CLASS 12

RELATIONS AND FUNCTIONS

TYPES OF RELATION

EXERCISE

Q.1 Let R be the relation on the set N of natural numbers defined by $R: \{(x, y)\}: x + 3y = 12 \ x \in N, y \in N\}$ Find (ii) Domain of R (i) R (iii) Range of R If $X = \{x_1, x_2, x_3\}$ and $y = (x_1, x_2, x_3, x_4, x_5)$ then find which is a reflexive relation of Q.2 the following : (a) R_1 : {(x_1, x_1), (x_2, x_2) (b) R_1 : {(x_1, x_1), (x_2, x_2), (x_3, x_3) (c) $R_3: \{(x_1,x_1), (x_2, x_2), (x_3, x_3), (x_1, x_3), (x_2, x_4)\}$ (d) R_3 : {(x₁, x₁), (x₂, x₂),(x₃, x₃),(x₄, x₄) Q.3 If $x = \{a, b, c\}$ and $y = \{a, b, c, d, e, f\}$ then find which of the following relation is symmetric relation : R₁: { } i.e. void relation $R_2: \{(a, b)\}$ $R_3: \{(a, b), (b, a)(a, c)(c, a)(a, a)\}$ Q.4 If $x = \{a, b, c\}$ and $y = (a, b, c, d, e\}$ then which of the following are transitive relation. (a) $R_1 = \{\}$ (b) $R_2 = \{(a, a)\}$

(c) $R_3 = \{(a, a\}.(c, d)\}$

(d) $R_4 = \{(a, b), (b, c)(a, c), (a, a), (c, a)\}$

- $\textbf{Q.5} \qquad \text{Let } R \text{ be a relation on the set } N \text{ of natural numbers defined by } xRy \Leftrightarrow x \text{ divides } y \\ \text{ ' for all } x, y \in N. \\ \end{cases}$
- **Q.6** Prove that the relation R on the set Z of all integers numbers defined by $(x, y) \in R \Leftrightarrow x y$ is divisible by n is an equivalence relation on Z.

Q.7 Let a relation R_1 on the set R of real numbers be defined as $(a, b) \in R_1 \Leftrightarrow 1 + ab > 0$ for all $a, b \in R$. Show that R_1 is reflexive and symmetric but not transitive.

- **Q.8** Let A be the set of first ten natural numbers and let R be a relation on A defined by $(x, y) \in R \Leftrightarrow x + 2y = 10$ i.e., $R = \{(x, y) : x \in A, y \in A \text{ and } x + 2y = 10\}$. Express R and R^{-1} as sets of ordered pairs. Determine also :
 - (i) Domains of R and R^{-1}
 - (ii) Range of R and R⁻¹

ANSWER KEY

- 1. (i) $R = \{(9, 1), (6, 2), (3, 3)\}$
 - (ii) Domain of $R = \{9, 6, 3\}$
 - (iii) Range of $R = \{1, 2, 3\}$
- **2.** (a) non-reflexive because $(x_3, x_3) \notin R_1$
 - (b) Reflexive
 - (c) Reflexive

CLASS 12

MATHS

(d) non-reflexive because $x_4 \notin X$

3. R₁ is symmetric relation because it has no element in it.

 R_2 is not symmetric because (b, a) $\in R_2$

& R₃ is symmetric.

- **4.** (a) R₁ is transitive relation because it is null relation.
 - (b) R₂ is transitive relation because all singleton relations are transitive.
 - (c) R₃ is transitive relation
 - (d) R₄ is also transitive relation
- **5.** we find that for any non zero integer a a R (a) and (-a) R a, but $a \neq -a$.
- 8. Thus $R = \{(2, 4), (4, 3), (6, 2), (8, 1)\} \Rightarrow R^{-1} = \{(4, 2), (3, 4), (2, 6), (1, 8)\}$

Clearly, Dom (R) = $\{2, 4, 6, 8\}$ = Range (R⁻¹)

and Range $(R) = \{4, 3, 2, 1\} = Dom (R^{-1})$