APPLICATIONS OF DERIVATIVES

TANGENTS & NORMALS

EXERCISE

Q.1	Find the slope of the normal to the curve $x=1$ – a sin $\theta,$ $y=b\ cos^2\ \theta$ at $\theta=\frac{\pi}{2}$.
Q.2	Find the equation of the tangent and normal to the given curves at the given points. (i) $y = x^4 - 6x^3 + 13x^2 - 10x + 5$ at (1, 3) (ii) $y^2 = \frac{x^3}{4-x}$ at (2, -2).
Q.3	Prove that area of the triangle formed by any tangent to the curve $xy = c^2$ and coordinate axes is constant.
Q.4	A curve is given by the equations $x = at^2 \& y = at^3$. A variable pair of perpendicular lines through the origin 'O' meet the curve at P & Q. Show that the locus of the point of intersection of the tangents at P & Q is $4y^2 = 3ax - a^2$.
Q.5	How many tangents are possible from (1, 1) to the curve $y - 1 = x^3$. Also find the equation of these tangents.
Q.6	Find the equation of tangent to the hyperbola $y = \frac{x+9}{x+5}$ which passes through (0, 0) origin
Q.7	For the curve $x^{m+n} = a^{m-n} y^{2n}$, where a is a positive constant and m, n are positive
	integers, prove that the m th power of subtangent varies as n th power of subnormal.
Q.8	Prove that the segment of the tangent to the curve $y = \frac{a}{2} \lambda n \frac{a + \sqrt{a^2 - x^2}}{a - \sqrt{a^2 - x^2}} - \sqrt{a^2 - x^2}$
	contained between the y-axis & the point of tangency has a constant length .

Q.9 Find the length of the subnormal to the curve $y^2 = x^3$ at the point (4, 8).

ANSWER KEY

- 1. $-\frac{a}{2b}$
- 2. (i) Tangent : y = 2x + 1, Normal : x + 2y = 7
 - (ii) Tangent : 2x + y = 2, Normal :x 2y = 6
- 5. y = 1, 4y = 27x 23
- 6. x + y = 0; 25y + x = 0
- **9.** 24