DETERMINANTS

ADJOINT AND INVERSE OF A MATRIX

EXERCISE

Q.1 Which of the following is the adjoint of the matrix $A = \begin{bmatrix} 1 & 5 \\ 3 & 4 \end{bmatrix}$?

$$(a) \begin{bmatrix} 4 & -5 \\ -3 & -1 \end{bmatrix}$$

$$(b) \begin{bmatrix} -4 & 5 \\ -3 & 1 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & -5 \\ -3 & 1 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 5 \\ -3 & 1 \end{bmatrix}$$

Q.2 If, $A = \begin{bmatrix} 5 & -8 \\ 2 & 6 \end{bmatrix}$ Find A (adj A).

$$(a) \begin{bmatrix} 41 & 0 \\ 0 & 46 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 46 & 0 \\ 1 & 46 \end{bmatrix}$$

$$(c) \begin{bmatrix} 46 & 1 \\ 0 & 46 \end{bmatrix}$$

$$(d) \begin{bmatrix} 46 & 0 \\ 0 & 46 \end{bmatrix}$$

Q.3 If $A = \begin{bmatrix} 1 & 0 \\ 9 & 4 \end{bmatrix}$, then (adj A) A is

(a)
$$\begin{bmatrix} -4 & 0 \\ 0 & -4 \end{bmatrix}$$

$$(b)\begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}$$

$$(c) \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$(d) \begin{bmatrix} 4 & 0 \\ 0 & -4 \end{bmatrix}$$

Q.4 Which of the following is the formula for calculating the inverse of the matrix?

(a)
$$\frac{2}{|A|} adjA$$

(b)
$$\frac{1}{|A|} adjA$$

(c)
$$\frac{-1}{|A|} adj A$$

(d)
$$\frac{1}{|2A|} adjA$$

Q.5 Find the inverse of the matrix $A = \begin{bmatrix} 8 & 5 \\ 4 & 1 \end{bmatrix}$

(a)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

(b)
$$\begin{bmatrix} \frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

(c)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}$$

(d)
$$\begin{bmatrix} -\frac{1}{12} & \frac{5}{12} \\ -\frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

Q.6 Which of the below condition is incorrect for the inverse of a matrix A?

- (a) The matrix A must be a square matrix
- (b) A must be singular matrix
- (c) A must be a non-singular matrix
- (d) adj A≠0

Q.7 Which of the below given matrices has the inverse $\frac{1}{-6}\begin{bmatrix} 2 & 1 \\ 0 & -3 \end{bmatrix}$?

2

$$(a)\begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(b) \begin{bmatrix} -3 & -1 \\ 0 & 2 \end{bmatrix}$$

$$(c) \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

$$(d) \begin{bmatrix} -3 & -1 \\ 0 & -2 \end{bmatrix}$$

Q.8 If $A = \begin{bmatrix} -8 & 2 \\ 6 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 \\ 1 & 7 \end{bmatrix}$. Find $(AB)^{-1}$.

(a)
$$-\frac{1}{432}\begin{bmatrix} -27 & 6 \\ 9 & 14 \end{bmatrix}$$

$$(b) \frac{1}{432} \begin{bmatrix} 27 & 6 \\ 9 & 14 \end{bmatrix}$$

$$(c) \frac{1}{432} \begin{bmatrix} -27 & 6 \\ 9 & 14 \end{bmatrix}$$

$$(d) \frac{-1}{432} \begin{bmatrix} 27 & 6 \\ 9 & 14 \end{bmatrix}$$

Q.9 Which of the following formula is incorrect?

- (a) A(adj A) = |A|I
- (b) $|adj(A)| = |A|^{n-1}$, for an n^{th} order matrix

(c) A-1=
$$\frac{1}{|A|}$$
 adj A

(d)
$$A(adj A) = |A|^{n-1}$$

Q.10 A square matrix A is said to be non-singular if $|A| \neq 0$.

(a) True

(b) False

ANSWER KEY

- **1.** (C)
- **2.** (D)
- **3.** (C)
- **4.** (B)
- **5.** (A)
- **6.** (B)
- **7.** (B)
- **8.** (C)
- **9**. (D)
- **10.** (A)