RELATIONS AND FUNCTIONS

BINARY OPERATIONS

EXERCISE

- **Q.1.** Determine whether the following operation define a binary operation on the given set or not:
- (i) '*' on N defined by $a * b = a^b$ for all $a, b \in N$.
- (ii) '0' on Z defined by a 0 b = a^b for all a, b \in Z.
- (iii) '*' on N defined by a * b = a + b 2 for all $a, b \in N$
- (iv) x_6 on $S = \{1, 2, 3, 4, 5\}$ defined by a x_6 b = Remainder when a b is divided by 6.
- (v) '+6' on S = {0, 1, 2, 3, 4, 5} defined by $a + 6b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6, & \text{if } a+b \ge 6 \end{cases}$
- (vi) ' \bigcirc ' on N defined by a \bigcirc b= $a^b + b^a$ for all a, b \in N
- (vii) '*' on Q defined by a * b = (a 1)/(b + 1) for all a, b \in Q
- **Q.2.** Determine whether or not the definition of * given below gives a binary operation. In the event that * is not a binary operation give justification of this.
- (i) On Z^+ , defined * by a * b = a b
- (ii) On Z^+ , define * by a*b = ab
- (iii) On R, define * by $a*b = ab^2$
- (iv) On Z^+ define * by a * b = |a b|
- (v) On Z^+ define * by a * b = a
- (vi) On R, define * by a * $b = a + 4b^2$

Here, Z^+ denotes the set of all non-negative integers.

CLASS 12 MATHS

Q.3. Let * be a binary operation on the set I of integers, defined by a * b = 2a + b - 3. Find the value of 3 * 4.

- **Q.4.** Is * defined on the set $\{1, 2, 3, 4, 5\}$ by a * b = LCM of a and b a binary operation? Justify your answer.
- **Q.5.** Let '*' be a binary operation on N defined by a * b = l.c.m. (a, b) for all a, b \in N
- (i) Find 2 * 4, 3 * 5, 1 * 6.
- (ii) Check the commutativity and associativity of '*' on N.
- **Q.6.** Determine which of the following binary operation is associative and which is commutative:
- (i) * on N defined by a * b = 1 for all a, b \in N
- (ii) * on Q defined by a * b = (a + b)/2 for all a, b \in Q
- Q.7 Let A be any set containing more than one element. Let '*' be a binary operation on A defined by a * b = b for all a, b \in A Is '*' commutative or associative on A?
- **Q.8.** Check the commutativity and associativity of each of the following binary operations:
- (i) '*' on Z defined by a * b = a + b + a b for all $a, b \in Z$
- (ii) '*' on N defined by a * b = 2^{ab} for all a, b \in N
- (iii) '*' on Q defined by a * b = a b for all $a, b \in Q$
- (iv) 'O' on Q defined by a O $b = a^2 + b^2$ for all a, $b \in Q$
- (v) 'o' on Q defined by a o b = (ab/2) for all $a, b \in Q$
- (vi) '*' on Q defined by $a * b = ab^2$ for all $a, b \in Q$
- (vii) '*' on Q defined by a * b = a + a b for all $a, b \in Q$
- (viii) '*' on R defined by a * b = a + b 7 for all $a, b \in R$
- (ix) '*' on Q defined by a * b = $(a b)^2$ for all a, b \in Q

CLASS 12 MATHS

- (x) '*' on Q defined by a * b = a b + 1 for all $a, b \in Q$
- (xi) '*' on N defined by $a * b = a^b$ for all $a, b \in N$
- (xii) '*' on Z defined by a * b = a b for all $a, b \in Z$
- (xiii) '*' on Q defined by a * b = (ab/4) for all a, b \in Q
- (xiv) '*' on Z defined by a * b = a + b ab for all $a, b \in Z$
- (xv) '*' on Q defined by a * b = gcd(a, b) for all a, $b \in Q$
- **Q.9.** If the binary operation o is defined by a0b = a + b ab on the set $Q \{-1\}$ of all rational numbers other than 1, show that o is commutative on Q [1].
- **Q.10.** Show that the binary operation * on Z defined by a * b = 3a + 7b is not commutative?
- **Q.11.** On the set Z of integers a binary operation * is defined by a 8 b = ab + 1 for all a, $b \in \mathbb{Z}$. Prove that * is not associative on Z.

ANSWER KEY

- 1. (i) Thus, * is a binary operation on N.
 - (ii) Thus, * is not a binary operation on Z
 - (iii) Thus, there exist a = 1 and b = 1 such that $a * b \notin N$
 - (iv) Thus, \times_6 is not a binary operation on S.
 - (v) Thus, \odot is a binary operation on N.
 - (vii)So, * is not a binary operation in Q.
- 2. (i) Thus, * is not a binary operation on Z+.
 - (ii) Thus, * is a binary operation on R.

- (iii) Thus, * is a binary operation on R.
- (iv) Thus, * is a binary operation on Z+.
- (v) Thus, * is a binary operation on Z+.
- (vi) Thus, * is a binary operation on R.
- 3. 7
- 4. Thus, * is not a binary operation on {1, 2, 3, 4, 5}.
- 5. (i) 2*4 = l.c.m.(2, 4) = 4

$$3 * 5 = l.c.m. (3, 5) = 15$$

$$1 * 6 = l.c.m. (1, 6) = 6$$

- (ii) Thus, * is associative on N.
- 6. (i) Thus, * is associative on N.
 - (ii) Thus, * is not associative on N
- 7. Thus, * is associative on A
- 8. (i) Thus, * is associative on Z.
 - (ii) Thus, * is not associative on N
 - (iii) Thus, * is not associative on Q
 - (iv) Thus, \odot is not associative on Q.
 - (v) Thus, o is associative on Q.
 - (vi) Thus, * is not associative on Q.
 - (vii) Thus, * is not associative on Q
 - (viii) Thus, * is associative on R.
 - (ix) Thus, * is not associative on Q.

- (x) Thus, * is not associative on Q.
- (xi) Thus, * is not associative on N
- (xii) Thus, * is not associative on Z
- (xiii) Thus, * is associative on Q
- (xiv) Thus, * is associative on N
- 9. Thus, o is commutative on $Q \{-1\}$
- 10. Thus, * is not commutative on Z.