascending or	der and their median is 63 then the		
	(A)6.	(B)62	(C) 62.5	(D) 63		
44.	The H. M. of fullow					
	<u>xi</u> 2	6 9 12				
	6 1	2 83 4				
	(A)9	(B)3	(C) 7.5	(D) None of these		
45.	If the mean of a se	et of observations x_p, x_p, \dots	$\dots \times_{10}$ is 20, then the mean of $x_{\rm constant}$	1. x ₂ + 8, x ₁ + 12, x ₁ + 10 is-		
	(A)34	(15) 42	(C)38	(D) <d< td=""></d<>		
_						

57.	The median of an arranged series of n even observations, will be :-					
	(A) $\left(\frac{n+1}{2}\right)$ th term		(B) $\left(\frac{n}{2}\right)$ th term			
	(C) $\left(\frac{n}{2}+1\right)$ th term		(D) Mean of $\left(\frac{n}{2}\right)$ th and	$\left(\frac{n}{2}+1\right)$ th terms		
58.	The value of π upto 25 dec	imal places is 3.1415926535	5897932384626433. If we m	nake a frequency distribution of the		
	digits from 0 to 9 after the	e decimal point then mode o	f the distribution is			
	(A) 3	(B) 4	(C) 5	(D) 8		
59.	In any discrete series (when (A) M.D. = S.D.	en all the value are not sam (B) M.D. > S.D.	e) the relationship between (C) M.D. < S.D.	M.D. about mean and S.D. is- (D) M.D. \leq S.D.		
60.	If the coefficient of variaties (A) 40	ion and standard deviation o (B) 30	of a distribution are 50% and (C) 20	1 20 respectively, then its mean is- (D) None of these		
61.	Product of n positive num (A) 1	nbers is unit. The sum of th (B) n	ese numbers can not be les (C) n ²	s than- (D) none of these		
62.	Which of the following ar (A) Standard deviation	e dimensionless ? (B) Mean deviation	(C) variance	(D) coefficient of variation		
63.	The variate x and u are rel	lated by $u = \frac{x-a}{h}$ then cor	rect relation between σ_x and	$d \sigma_u$ is :-		
	(A) $\sigma_x = h\sigma_u$	(B) $\sigma_x = h + \sigma_u$	(C) $\sigma_u = h\sigma_x$	(D) $\sigma_u = h + \sigma_x$		
64.	The mean of n values of a values will be-	distribution is $\overline{\mathbf{x}}$. If its first	value is increased by 1, seco	ond by 2, then the mean of new		
	(A) $\overline{\mathbf{X}} + \mathbf{n}$	(B) $\bar{x} + n/2$	(C) $\overline{\mathbf{x}} + \left(\frac{\mathbf{n}+1}{2}\right)$	(D) None of these		
65.	The algebraic sum of devi	iations of 10 observations m	neasured from 15 is 7. The r	nean is		
	(A) 105	(B) 70	(C) 15.7	(D) none of these		
66.	The standard deviation where a, b, c are constant	on of variate x _i is σ. ts is-	Then standard deviat	ion of the variate $\frac{ax_i + b}{c}$,		
			$\begin{pmatrix} 2 \end{pmatrix}$			
	$(\mathbf{A})\left(\frac{\mathbf{a}}{\mathbf{c}}\right)\boldsymbol{\sigma}$	(B) $\left \frac{a}{c}\right \sigma$	$(\mathbf{C})\left(\frac{\mathbf{a}}{\mathbf{c}^2}\right)\boldsymbol{\sigma}$	(D) None of these		
67.	In a frequency dist. , if d _i is	s deviation of variates from	a number \bullet and mean = \bullet +	$\frac{\Sigma f_i d_i}{\Sigma f}$, then \bullet is:-		
	(A) Lower limit(C) Number of observation	n	(B) Assumed mean(D) Class interval	- <u>1</u>		
68.	The M.D. of the variates 4	0, 62, 68, 76, 54 from A.M. i	S			
()	(A) 9.4	(B) 10	(C) 10.4	(D) 11		
69.	It each observation of a d (A) σ	1st. whose S.D. is σ , is increased (B) $\sigma + \lambda$	eased by λ , then the variance (C) σ^2	(D) $\sigma^2 + \lambda$		
70.	The mean deviation from	the mean of the increasing A	A.P. $a, a + d, a + 2d, \dots$, a + 2nd is		
	(A) n(n+1)d	(B) $\frac{n(n+1)d}{2n+1}$	(C) $\frac{n(n+1)d}{2n}$	(b) $\frac{n(n-1)d}{2n+1}$		

Comprehension # 2

To analyze data using mean, median and mode, we need to use the most appropriate measure of control tendency. The mean is useful for predicting future results when there are no extreme values in the data set. The median may be more useful than the mean when there are extreme values in the data set as it is not affected by the extreme values. The median is most commonly cuoted figure used to measure property prices as mean property price is affected by a few expensive properties that are not representative of the general property market. The mode is useful when the most common item or characteristic of a data set is required. The mode has applications in prioring. It is important to prior more of the most popular books.

1. For the data shown, the value of appropriate measure of central tendency is

	Staff	1	2	4	5	6	2	
	solary (In ropees)	15000	10000	7000	12000	90000	95000	
(A)95000	(B) 18	350		(C)9	000		(D) 12	

2. For a normally distributed sample as shown, then most appropriate representative of data is

3. Based upon collection of data of numbers of days it snows, rains or it is sunny in a month for three month December, January and February of last year, the weather forecast points that snow is likely to be in January. Which measure is used for this forecast ?

(A) Mean	(B) Mode	(C) Median	(D) Range
----------	----------	------------	-----------

E	xercise # 3	Part # I Prev	vious Year Questio	ns] [AIEEE/JEE-N	IAIN]
1.	The mean of Mathemat marks is 75. Then the m	ics marks of 100 students o ean of the marks of girls in	f a class is 72. If the nu the class will be-	mber of boys is 70 and	the mean of their [AIEEE-2002]
	(1) 60	(2) 62	(3) 65	(4) 68	
2.	In an experiment w $\sum x = 170$. One observ Then the corrected vari	ith 15 observations of ration that was 20 was fou ance is-	x, the following re nd to be wrong and it	esults were availabl t was replaced by it's	e $\sum x^2 = 2830$, correct value 30. [AIEEE-2003]
	(1) 8.33	(2) /8	(3) 188.66	(4) 177.33	
3.	The mean and variant Then $P(X = 1)$ is-	ce of a random variable 2	X having a binomial	distribution are 4 and	d 2 respectively. [AIEEE-2003]
	(1) $\frac{1}{4}$	(2) $\frac{1}{32}$	(3) $\frac{1}{16}$	(4) $\frac{1}{8}$	
4.	The median of a set of 9 by 2, then the median o	distinct observations is 20. f the new set-	.5. If each of the largest	t four observations of th	ne set is increased [AIEEE-2003]
	(1) remains the same as	that of the original set	(2) is increased by	2	
	(3) is decreased by 2		(4) is two times the	original median	
5.	Consider the following	statements-			[AIEEE-2004]
	(A) Mode can be comp	uted from histogram			
	(B) median is not indep	endent of change of scale			
	(C) variance is independe	ent of change of origin and sca	le		
	which of these are correct (1) only (A) and (B)	(2) only (P)	(3) only (A)	$(\mathbf{A})(\mathbf{A})(\mathbf{B})$ and	1(C)
	(I) only (A) and (B)		(5) only (A)	(4) (A), (B) and	1 (C)
6.	In a series of 2n observolution observations is 2, then	vations, half of them equal a	a and remaining half e	qual –a. If the standard	deviation of the [AIEEE-2004]
	(1) 2	(2) √2	(3) $\frac{1}{n}$	(4) $\frac{\sqrt{2}}{n}$	
7.	The mean and the varia	nce of a binomial distributio	on are 4 and 2 respectiv	vely. Then the probabili	ty of 2 success is-
	(1) $\frac{128}{256}$	(2) $\frac{219}{256}$	(3) $\frac{37}{256}$	(4) $\frac{28}{256}$	[AIEEE-2004]
8	If in a frequency distrib	ution the mean and median	are 21 and 22 respectiv	vely then its mode is a	nroximately-
	(1) 24.0	(2) 25.5	(3) 20.5	(4) 22.0	[AIEEE-2005]
9.	Let x_1, x_2, \dots, x_n be n o	bservations such that $\sum x_i^2$	= 400 and $\sum x_i = 8$	0 . Then a possible val	ue of n among the
	following is-		—		[AIEEE-2005]
	(1) 12	(2) 9	(3) 18	(4) 15	

Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

10.	Suppose a population	n A has 100 observations 10	01, 102, 200 and other p	population B has 100	observations		
	151, 152, 250. If V	$V_{\rm A}$ and $V_{\rm B}$ represent the varian	nce of two population respect	tively then $\frac{V_A}{V_B}$ is-	[AIEEE-2006]		
	(1) 9/4	(2) 4/9	(3) 2/3	(4) 1			
11.	The average marks o then the percentage	f boys in a class 52 and tha of boys in the class is-	t of girls is 42. The average	marks of boys and gi	irls combined is 50 [AIEEE-2007]		
	(1) 20	(2) 80	(3) 60	(4) 40			
12.	The mean of the num values of a and b?	bers a, b, 8, 5, 10 is 6 and	the variance is 6.80 then wh	nich one of the follow	ving gives possible [AIEEE-2008]		
	(1) $a = 0, b = 7$	(2) $a = 5, b = 2$	(3) $a = 1, b = 6$	(4) $a = 3, b = 4$	4		
13.	Statement-I:						
	The variance of first	t n even natural numbers i	$s \frac{n^2 - 1}{4}$.				
	4 Statement-II :						
	The sum of first n natural numbers is $\frac{n(n+1)}{2}$ and the sum of squares of first n natural numbers is						
	$\frac{n(n+1)(2n+1)}{6}$				[AIEEE-2009]		
	 Statement-1 is fr Statement-1 is fr Statement-1 is fr Statement-1 is tr Statement-1 is tr 	rue, Statement–2 is false. alse, Statement–2 is true. rue, Statement–2 is true ; S rue, Statement–2 is true ; S	Statement–2 is a correct exp Statement–2 is not a correc	planation for Stateme t explanation for sta	ent–1. tement–1.		
14.	If the mean deviation	of the numbers $1, 1 + d, 1$	+ 2d,, 1 + 100d from t	heir mean is 255, the	en that d is equal to		
	(1) 10.1	(2) 20.2	(3) 10.0	(4) 20.0	[AIEEE-2009]		
15.	For two data sets eac be 2 and 4 respective	th of size is 5, the variances ely, then the variance of the	s are given to be 4 and 5 and e combined data set is :-	d the corresponding	means are given to [AIEEE-2010]		
	(1) $\frac{5}{2}$	(2) $\frac{11}{2}$	(3) 6	(4) $\frac{13}{2}$			
16.	If the mean deviation	n about the median of the	numbers a, 2a,, 50a	is 50, then a equals	:- [AIEEE-2011]		
	(1) 4	(2) 5	(3) 2	(4) 3			
17.	A scientist is weighing each of 30 fishes. Their mean weight worked out is 30 gm and a standard deviation of 2 gm. Later, it was found that the measuring scale was misaligned and always under reported every fish weight by 2 gm. The correct mean and standard deviation (in gm) of fishes are respectively : [AIEEE-2011]						
	(1) 28, 4	(2) 32, 2	(3) 32, 4	(4) 28, 2			

STATISTICS

18.	Let $x_1, x_2,, x_n$ be	Let x_1, x_2, \dots, x_n be n observations, and let \overline{x} be their arithmetic mean and σ^2 be their variance.						
	Statement–I : Variance of $2x_1, 2x_2, \dots, 2x_n$ is $4\sigma^2$.							
	Statement-II : Arithr	netic mean of $2x_1, 2x_2,$	x_{n} , $2x_{n}$ is $4\overline{x}$.		[AIEEE-2012]			
	(1) Statement–I is tru	e, Statement-II is false.						
	(2) Statement–I is fal	se, Statement-II is true.						
	(3) Statement–I is tru	(3) Statement–I is true, Statement–II is true; Statement–II is a correct explanation for Statement–1.						
	(4) Statement–I is true, Statement–II is true ; Statement–II is not a correct explanation for Statement–1.							
19.	The variance of first 5		[JEE Main 2014]					
	(1) $\frac{833}{4}$	(2) 833	(3) 437	(4) $\frac{437}{4}$				
20.	The negative of : s	[JEE Main 2015]						
	(1) $s v (r v : s)$	(2) $s \wedge r$	(3) s ∧ : r	(4) s ^ (r ^	: s)			
21.	If the standard deviation	If the standard deviation of the numbers 2, 3, a and 11 is 3.5, then which of the following is true? [JEE Main 2016]						
	(1) $3a^2 - 32a + 84 = 0$		(2) $3a^2 - 34a + 91 = 0$)				
	(3) $3a^2 - 23a + 44 = 0$		$(4) 3a^2 - 26a + 55 = 0$)				

		MOCH	K TEST			
1.	Converse of the statement: If a n (A) If a number n ² is even , then (C) Neither n nor n ² is even	umber n is even, n is even	 then n² is even , is : (B) If n is not even, then (D) none of these 	n n ² is not even		
2.	Which of the following statemen(A) p if and only if q(C) p is necessary and sufficient	it is not equivalen for q	t to p ↔ q ? (B) q if and only if p (D) none of these			
3.	Negation of the statement p: for every real number, either $x > 1$ or $x < 1$ is (A) There exist a real number x such that neither $x > 1$ nor $x < 1$ (B) There exist a real number x such that $0 < x < 1$ (C) There exist a real number x such that neither $x \ge 1$ nor $x \le 1$ (D) none of these					
4.	The statement $p \rightarrow (q \rightarrow p)$ is eq (A) $p \rightarrow (p \rightarrow q)$ (B) $p \rightarrow$	uivalent to \rightarrow (p \vee q)	(C) $p \rightarrow (p \land q)$	(D) $p \rightarrow (p \leftrightarrow q)$		
5.	The statement $p \rightarrow (q \lor r)$ is not (A) $(p \rightarrow q) \lor (p \rightarrow r)$ (B) $p \land$	equivalent to $(\sim q) \rightarrow r$	(C) $p \land (\sim r) \rightarrow q$	(D) $p \land q \rightarrow (p \land r) \lor (q \land r)$		
6.	Negation of $p \rightarrow q$ is (A) $p \land (\sim q)$ (B) $\sim p$	• ∨ q	(C) ~ q \rightarrow ~ p	(D) p ∨ (~ q)		
7.	 The negation of the statement "If I become a teacher, then I will open a school", is : (A) I will become a teacher and and I will not open a school. (B) Either I will not become a teacher or I will not open a school. (C) Neither I will become a teacher nor I will open a school. (D) I will not become a teacher or I will open a school. 					
8.	Contrapositive of $p \rightarrow (q-r)$ is l (A) $p \rightarrow (q \sim r)$ (B) (p	$\frac{\text{logically equivale}}{\rightarrow r) \rightarrow \sim p}$	nt to (C) $p \lor q \rightarrow r$	(D) $(q \rightarrow r) \rightarrow p$		
9.	 Let p, q and r be the statements. p : X is a rectangle q : X is a square r : p → q Statement - I: p → r is a tautology. Statement - II: A tautology is equivalent to T. (A) Statement - I is true, Statement - II is true, Statement - II is a correct explanation for Statement - 1 (B) Statement - I is true, Statement - II is true, Statement - II is not a correct explanation for Statement - 1 (C) Statement - I is False, Statement - II is True 					
10.	The propositions $(p \Rightarrow \sim p) \land (\sim (A)$ Tautology and contradiction (C) Contradiction	p ⇒ p) is a	(B) Neither tautology nor contradiction(D) Tautology			
11.	A die is tossed 5 times. Getting a success is (A) 8/3 (B) 3/8	n odd number is o	considered a success. The (C) 4/5	en the variance of distribution of (D) 5/4		

12.	In an experiment with 15 observations on x, then following results were available : $\sum x^2 = 2830$, $\sum x = 170$ One observation that was 20 was found to be wrong and was replaced by the correct value 30. Then the corrected variance is						
	(A) 78.00	(B) 188.66	(C) 177.33	(D) 8.33			
13.	The mean and variance of a random variable having a binomial distribution are 4 and 2 respectively, then $P(X = 1)$ is						
	1	1	1	-1			
	(A) $\frac{1}{32}$	(B) $\frac{16}{16}$	$(\mathbf{C}) \frac{1}{8}$	$(D)\frac{1}{4}$			
14.	In a series of 2n observations, half of them equal a and remaining half equal –a. If the standard deviation of t observations is 2, then a equals						
	(A) $\frac{1}{n}$	(B) √2	(C) 2	(D) $\frac{\sqrt{2}}{n}$			
15.	If in a frequently distribution, the mean and median are 21 and 22 respectively, then its mode is approximately.						
	(A) 22.0	(B) 20.5	(C) 25.5	(D) 24.0			
16.	Suppose a population A has 100 observations 101, 102,, 200, and another population B has 100 observat						
	151, 152, 250. If V_A and V_B represent of the two populations, respectively, then $\frac{V_A}{V_B}$ is						
	(A) 1	(B) 9/4	(C) 4/9	(D) 2/3			
17.	The mean of the numbers a, b, 8, 5, 10 is 6 and the variance is 6.80. Then which one of the following gives possible values of a and b ?						
	(A) $a = 0, b = 7$	(B) $a = 5, b = 2$	(C) $a = 1, b = 6$	(D) $a = 3, b = 4$			
18.	Statement-I: The variance of first n even natural numbers is $\frac{n^2 - 1}{4}$						
	Statement-II: The sum of first n Natural numbers is $\frac{n(n+1)}{2}$ and the sum of squares of first n natural numbers is $\frac{n(n+1)(2n+1)}{6}$ (A) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for statement-I (B) Statement-I is true, Statement-II is true; Statement-II is not correct explanation for statement-I (C) Statement-I is true, Statement-II is false (D) Statement-I is false, Statement-II is true						
19.	If the mean deviation of number $1, 1 + d, 1 + 2d, \dots, 1 + 100d$ from their mean is 255, then the d is equal to						
	(A) 10.0	(B) 20.0	(C) 10.1	(D) 20.2			
20.	For two data sets, each of size 5, the variances are given to be 4 and 5 and the corresponding means are given to b 2 and 4, respectively. The variance of the combined data set is						
	(A) $\frac{11}{2}$	(B) 6	(C) $\frac{13}{2}$	(D) $\frac{5}{2}$			

21. If $a_n = \sqrt{7 + \sqrt{7 + \sqrt{7 + \dots}}}$ having n radical signs then by methods of mathematical inducation which is true.

(A) $a_n > 7 \forall n \ge 1$ (B) $a_n < 7 \forall n \ge 1$ (C) $a_n < 4 \forall n \ge 1$ (D) $a_n < 3 \forall n \ge 1$

Let S(K) = 1 + 3 + 5 +...+ (2K - 1) = 3 + K² Then which of the following is true ?
(A) S(1) is correct
(B) Principle of mathematical induction can be used to prove the formula
(C) S(K) ⇒ S(K + 1)
(D) S(K) ⇒ S(K + 1)

23. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then which one of the following holds for all $n \ge 1$, by the principle of mathematical induction.

(A) $A^n = nA - (n-1)I$ (B) $A^n = 2^{n-1}A - (n-1)I$ (C) $A^n = nA + (n-1)I$ (D) $A^n = 2^{n-1}A + (n-1)I$

24. Statement - I : For every natural number
$$n \ge 2$$
, $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$

Statement - II : For every natural number $n \ge 2$, $\sqrt{n(n+1)} < n+1$

- (A) Statement I is false, Statement II is true.
- (B) Statement I is true, Statement II is true. Statement - II is a correct explanation for Statement - I
- (C) Statement I is false, Statement II is true.
- Statement II is **not** a correct explanation for statement I
- **(D)** Statement I is true, Statement II is false.

25. Statement - I: The sum of the series 1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + ... + (361 + 380 + 400) is 8000 $\sum_{n=1}^{n} (1, 3, -(1, -1))^{3} = 3$

Statement - II : $\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$, for any natural number n.

- (A) Statement I is false, Statement II is true.
- (B) Statement I is true, Statement II is true. Statement - II is a correct explanation for Statement - I
- (C) Statement I is true, Statement II is true. Statement - II is **not** a correct explanation for statement - I
- (D) Statement I is true, Statement II is false.

26. If
$$a_n = 2^{2^{11}} + 1$$
, then for $n > 1$, $n \in N$, last digit of a_n is
(A) 3 (B) 5 (C) 8 (D) 7

27. By principle of mathematical induction $\forall n \subset N, \cos \theta \cos 2 \theta \cos 4 \theta \dots \cos[(2^{n-1})\theta] - \dots$

(A) $\sin^2 \theta / 2^n \sin \theta$ (B) $\cos^2 \theta / 2^n \sin \theta$ (C) $\sin^2 \theta / 2^{n-1} \sin \theta$ (D) None of these

- 28.By principle of mathematical induction, $\forall n \in \mathbb{N}, 1/(1.2.3) + 1/(2.3.4) + ... + 1/\{n(n+1)(n+2)\} =(A) <math>n(n+1)/4(n+2)(n+3)$ (B) n(n+3)/4(n+1)(n+2)(C) n(n+2)/4(n+1)(n+3)(D) None of these
- 29.For all $n \in N$, $a^n b^n$ is always divisible by (a and b are distinct rational numbers)(A) 2a b(B) a + b(C) a b(D) a 2b
- 30.let $p(n): n^2 + n + 1$ is an odd integer. If it is assumed that P(k) is true $\Rightarrow P(k+1)$ is true. Therefore, P(n) is true(A) for n > 1(B) for all $n \in \mathbb{N}$ (C) for n > 2(D) none of these

ANSWER KEY

EXERCISE - 1

1. B 2. A 3. B 4. C 5. D 6. D 7. C 8. B 10. C 11. B 12. B 9. B 13. D 18. C 19. A 20. D 21. B 14. D 15. C 16. D 17. B 22. D 23. B 24. C 25. C 26. B 27. C 28. B 29. B **30.** B **31.** B **32.** C **33.** B **34.** C **35.** B **36.** C 37. D 38. C 39. B 40. C 41. A 42. B 43. B 44. C 45. B 46. B 47. C 48. C 49. D 50. C 51. B 52. C 53. D 54. A 55. D 56. B 57. D 58. A 59. C 60. A 61. B 62. D 63. A 64. C 65. C 66. B 67. B 68. C 69. C 70. B

EXERCISE - 2 : PART # I

1. $A \rightarrow q, r B \rightarrow p, q, r, s C \rightarrow s D \rightarrow s$

PART # II

Comprehension #1: 1. A 2. C 3. C Comprehension #2: 1. D 2. A 3. B

EXERCISE - 3 : PART # I

 1. 3
 2. 2
 3. 2
 4. 1
 5. 1
 6. 1
 7. 4
 8. 1
 9. 3
 10. 4
 11. 2
 12. 4
 13. 2

 14. 1
 15. 2
 16. 1
 17. 2
 18. 1
 19. 2
 20. 2
 21. 1

MOCK TEST

 1. A
 2. D
 3. A
 4. B
 5. D
 6. A
 7. A
 8. D
 9. D
 10. C
 11. D
 12. A
 13. A

 14. C
 15. D
 16. A
 17. D
 18. D
 19. C
 20. A
 21. B
 22. D
 23. A
 24. C
 25. B
 26. D

 27. A
 28. B
 29. C
 30. B
 30. B

