CLASS 12

APPLICATIONS OF DERIVATIVES

INCREASING & DECREASING FUNCTIONS

EXERCISE

Q.1 Find the intervals of monotonicity of the following functions.

(i)
$$f(x) = -x^3 + 6x^2 - 9x - 2$$

(ii)
$$f(x) = x + \frac{1}{x+1}$$

(iii)
$$f(x) = x \cdot e^{x - x^2}$$

- (iv) $f(x) = x \cos x$
- **Q.2** Let $f(x) = x \tan^{-1}x$. Prove that f(x) is monotonically increasing for $x \in R$.
- **Q.3** If $f(x) = 2e^x ae^{-x} + (2a + 1)x 3$ monotonically increases for $\forall x \in R$, then find range of values of a.
- **Q.4** Let $f(x) = e^{2x} ae^x + 1$. Prove that f(x) cannot be monotonically decreasing for $\forall x \in R$ for any value of 'a'.
- **Q.5** The values of 'a' for which function $f(x) = (a + 2) x^3 ax^2 + 9ax 1$ monotonically decreasing for $\forall x \in R$.
- **Q.6** For each of the following graph comment on monotonicity of f(x) at x = a.

CLASS 12

MATHS

- **Q.7** Let $f(x) = x^3 3x^2 + 3x + 4$, comment on the monotonic behaviour of f(x) at (i) x = 0 (ii) x = 1.
- **Q.8** Draw the graph of function $f(x) = \begin{cases} x & 0 \le x \le 1 \\ [x] & 1 \le x \le 2 \end{cases}$. Graphically comment on the monotonic behavior of f(x) at x = 0, 1, 2. Is f(x) M.I. for $x \in [0, 2]$?

ANSWER KEY

- **1.** (i) I in [1, 3]; D in $(-\infty, 1] \cup (3, \infty)$
 - (ii) I in $(-\infty, -2] \cup [0, \infty)$; D in $[-2, -1) \cup (-1, 0]$
 - (iii) I in $\left[-\frac{1}{2}, 1\right]$; D in $\left(-\infty, -\frac{1}{2}\right] \cup [1, \infty)$
 - (iv) I for $x \in R$
- $a \ge 0$
- **5.** $-\infty < a \le -3$
- **6.** (i) neither M.I. nor M.D. (ii) M.D.
 - (iii) M.D (iv) M.I.
- 7. M.I. both at x = 0 and x = 1.
- 8. M.I. at x = 0, 2; neither M.I. nor M.D. at x = 1. No, f(x) is not M.I. for $x \in [0, 2]$.