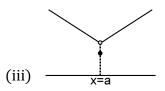
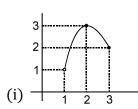
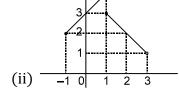
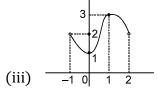

APPLICATIONS OF DERIVATIVES


MAXIMA & MINIMA

EXERCISE


Q.1 In each of following graphs identify if x = a is point of local maxima, minima or neither





Q.2 Examine the graph of following functions in each case identify the points of global maximum/minimum and local maximum / minimum.

- **Q.3** Find the points of local maxima or minima of following functions
 - (i) $f(x) = (x-1)^3 (x+2)^2$
 - (ii) $f(x) = x^3 + x^2 + x + 1$.
- **Q.4** Let $f(x) = 2x^3 + 12x + x + 6$
 - (i) Find the possible points of Maxima/Minima of f(x) for $x \in R$.
 - (ii) Find the number of critical points of f(x) for $x \in [0, 2]$.
 - (iii) Discuss absolute (global) maxima/minima value of f(x) for $x \in [0,2]$
 - (iv) Prove that for $x \in (1, 3)$, the function does not has a Global maximum.

1

CLASS 12 MATHS

Q.5 Let $f(x) = \frac{x}{2} + \frac{2}{x}$. Find local maximum and local minimum value of f(x). Can you explain this discrepancy of locally minimum value being greater than locally maximum value.

- Q.6 If $f(x) = \begin{cases} (x+\lambda)^2 & x < 0 \\ \cos x & x \ge 0 \end{cases}$, find possible values of λ such that f(x) has local maxima at x = 0.
- **Q.7** Let $f(x) = \sin x (1 + \cos x)$; $x \in (0, 2\pi)$. Find the number of critical points of f(x). Also identify which of these critical points are points of Maxima/Minima.
- **Q.8** Find the two positive numbers x and y whose sum is 35 and the product $x^2 y^5$ maximum.
- Q.9 A square piece of tin of side 18 cm is to be made into a box without top by cutting a square from each corner and folding up the slops to form a box. What should be the side of the square to be cut off such that volume of the box is maximum possible.
- **Q.10** Prove that a right circular cylinder of given surface area and maximum volume is such that the height is equal to the diameter of the base.
- **Q.11** A normal is drawn to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. Find the maximum distance of this normal from the centre.
- **Q.12** A line is drawn passing through point P(1, 2) to cut positive coordinate axes at A and B. Find minimum area of ΔPAB .
- Q.13 Two towns A and B are situated on the same side of a straight road at distances a and b respectively perpendiculars drawn from A and B meet the road at point C and D respectively. The distance between C and D is c. A hospital is to be built at a point P on the road such that the distance APB is minimum. Find position of P.

ANSWER KEY

- 1. (i) Maxima
 - (ii) Neither maxima nor minima
 - (iii) Minima
- **2.** (i) Local maxima at x = 2, Local minima at x = 3, Global maximum at x = 2. No global minimum
 - (ii) Local minima at x = -1, No point of Global minimum, no point of local or Global maxima
 - (iii) Local & Global maximum at x = 1, Local & Global minimum at x = 0.
- 3. (i) Maxima at x = -2, Minima at $x = -\frac{4}{5}$
 - (ii) No point of local maxima or minima.
- 4. (i) x = 1,.2
- (ii) one
- (iii) f(0) = 6 is global maximum, f(1) = 11 is global maximum
- **5.** Local maxima at x = -2, f(-2) = -2; Local minima at x = 2, f(2) = 2
- 6. $\lambda \in [-1, 1)$
- 7. Three $x = \frac{\pi}{3}$ is point of maxima.

 $x = \pi$ is not a point of extrema.

 $x = \frac{5\pi}{3}$ is point of minima

- 8. x = 25, y = 10.
- **9.** 3 cm
- **11.** 1 unit
- **12.** 4 units
- 13. P is at distance of $\frac{ac}{a+b}$ from C.