EXERCISE-I

Nucleus, Nuclear Reaction

1. The binding energy of deuteron ${}_{1}^{2}H$ is 1.112 *MeV* per nucleon and an α – particle ${}_{2}^{4}He$ has a binding energy of 7.047 *MeV* per nucleon. Then in the fusion reaction ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{2}^{4}He + Q$, the energy *Q* released is

(A) 1 *MeV* (B) 11.9 *MeV*

- 2. Binding energy of a nucleus is
 - (A) Energy given to its nucleus during its formation
 - (B) Total mass of nucleus converted to energy units
 - (C) Loss of energy from the nucleus during its formation
 - (D) Total K.E. and P.E. of the nucleons in the nucleus
- 3. One requires energy E_n to remove a nucleon from a nucleus and an energy $'E_e$ ' to remove an electron from the orbit of an atom. Then

(A) $E_n = E_e$	(B) $E_n < E_e$
(C) $E_n > E_e$	(D) $E_n \ge E_e$

- 4. Which of the following pairs is an isobar
 - (A) $_{1}H^{1}$ and $_{1}H^{2}$ (B) $_{1}H^{2}$ and $_{1}H^{3}$ (C) $_{6}C^{12}$ and $_{6}C^{13}$ (D) $_{15}P^{30}$ and $_{14}Si^{30}$
- 5. Equivalent energy of mass equal to 1 *a.m.u.* is
 (A) 931 KeV
 (B) 931 eV
 (C) 931 MeV
 (D) 9.31 MeV
- 6. The binding energies per nucleon for a deuteron and an α -particle are x_1 and x_2 respectively. What will be the energy Q released in the reaction ${}_1H^2 + {}_1H^2 \rightarrow {}_2He^4 + Q$

(A) $4(x_1 + x_2)$ (B) $4(x_2 - x_1)$

(C) $2(x_1 + x_2)$ (D) $2(x_2 - x_1)$

- 7. The mass number of a nucleus is equal to the number of
 - (A) Electrons it contains
 - (B) Protons it contains
 - (C) Neutrons it contains
 - (D) Nucleons it contains
- 8. The rest energy of an electron is

 (A) 510 KeV
 (B) 931 KeV
 (C) 510 MeV
 (D) 931 MeV
- 9. In $_{88} Ra^{226}$ nucleus, there are
 - (A) 138 protons and 88 neutrons
 - (B) 138 neutrons and 88 protons
 - (C) 226 protons and 88 electrons
 - (D) 226 neutrons and 138 electrons
- **10.** Outside a nucleus
 - (A) Neutron is stable
 - (B) Proton and neutron both are stable
 - (C) Neutron is unstable
 - (D) Neither neutron nor proton is stable
- **11.** A nucleus ruptures into two nuclear parts which have their velocity ratio equal to 2 : 1. What will be the ratio of their nuclear size (nuclear radius)
 - (A) $2^{1/3}$:1 (B) $1:2^{1/3}$ (C) $3^{1/2}:1$ (D) $1:3^{1/2}$
- **12.** Energy of 1*g* uranium is equal to (A) $9.0 \times 10^{13} J$ (B) $9.0 \times 10^{19} J$
 - (C) $3.0 \times 10^{16} J$ (D) $3.0 \times 10^{17} J$
- **13.** In a fission reaction ${}^{236}_{92}U \rightarrow {}^{117}X + {}^{117}Y + n + n$, the binding energy per nucleon of X and Y is 8.5 *MeV* whereas of ${}^{236}U$ is 7.6 *MeV*. The total energy liberated will be about (A) 200 *KeV* (B) 2 *MeV*
 - (C) 200 *MeV* (D) 2000 *MeV*
- 14. Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is
 - (A) M Z (B) M(C) Z (D) M + Z

- 15. The α-particle is the nucleus of an atom of
 (A) Neon
 (B) Hydrogen
 (C) Helium
 (D) Deuterium
- **16.** The force acting between proton and proton inside the nucleus is
 - (A) Coulombic(B) Nuclear(C) Both(D) None of these
- 17. For a nucleus to be stable, the correct relation between neutron number N and Proton number Z is

(A) $N > Z$	(B) $N = Z$
(C) $N < Z$	(D) $N \ge Z$

- 18. Two nucleons are at a separation of $1 \times 10^{-15} m$. The net force between them is F_1 , if both are neutrons, F_2 if both are protons and F_3 if one is a proton and other is a neutron. In such a case
 - (A) $F_2 > F_1 > F_3$ (B) $F_1 = F_2 = F_3$ (C) $F_1 = F_2 > F_3$ (D) $F_1 = F_3 > F_2$
- **19.** M_n and M_p represent mass of neutron and proton respectively. If an element having atomic mass M has N-neutron and Z-proton, then the correct relation will be

(A) $M < [NM_n + ZM_p]$ (B) $M > [NM_n + ZM_p]$

(C)
$$M = [NM_n + ZM_P]$$
 (D) $M = N[M_n + M_P]$

- **20.** If a H_2 nucleus is completely converted into
energy, the energy produced will be around
(A) 1 MeV
(B) 938 MeV
(C) 9.38 MeV
(D) 238 MeV
- 21. Energy generation in stars is mainly due to (A) Chemical reactions
 - (B) Fission of heavy nuclei
 - (C) Fusion of light nuclei
 - (D) Fusion of heavy nuclei
- **22.** Which of the following is the fusion reaction

(A)
$$_{1}H^{2} +_{1}H^{2} \rightarrow_{2}He^{4}$$

(B) $_{0}n^{1} +_{7}N^{14} \rightarrow_{6}C^{14} +_{1}H^{1}$
(C) $_{0}n^{1} +_{02}U^{238} \rightarrow_{02}Np^{239} + \beta$

(C)
$$_{0}n^{1} +_{92}U^{238} \rightarrow_{93}Np^{239} + \beta^{-1} + \gamma$$

(D)
$$_1H^3 \rightarrow_2 He^3 + \beta^{-1} + \gamma$$

- 23. If the speed of light were 2/3 of its present value, the energy released in a given atomic explosion will be decreased by a fraction (A) 2/3 (B) 4/9 (C) 3/4 (D) 5/9
 24. Fusion reaction is initiated with the help of (A) 4
- (A) Low temperature (B) High temperature (C) Neutrons (D) Any particle
- **25.** When a $_{4}Be^{9}$ atom is bombarded with α particles, one of the product of nuclear transmutation is $_{6}C^{12}$. The other is

(A) $_{-1}e^{0}$	(B) <i>X</i> –
(C) $_{1}D^{2}$	(D) $_{0}n^{1}$

- **26.** Atom bomb consists of two pieces of $_{92}U^{235}$ and a source of
 - (A) Proton (B) Neutron
 - (C) Meson (D) Electron
- **27.** Most suitable element for nuclear fission is the element with atomic number near
 - (A) 11 (B) 21 (C) 52 (D) 92
- **28.** During the nuclear fusion reaction
 - (A) A heavy nucleus breaks into two fragments by itself
 - (B) A light nucleus bombarded by thermal neutrons breaks up
 - (C) A heavy nucleus bombarded by thermal neutrons breaks up
 - (D) Two light nuclei combine to give a heavier nucleus and possibly other products
- **29.** In a working nuclear reactor, Cadmium rods, (control rods) are used to
 - (A) Speed up neutrons
 - (B) Slow down neutrons
 - (C) Absorb some neutrons
 - (D) Absorb all neutrons
- **30.** Fusion reaction takes place at high temperature because
 - (A) Atoms are ionised at high temperature
 - (B) Molecules break-up at high temperature
 - (C) Nuclei break-up at high temperature
 - (D) Kinetic energy is high enough to overcome repulsion between nuclei

- **31.** 200 *MeV* of energy may be obtained per fission of U^{235} . A reactor is generating 1000 *kW* of power. The rate of nuclear fission in the reactor is
 - (A) 1000 (B) 2×10^{8} (C) 3.125×10^{16} (D) 931
- 32. In the nuclear reaction $_{92}U^{238} \rightarrow_z Th^A +_2 He^4$, the values of A and Z are (A) A = 234, Z = 94 (B) A = 234, Z = 90
 - (C) A = 238, Z = 94 (D) A = 238, Z = 90
- **33.** If 200 *MeV* energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 *kilowatt* power shall be (Given $1 eV = 1.6 \times 10^{-19} J$)
 - (A) 3.125×10^{13} (B) 3.125×10^{14}
 - (C) 3.125×10^{15} (D) 3.125×10^{16}
- **34.** A chain reaction is continuous due to (A) Large mass defect
 - (B) Large energy
 - (D) Large chergy
 - (C) Production of more neutrons in fission
- (D) None of these35. Complete the equation for the following
 - fission process $_{92}U^{235} +_0 n^1 \rightarrow_{38} Sr^{90} + \dots$
 - (A) ${}_{54}Xe^{143} + 3 {}_{0}n^{1}$ (B) ${}_{54}Xe^{145}$ (C) ${}_{57}Xe^{142}$ (D) ${}_{54}Xe^{142} + {}_{0}n$
- **36.** The example of nuclear fusion is
 - (A) Formation of barium and krypton from uranium
 - (B) Formation of helium from hydrogen
 - (C) Formation of plutonium 235 from uranium 235
 - (D) Formation of water from hydrogen and oxygen
- **37.** In nuclear fission, the fission reactions proceeds with a projectile. Which of the following suits the best
 - (A) Slow proton(B) Fast neutron(C) Slow neutron(D) None of these
- **38.** When two deuterium nuclei fuse together to form a tritium nuclei, we get a

(A) Neutron	(B) Deutron
(C) α – particle	(D) Proton

- 39. Name of the India's first nuclear reactor is(A) RAMBHA(B) MENAKA(C) URVASI(D) APSARA
- **40.** 1 g of hydrogen is converted into 0.993 g of helium in a thermonuclear reaction. The energy released is
 - (A) $63 \times 10^7 J$ (B) $63 \times 10^{10} J$ (C) $63 \times 10^{14} J$ (D) $63 \times 10^{20} J$
- **41.** When a slow neutron goes sufficiently close to a U^{235} nucleus, then the process that takes place is

(A) Fission of U^{235} (B) Fusion of neutron

- (C) Fusion of U^{235} (D) First (A) then(B)
- **42.** If a proton and anti-proton come close to each other and annihilate, how much energy will be released
 - (A) $1.5 \times 10^{-10} J$ (B) $3 \times 10^{-10} J$ (C) $4.5 \times 10^{-10} J$ (D) None of these
 - (C) 4.5×10^{-5} (D) None of the
- **43.** Which of these is a fusion reaction
 - (A) ${}_{3}^{1}H + {}_{2}^{1}H = {}_{4}^{2}He + {}_{1}^{0}n$
 - (B) $_{92}^{238}U \rightarrow _{82}^{206}Pb + 8(_{2}^{4}He) + 6(_{-1}^{0}\beta)$
 - (C) $_{7}^{12}C \rightarrow _{6}^{12}C + \beta^{+} + \gamma$
 - (D) None of these
- 44. In a nuclear fission reaction
 - (A) Two light nuclei combine to produce a heavier nucleus
 - (B) A light nucleus bombarded by thermal neutrons breaks up
 - (C) A heavy nucleus bombarded by thermal neutrons breaks up
 - (D) A heavy nucleus breaks up by itself
- 45. Hydrogen bomb is based on which of the following phenomenon(A) N = 1 = 5 = 1 = (D) N = 1 = 5 = 1
 - (A) Nuclear fission(B) Nuclear fusion(C) Radioactive decay(D) None of these
 - (C) Radioactive decay (D) None of these
- **46.** The number of neutrons released when ${}_{92}U^{235}$ undergoes fission by absorbing ${}_{0}n^{1}$ and $({}_{56}Ba^{144} + {}_{36}Kr^{89})$ are formed, is
 - (A) 0 (B) 1
 - (C) 2 (D) 3

- **47.** Energy released in fusion of 1 *kg* of deuterium nuclei
 - (A) $8 \times 10^{13} J$ (B) $6 \times 10^{27} J$ (C) $2 \times 10^7 KwH$ (D) $8 \times 10^{23} MeV$
- **48.** Best neutron moderator is
 - (A) Berillium oxide (B) Pure water
 - (C) Heavy water (D) Graphite
- **49.** Nuclear fission was discovered by
 - (A) Auto Hahn and F. strassmann
 - (B) Fermi
 - (C) Bethe
 - (D) Rutherford
- **50.** Which of the following is true for a sample of isotope containing U^{235} and U^{238}
 - (A) Number of neutron are same in both
 - (B) Number of proton, electron and neutron are same in both
 - (C) Contain same number of protons and electrons but U^{238} contains 3 more neutrons than U^{235}
 - (D) U^{238} contains 3 less neutron then U^{235}
- **51.** In the following reaction the value of 'X' is ${}_7N^{14} + {}_2He^4 \rightarrow X + {}_1H^1$
 - (A) $_{8}N^{17}$ (B) $_{8}O^{17}$
 - (C) $_7 O^{16}$ (D) $_7 N^{16}$
- **52.** A π^0 at rest decays into 2γ rays $\pi^0 \rightarrow \gamma + \gamma$. Then which of the following can happen (A) The two γ 's move in same direction
 - (B) The two γ 's move in opposite direction
 - (C) Both repel each other
 - (D) Both attract each other
- **53.** Which of the following are suitable for the fusion process
 - (A) Heavy nuclei (B) Light nuclei
 - (C) Atom bomb (D) Radioactive decay
- 54. A deutron is bombarded on ${}_{8}O^{16}$ nucleus and α -particle is emitted. The product nucleus is (A) ${}_{7}N^{13}$ (B) ${}_{5}B^{10}$ (C) ${}_{4}Bc^{9}$ (D) ${}_{7}N^{14}$

- **55.** A nuclear reaction given by
 - $_{Z}X^{A} \rightarrow _{Z+1}Y^{A} +_{-1}e^{0} + \overline{p}$ represents
 - (A) *γ*-decay (B) Fusion
 - (C) Fission (D) β -decay
- **56.** Work of moderator is
 - (A) To control the velocity of neutrons
 - (B) Cooling
 - (C) As fuel
 - (D) It is used for safety
- **57.** Light energy emitted by stars is due to (A) Breaking of nuclei
 - (B) Joining of nuclei
 - (C) Burning of nuclei
 - (D) Reflection of solar light
- **58.** Solar energy is mainly caused due to
 - (A) Fission of uranium present in the sun
 - (B) Fusion of protons during synthesis of heavier elements
 - (C) Gravitational contraction
 - (D) Burning of hydrogen in the oxygen
- **59.** The binding energy of nucleus is a measure of its
 - (A) Charge (B) Mass
 - (C) Momentum (D) Stability
- **60.** Mark the correct statement
 - (A) Nuclei of different elements can have the same number of neutrons
 - (B) Every element has only two stable isotopes
 - (C) Only one isotope of each element is stable
 - (D) All isotopes of every element are radioactive
- **61.** The nucleus ${}_{92}U^{234}$ splits exactly in half in a fission reaction in which two neutrons are released. The resultant nuclei are

(A) $_{46}Pd^{116}$	(B) $_{45} Rh^{117}$
(C) $_{45}Rh^{116}$	(D) $_{46}Pd^{117}$

- 62. A nucleus of $^{210}_{84}Po$ originally at rest emits α particle with speed v. What will be the recoil speed of the daughter nucleus
 - (A) 4v/206(B) 4v/214(C) v/206(D) v/214

- 63. In a nuclear reactor, the fuel is consumed at the rate of 1 mg/s. The power generated in kilowatt is
 - (A) 9×10^4 (B) 9×10^7

(C) 9×10^8 (D) 9×10^{12}

64. What is used as a moderator in a nuclear reactor

(A) Water (B) Graphite

(C) Cadmium (D) Steel

- **65.** A nucleus is bombarded with a high speed neutron so that resulting nucleus is a radioactive one. This phenomenon is called (A) Artificial radioactivity
 - (B) Fusion
 - (C) Fission
 - (D) Radioactivity
- **66.** The curve of binding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium
 - (A) Can easily be broken up
 - (B) Is very stable
 - (C) Can be used as fissionable material
 - (D) Is radioactive
- **67.** Which of the following cannot cause fission in a heavy nucleus

(A) α -particle	(B) Proton

- (C) Deutron (D) Laser rays
- **68.** The energy in *MeV* is released due to transformation of 1 kg mass completely into energy $(c = 3 \times 10^8 m / s)$

(A) $7.625 \times 10 MeV$	(B) $10.5 \times 10^{29} MeV$
(C) $2.8 \times 10^{-28} MeV$	(D) $5.625 \times 10^{29} MeV$

69. If in a nuclear fission, piece of uranium of mass 0.5 g is lost, the energy obtained in *kWh* is

(A) 1.25×10^7	(B) 2.25×10^7
(C) 3.25×10^7	(D) 0.25×10^7

70. When U^{235} is bombarded with one neutron, the fission occurs and the products are three neutrons, $_{36}Kr^{94}$ and

(A) ${}_{53}I^{142}$ (B) ${}_{56}Ba^{139}$ (C) ${}_{58}Ce^{139}$ (D) ${}_{54}Xe^{139}$

Radioactivity

- 71. The decay constant λ of the radioactive sample is the probability of decay of an atom in unit time, then
 - (A) λ decreases as atoms become older
 - (B) λ increases as the age of atoms increases
 - (C) λ is independent of the age
 - (D) Behaviour of λ with time depends on the nature of the activity
- 72. The average life T and the decay constant λ of a radioactive nucleus are related as

(A)
$$T\lambda = 1$$
 (B) $T = \frac{0.693}{\lambda}$
(C) $\frac{T}{\lambda} = 1$ (D) $\lambda_1, \lambda_2, \lambda_3$

- 73. If T is the half life of a radioactive material, then the fraction that would remain after a time $\frac{T}{2}$ is (A) $\frac{1}{2}$ (B) $\frac{3}{4}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{\sqrt{2}-1}{\sqrt{2}}$
- 74. If the decay or disintegration constant of a radioactive substance is λ , then its half life and mean life are respectively

 $(\log_e 2 \operatorname{can} \operatorname{be written} \operatorname{as} ln 2)$

(A)
$$\frac{1}{\lambda}$$
 and $\frac{\log_e 2}{\lambda}$ (B) $\frac{\log_e 2}{\lambda}$ and $\frac{1}{\lambda}$
(C) $\lambda \log_e 2$ and $\frac{1}{\lambda}$ (D) $\frac{\lambda}{\log_e 2}$ and $\frac{1}{\lambda}$

- **75.** Which of the following is in the increasing order for penetrating power
 - (A) α, β, γ (B) β, α, γ (C) γ, α, β (D) γ, β, α
- 76. The half life of a radioactive element which has only $\frac{1}{32}$ of its original mass left after a

lapse of 60 days is

- (A) 12 days (B) 32 days
- (C) 60 days (D) 64 days

- 77. The half-life of Bi^{210} is 5 days. What time is taken by $(7/8)^{\text{th}}$ part of the sample to decay (A) 3.4 days (B) 10 days (C) 15 days (D) 20 days
- **78.** A radioactive nucleus undergoes a series of decay according to the scheme

$$A \xrightarrow{\alpha} A_1 \xrightarrow{\beta} A_2 \xrightarrow{\alpha} A_3 \xrightarrow{\gamma} A_4$$

If the mass number and atomic number of A are 180 and 72 respectively, then what are these number for A_4

- (A) 172 and 69 (B) 174 and 70
- (C) 176 and 69 (D) 176 and 70
- 79. Radioactivity is
 - (A) Irreversible process
 - (B) Self disintegration process
 - (C) Spontaneous process
 - (D) All of the above
- 80. Half life of radioactive element depends upon(A) Amount of element present
 - (B) Temperature
 - (\mathbf{D}) Temperatu
 - (C) Pressure
 - (D) Nature of element
- **81.** If the half life of a radioactive sample is 10 *hours*, its mean life is
 - (A) 14.4 *hours* (B) 7.2 *hours*

(C) 20 hours (D) 6.93 hours

82. If 20 gm of a radioactive substance due to radioactive decay reduces to 10 gm in 4 minutes, then in what time 80 gm of the same substance will reduce to 10 gm

(A) In 8 <i>minutes</i>	(B) In 12 minutes
(C) In 16 minutes	(D) In 20 minutes

83. 16 gm sample of a radioactive element is taken from Bombay to Delhi in 2 *hour* and it was found that 1 gm of the element remained (undisintegrated). Half life of the element is (A) 2 hour (D) 1 hour

(A) 2 hour	$(B) \mid hour$
(C) $\frac{1}{2}$ hour	(D) $\frac{1}{4}$ hour

- **84.** Unit of radioactivity is *Rutherford*. Its value is
 - (A) 3.7×10^{10} disi tegrations/sec
 - (B) 3.7×10^6 disintegrations/sec
 - (C) 1.0×10^{10} disintegrations/sec
 - (D) 1.0×10^6 disintegrations/sec

85. In which radioactive disintegration, neutron dissociates into proton and electron (A) He^{++} emission (B) β – emission

(A) The emission (D) p emission

- (C) γ emission (D) Positron emission
- 86. The count rate of a Geiger- Muller counter for the radiation of a radioactive material of half life of 30 *minutes* decreases to $5 s^{-1}$ after 2 hours. The initial count rate was

(A)
$$25 s^{-1}$$
(B) $80 s^{-1}$ (C) $625 s^{-1}$ (D) $20 s^{-1}$

- 87. What is the respective number of α and β particles emitted in the following radioactive decay $_{90}X^{200} \rightarrow_{80}Y^{168}$
 - (A) 6 and 8 (B) 8 and 8 (C) 6 and 6 (D) 8 and 6
- **88.** A radioactive reaction is ${}_{92}U^{238} \rightarrow {}_{82}Pb^{206}$. How many α and β particles are emitted
 - (A) 10α , 6β
 - (B) 4 protons, 8 neutrons
 - (C) 6 electrons, 8 protons
 - (D) 6β , 8α
- **89.** A radioactive substance has a half life of 60 *minutes*. After 3 *hours*, the fraction of atom that have decayed would be
 - (A) 12.5%(B) 87.5%(C) 8.5%(D) 25.1%
- **90.** A element used for radioactive carbon dating for more than 5600 years is
 - (A) C-14 (B) U-234(C) U-238 (D) Po-94
- **91.** The nucleus $^{115}_{48}Cd$ after two successive β^- decays will give
 - (A) ${}^{115}_{46} Pa$ (B) ${}^{114}_{49} In$ (C) ${}^{113}_{50} Sn$ (D) ${}^{115}_{50} Sn$
- **92.** A radioactive sample with a half life of 1 month has the label : "Activity=2 *micro curies* on 1.8.1991." What will be its activity two months later

(A) 1.0 micro curies	(B) 0.5 micro curies
(C) 4 micro curies	(D) 8 micro curies

93. An element *A* decays into element *C* by a two step process :

 $A \rightarrow B + {}_{2}He^{4}$

 $B \rightarrow C + 2e^{-}$

Then

(A) A and C are isotopes

- (B) A and C are isobars
- (C) A and B are isotopes
- (D) A and B are isobars
- **94.** At any instant the ratio of the amount of radioactive substances is 2 : 1. If their half lives be respectively 12 and 16 *hours*, then after two days, what will be the ratio of the substances
 - (A) 1 : 1 (C) 1 : 2 (B) 2 : 1 (D) 1 : 4
- **95.** Which of the following isotopes is used for the treatment of cancer

(A) K^{40}	(B) Co^{60}
(C) Sr^{90}	(D) I^{131}

96. If half-life of a radioactive atom is 2.3 *days*, then its decay constant would be

(A) 0.1	(B) 0.2
(C) 0.3	(D) 2.3

97. A radioactive element $_{90} X^{238}$ decay into $_{83} Y^{222}$. The number of β – particles emitted are

(A) 4	(B) 6
(C) 2	(D) 1

98. A radio isotope has a half life of 75 *years*. The fraction of the atoms of this material that would decay in 150 *years* will be

(A) 66.6%	(B) 85.5%
(C) 62.5%	(D) 75%

99. The activity of a radioactive sample is measured as 9750 counts *per minute* at t = 0 and as 975 counts *per minute* at t = 5 *minutes*. The decay constant is approximately

(A) 0.230 per minute	(B) 0.461 per minute
(C) 0.691 ner minute	(D) 0 922 <i>per minute</i>

100.An artificial radioactive decay series begins	
with unstable	$^{241}_{94}Pu$. The stable nuclide
obtained after	eight α -decays and five
β – decays is	
$(\Lambda)^{209} Bi$	(B) 209 Pb

(A)
$$_{83}^{205} Bi$$
 (B) $_{82}^{205} Ii$ (C) $_{82}^{205} Ti$ (D) $_{82}^{201} Hg$

101. Which is the correct expression for half-life

(A)
$$(t)_{1/2} = \log 2$$
 (B) $(t)_{1/2} = \frac{\lambda}{\log 2}$

(C)
$$(t)_{1/2} = \frac{\lambda}{\log 2} (2.303)$$
 (D) $(t)_{1/2} = \frac{2.303 \log 2}{\lambda}$

- **102.** A nucleus ${}^{A}_{Z}X$ emits an α -particle. The resultant nucleus emits a β^{+} particle. The respective atomic and mass no. of the final nucleus will be
 - (A) Z 3, A 4 (B) Z 1, A 4(C) Z - 2, A - 4 (D) Z, A - 2
- 103.What fraction of a radioactive material will get disintegrated in a period of two half-lives(A) Whole(B) Half(C) One-fourth(D) Three-fourth
- **104.**The activity of a radioactive sample is 1.6 curie and its half-life is 2.5 days. Its activity after 10 days will be
 - (A) 0.8 *curie* (B) 0.4 *curie*
 - (C) 0.1 *curie* (D) 0.16 *curie*
- **105.**In a mean life of a radioactive sample
 - (A) About 1/3 of substance disintegrates
 - (B) About 2/3 of the substance disintegrates
 - (C) About 90% of the substance disintegrates
 - (D) Almost all the substance disintegrates
- **106.**Three fourth of the active decays in a radioactive sample in 3/4 *sec*. The half life of the sample is

(A)
$$\frac{1}{2}$$
 sec (B) 1 sec

(C)
$$\frac{3}{8}$$
 sec (D) $\frac{3}{4}$ sec

-	è of a radioactive element,	114. The half-life
the fraction that c	lisintegrates is	hours. Hov
(A) <i>e</i>	(B) $\frac{1}{e}$	disintegrate
(C) $\frac{e-1}{e}$	(D) $\frac{e}{e-1}$	(A) 12 <i>h</i>
108. 1 Curie is equal to		(C) 48 <i>h</i>
(A) 3×10^{10} disin		115.A radioactiv
(B) 3.7×10^7 disi	-	5 hours. In a
(C) 5×10^7 disint	•	(A) Half of t
(D) 3.7×10^{10} dis	-	(B) Less that
	ear reaction, how many α and	(C) More that
e	nitted ${}_{92}X^{235} \rightarrow {}_{82}Y^{207}$	(D) All activ
	,2 02	116.Which of
(A) 3α particles a	, 1	electromagn
(B) 4α particles a	, <u>-</u>	(A) <i>γ</i> -rays
(C) 6α particles a	, 1	(C) Heat ray
(D) 7α particles a 110. The electron of	emitted in beta radiation	117.A sample of
originates from		10 <i>gm</i> at a
(A) Inner orbits o	fatoms	mass of this
	s existing in nuclei	mean lives is
(C) Decay of a ne	eutron in a nucleus	(A) 2.50 gm
(D) Photon escap	ing from the nucleus	(C) 6.30 gm
111. When $_{90}Th^{228}$ tra	ansforms to $_{83}Bi^{212}$, then the	118. Which of the
number of the e	mitted α - and β -particles is,	wavelength
respectively		(A) X-rays
(A) 8α , 7β	(B) 4α , 7β	(C) β -rays
(C) $4\alpha, 4\beta$	(D) 4α , 1 β	119. A radioactiv
112. Which of the foll	owing processes represents a	disintegratio
gamma-decay		minute. Aft
(A) ${}^{A}X_{Z} + \gamma \rightarrow {}^{A}$	$X_{Z-1} + a + b$	disintegratio
(B) ${}^{A}X_{Z} + {}^{1}n_{0} \rightarrow$	$^{A-3}X_{Z-2} + c$	constant (pe
(C) ${}^{A}X_{Z} \rightarrow {}^{A}X_{Z}$	+ f	(A) 0.8 In 2
(D) ${}^{A}X_{7} + e_{-1} \rightarrow$	${}^{A}X_{7-1} + g$	(C) 0.2 In 2
	^{215}At is $100\mu s$. The time	120.A nucleus w
	adioactivity of a sample of	sequence: α ,
	$1/16^{\text{th}}$ of its initial value is	The Z of the
(A) 400 μs	(B) 6.3 μs	(A) 74
()		(\mathbf{O}) 70

(C) 40 <i>µs</i>	(D) 300 <i>µs</i>

	Nuclei
,	114. The half-life of a radioactive substance is 48
	hours. How much time will it take to
	disintegrate to its $\frac{1}{16}$ th part
	(A) 12 <i>h</i> (B) 16 <i>h</i>
	(C) 48 <i>h</i> (D) 192 <i>h</i>
	115.A radioactive substance has an average life of
	5 hours. In a time of 5 hours
	(A) Half of the active nuclei decay
	(B) Less than half of the active nuclei decay
1	(C) More than half of the active nuclei decay
1	(D) All active nuclei decay
	116. Which of the following rays are not
	electromagnetic waves
	(A) γ -rays (B) β -rays
	(C) Heat rays (D) X-rays
ı	117.A sample of radioactive element has a mass of
1	10 gm at an instant $t = 0$. The approximate
	mass of this element in the sample after two
	mean lives is
	(A) $2.50 \ gm$ (B) $3.70 \ gm$
	(C) $6.30 \ gm$ (D) $1.35 \ gm$
e	118. Which of the following radiations has the least
,	wavelength
	(A) X-rays (B) γ -rays
	(C) β -rays (D) α -rays
_	119.A radioactive sample at any instant has its
l	disintegration rate 5000 disintegration per
	minute. After 5 minutes, the rate is 1250
	disintegrations per minute. Then, the decay
	constant (per minute) is
	(A) 0.8 In 2 (B) 0.4 In 2
	(C) 0.2 In 2 (D) 0.1 In 2
e	120. A nucleus with $Z = 92$ emits the following in a
f	sequence: $\alpha, \beta^-, \beta^-, \alpha, \alpha, \alpha, \alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$.
	The Z of the resulting nucleus is
	(A) 74 (B) 76

(C) 78

(D) 82