# **SOLVED EXAMPLES**

**Ex.1** The sum of first four terms of an A.P. is 56 and the sum of it's last four terms is 112. If its first term is 11 then find the number of terms in the A.P.

Sol. a+a+d+a+2d+a+3d=564a+6d=56

4a + 6d - 36  $44 + 6d = 56 \quad (as a = 11)$   $6d = 12 \quad hence d = 2$ Now sum of last four terms. a + (n-1)d + a + (n-2)d + a + (n-3)d + a + (n-4)d = 112  $\Rightarrow \quad 4a + (4n-10)d = 112 \quad \Rightarrow \quad 44 + (4n-10)2 = 112$   $\Rightarrow \quad 4n - 10 = 34$   $\Rightarrow \quad n = 11$ 

- **Ex.2** Find the sum of all the three digit natural numbers which on division by 7 leaves remainder 3.
- **Sol.** All these numbers are 101, 108, 115, ....., 997

$$997 = 101 + (n - 1) 7$$

$$\Rightarrow n = 129$$

$$129$$

$$129$$

So 
$$S = \frac{129}{2} [101 + 997] = 70821.$$

**Ex.3** If  $a_1, a_2, a_3, \dots, a_n$  are in A.P. where  $a_1 > 0$  for all i, show that :

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{(n-1)}{\sqrt{a_1} + \sqrt{a_n}}$$
  
L.H.S. =  $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}}$ 

Sol.

$$= \frac{1}{\sqrt{a_2} + \sqrt{a_1}} + \frac{1}{\sqrt{a_3} + \sqrt{a_2}} + \dots + \frac{1}{\sqrt{a_n} + \sqrt{a_{n-1}}}$$
$$= \frac{\sqrt{a_2} - \sqrt{a_1}}{(a_2 - a_1)} + \frac{\sqrt{a_3} - \sqrt{a_2}}{(a_3 - a_2)} + \dots + \frac{\sqrt{a_n} - \sqrt{a_{n-1}}}{a_n - a_{n-1}}$$

Let 'd' is the common difference of this A.P.

then  $a_2 - a_1 = a_3 - a_2 = \dots = a_n - a_{n-1} = d$ Now L.H.S.

$$=\frac{1}{d}\left\{\sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \dots + \sqrt{a_{n-1}} - \sqrt{a_{n-2}} + \sqrt{a_n} - \sqrt{a_{n-1}}\right\} = \frac{1}{d}\left\{\sqrt{a_n} - \sqrt{a_1}\right\}$$

$$=\frac{a_{n}-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{a_{1}+(n-1)d-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{1}{d}\frac{(n-1)d}{(\sqrt{a_{n}}+\sqrt{a_{1}})}=\frac{n-1}{\sqrt{a_{n}}+\sqrt{a_{1}}}=R.H.S.$$





- **Ex.7** If n > 0, prove that  $2^n > 1 + n\sqrt{2^{n-1}}$
- **Sol.** Using the relation A.M.  $\geq$  G.M. on the numbers 1, 2, 2<sup>2</sup>, 2<sup>3</sup>,..., 2<sup>n-1</sup>, we have

$$\frac{1+2+2^2+\ldots+2^{n-1}}{n} > (1.2, 2^2, 2^3, \ldots, 2^{n-1})^{1/n}$$

Equality does not hold as all the numbers are not equal.

$$\Rightarrow \qquad \frac{2^{n}-1}{2-1} > n \left(2^{\frac{(n-1)n}{2}}\right)^{\frac{1}{n}}$$
$$\Rightarrow \qquad 2^{n}-1 > n \cdot 2^{\frac{(n-1)}{2}}$$
$$\Rightarrow \qquad 2^{n} > 1 + n \cdot 2^{\frac{(n-1)}{2}}$$

**Ex.8** If 
$$a_i > 0$$
 " i Î N such that  $\prod_{i=1}^{n} a_i = 1$ , then prove that  $(1 + a_1)(1 + a_2)(1 + a_3)....(1 + a_n)^3 2^n$ 

**Sol.** Using  $A.M. \ge G.M$ .

$$1 + a_{1}^{3} 2\sqrt{a_{1}}$$

$$1 + a_{2}^{3} 2\sqrt{a_{2}}$$

$$1 + a_{n}^{3} 2\sqrt{a_{n}} \implies (1 + a_{1})(1 + a_{2})....(1 + a_{n})^{3} 2^{n}(a_{1}a_{2}a_{3}....a_{n})^{1/2}$$
As  $a_{1}a_{2}a_{3}....a_{n} = 1$ 
Hence  $(1 + a_{1})(1 + a_{2})....(1 + a_{n})^{3} 2^{n}$ .

Ex.9 Sum to n terms of the series 
$$\frac{1}{(1+x)(1+2x)} + \frac{1}{(1+2x)(1+3x)} + \frac{1}{(1+3x)(1+4x)} + \dots$$

**Sol.** Let  $T_r$  be the general term of the series

$$T_{r} = \frac{1}{(1+rx)(1+(r+1)x)}$$
  
So  $T_{r} = \frac{1}{x} \left[ \frac{(1+(r+1)x) - (1+rx)}{(1+rx)(1+(r+1)x)} \right] = \frac{1}{x} \left[ \frac{1}{1+rx} - \frac{1}{1+(r+1)x} \right]$   
 $T_{r} = f(r) - f(r+1)$   
 $S = \sum T_{r} = T_{1} + T_{2} + T_{3} + \dots + T_{n}$   
 $= \frac{1}{x} \left[ \frac{1}{1+x} - \frac{1}{1+(n+1)x} \right] = \frac{n}{(1+x)[1+(n+1)x]}$ 



If a, b, x, y are positive natural numbers such that  $\frac{1}{x} + \frac{1}{y} = 1$  then prove that  $\frac{a^x}{x} + \frac{b^y}{y} \ge ab$ . Ex. 10 Consider the positive numbers ax, ax,.....y times and by, by,.....x times Sol. For all these numbers,  $AM = \frac{\{a^{x} + a^{x} + \dots, y \text{ time}\} + \{b^{y} + b^{y} + \dots, x \text{ times}\}}{x + y} = \frac{ya^{x} + xa^{y}}{(x + y)}$  $GM = \left\{ \left( a^{x} . a^{x} ..... y \ times \right) \left( b^{y} . b^{y} .... x \ times \right) \right\}^{\frac{1}{(x+y)}} = \left[ \left( a^{xy} \right) . \left( b^{xy} \right) \right]^{\frac{1}{(x+y)}} = \left( ab \right)^{\frac{xy}{(x+y)}}$ As  $\frac{1}{x} + \frac{1}{y} = 1$ ,  $\frac{x+y}{y} = 1$ , i.e, x + y = xySo using AM  $\ge$  GM  $\frac{ya^x + xa^y}{x + y} \ge (ab)^{\frac{xy}{x + y}}$  $\therefore \qquad \frac{ya^x + xa^y}{xy} \ge ab \quad \text{or} \quad \frac{a^x}{x} + \frac{a^y}{y} \ge ab.$ If p<sup>th</sup>, q<sup>th</sup>, r<sup>th</sup> terms of an H.P. be a, b, c respectively, prove that Ex. 11 (q-r)bc + (r-p)ac + (p-q)ab = 0Sol. Let 'x' be the first term and 'd' be the common difference of the corresponding A.P.. **So**  $\frac{1}{2} = x + (p-1)d$ ....(i)  $\frac{1}{b} = x + (q - 1) d$ ....(ii)  $\frac{1}{c} = x + (r - 1) d$ ....(iii)  $\begin{array}{ccc} (\mathbf{i}) - (\mathbf{i}\mathbf{i}) & \Rightarrow & ab(p-q)d = b - a \\ (\mathbf{i}\mathbf{i}) - (\mathbf{i}\mathbf{i}) & \Rightarrow & bc (q-r)d = c - b \\ (\mathbf{i}\mathbf{i}\mathbf{i}) - (\mathbf{i}) & \Rightarrow & ac (r-p) d = a - c \end{array}$ .....(iv) ....**(v)** ....(vi) (iv) + (v) + (vi) gives bc(q-r) + ac(r-p) + ab(p-q) = 0.Find the sum of series up to n terms  $\left(\frac{2n+1}{2n-1}\right) + 3\left(\frac{2n+1}{2n-1}\right)^2 + 5\left(\frac{2n+1}{2n-1}\right)^3 + \dots$ **Ex. 12** Sol. For  $x \neq 1$ , let  $S = x + 3x^2 + 5x^3 + \dots + (2n-3)x^{n-1} + (2n-1)x^n$ ....**(i)**  $xS = x^2 + 3x^3 + \dots + (2n-5)x^{n-1} + (2n-3)x^n + (2n-1)x^{n+1}$ .....(ii)  $\Rightarrow$ Subtracting (ii) from (i), we get  $(1-x)S = x + 2x^{2} + 2x^{3} + \dots + 2x^{n-1} + 2x^{n} - (2n-1)x^{n+1} = x + \frac{2x^{2}(1-x^{n-1})}{1-x} - (2n-1)x^{n+1}$  $=\frac{x}{1-x}\left[1-x+2x-2x^{n}-(2n-1)x^{n}+(2n-1)x^{n+1}\right]$  $\Rightarrow \qquad S = \frac{x}{(1-x)^2} \left[ (2n-1)x^{n+1} - (2n+1)x^n + 1 + x \right]$ Thus  $\left(\frac{2n+1}{2n-1}\right) + 3\left(\frac{2n+1}{2n-1}\right)^2 + \dots + (2n-1)\left(\frac{2n+1}{2n-1}\right)^n$  $=\left(\frac{2n+1}{2n-1}\right)\left(\frac{2n-1}{2}\right)^{2}\left[(2n-1)\left(\frac{2n+1}{2n-1}\right)^{n+1}-(2n+1)\left(\frac{2n+1}{2n-1}\right)^{n}+1+\frac{2n+1}{2n-1}\right]=\frac{4n^{2}-1}{4}\cdot\frac{4n}{2n-1}=n(2n+1)$ 



# Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Ex. 13 Sum to n terms of the series 
$$\frac{4}{1.2.3} + \frac{5}{2.3.4} + \frac{6}{3.4.5} + \dots$$
  
Sol. Let  $T_r = \frac{r+3}{r(r+1)(r+2)} = \frac{1}{(r+1)(r+2)} + \frac{3}{r(r+1)(r+2)}$   
 $= \left[\frac{1}{r+1} - \frac{1}{r+2}\right] + \frac{3}{2} \left[\frac{1}{r(r+1)} - \frac{1}{(r+1)(r+2)}\right]$   
 $\therefore S = \left[\frac{1}{2} - \frac{1}{n+2}\right] + \frac{3}{2} \left[\frac{1}{2} - \frac{1}{(n+1)(n+2)}\right]$   
 $= \frac{5}{4} - \frac{1}{n+2} \left[1 + \frac{3}{2(n+1)}\right] = \frac{5}{4} - \frac{1}{2(n+1)(n+2)} [2n+5]$ 

- Ex. 14 The series of natural numbers is divided into groups (1), (2, 3, 4), (5, 6, 7, 8, 9) ...... and so on. Show that the sum of the numbers in n<sup>th</sup> group is  $n^3 + (n 1)^3$
- **Sol.** The groups are (1), (2, 3, 4), (5, 6, 7, 8, 9) .....

The number of terms in the groups are 1, 3, 5.....

:. The number of terms in the n<sup>th</sup> group = (2n - 1) the last term of the n<sup>th</sup> group is n<sup>2</sup>

If we count from last term common difference should be -1

 $\begin{array}{l} 2^{a+1}(2^n\!\!-\!\!1)\!=\!16\,(2^n\!\!-\!\!1)\\ 2^{a+1}\!=\!2^4 \end{array}$ 

a = 3

a+1=4 ...

So the sum of numbers in the n<sup>th</sup> group = 
$$\left(\frac{2n-1}{2}\right)\left\{2n^2 + (2n-2)(-1)\right\}$$

$$= (2n-1)(n^2 - n + 1) = 2n^3 - 3n^2 + 3n - 1 = n^3 + (n-1)^3$$

Ex. 15 Find the natural number 'a' for which  $\sum_{k=1}^{n} f(a+k) = 16(2^n - 1)$ , where the function f satisfied f(x+y) = f(x). f(y) for all

natural number x, y and further f(1) = 2.

$$f(x+y) = f(x) f(y) \text{ and } f(1) = 2$$
  

$$f(1+1) = f(1) f(1)$$
  

$$\Rightarrow \quad f(2) = 2^{2}, f(1+2) = f(1) f(2) \quad \Rightarrow \quad f(3) = 2^{3}, \quad f(2+2) = f(2) f(2)$$
  

$$\Rightarrow \quad f(4) = 2^{4}$$
  
Similarly  $f(k) = 2^{k} \text{ and } f(a) = 2^{a}$   
Hence,  $\sum_{k=1}^{n} f(a+k) = \sum_{k=1}^{n} f(a) f(k) = f(a) \sum_{k=1}^{n} f(k) = 2^{a} \sum_{k=1}^{n} 2^{k} = 2^{a} \{2^{1} + 2^{2} + \dots + 2^{n}\}$   

$$= 2^{a} \left\{ \frac{2(2^{n} - 1)}{2 - 1} \right\} = 2^{a+1} (2^{n} - 1)$$

But  $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$ 

| E   | xercise # 1                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [Single Correct Choice                                                                                 | Type Questions]                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1.  | If $ln(a+c)$ , $ln(c-a)$ , $ln(a-(A))$ a, b, c are in A.P.<br>(C) a, b, c are in G.P.                                                                              | - 2b + c) are in A.P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , then :<br>(B) a <sup>2</sup> , b <sup>2</sup> , c <sup>2</sup> are in A.P<br>(D) a, b, c are in H.P. |                                                                                  |
| 2.  | The quadratic equation $2x^2-3x+5=0$ is -<br>(A) $4x^2-25x+10=0$<br>(C) $14x^2-12x+35=0$                                                                           | whose roots are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the A.M. and H.M. betwee<br>(B) $12x^2-49x+30=0$<br>(D) $2x^2+3x+5=0$                                  | een the roots of the equation,                                                   |
| 3.  | If a, b and c are three consec<br>(A) a curve that intersects th<br>(B) entirely below the x-axis.<br>(C) entirely above the x-axis.<br>(D) tangent to the x-axis. | eutive positive term<br>le x-axis at two dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns of a G.P. then the graph of y = tinct points.                                                       | $= ax^2 + bx + c$ is                                                             |
| 4.  | If $x \in R$ , the numbers $5^{1+x} + (A) [1, 5]$ (                                                                                                                | $-5^{1-x}$ , a/2, $25^{x} + 25^{x}$<br>(B) [2, 5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 <sup>-x</sup> form an A.P. then 'a' must li<br>(C) [5, 12]                                           | ie in the interval:<br>(D) $[12, \infty)$                                        |
| 5.  | If a, b, c are distinct positive<br>(A) 1                                                                                                                          | real in H.P., then the formula the second se | he value of the expression, $\frac{b+}{b-}$                                                            | $\frac{a}{a} + \frac{b+c}{b-c}$ is equal to<br>(D) 4                             |
| 6.  | The maximum value of the sur<br>(A) 325 (F                                                                                                                         | m of the A.P. 50, 48<br>B) 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , 46, 44, is -<br>(C) 650                                                                              | <b>(D)</b> 652                                                                   |
| 7.  | Let $s_1, s_2, s_3$ and $t_1, t_2, t_3$                                                                                                                            | $t_3 \dots$ are two arit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hmetic sequences such that $s_1 =$                                                                     | $t_1 \neq 0; s_2 = 2t_2 \text{ and } \sum_{i=1}^{10} s_i = \sum_{i=1}^{15} t_i.$ |
|     | Then the value of $\frac{s_2 - s_1}{t_2 - t_1}$ is<br>(A) 8/3 (1                                                                                                   | <b>B)</b> 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>(C)</b> 19/8                                                                                        | <b>(D)</b> 2                                                                     |
| 8.  | For a sequence $\{a_n\}$ , $a_1 = 2$                                                                                                                               | and $\frac{a_{n+1}}{a_n} = \frac{1}{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Then $\sum_{r=1}^{20} a_r$ is                                                                          |                                                                                  |
|     | (A) $\frac{20}{2}$ [4+19×3] (1                                                                                                                                     | $\mathbf{B}) \ 3\left(1 - \frac{1}{3^{20}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C) $2(1-3^{20})$                                                                                      | (D) none of these                                                                |
| 9.  | The interior angles of a con-<br>Find the number of sides of<br>(A) 9 (1                                                                                           | vex polygon are in<br>f the polygon -<br>B) 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AP. The smallest angle is 12<br>(C) 12                                                                 | 0° & the common difference is 5°.<br>(D) none of these                           |
| 10. | The sum $\sum_{k=1}^{100} \frac{k}{k^4 + k^2 + 1}$ is eq.                                                                                                          | qual to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                  |
|     | (A) $\frac{4950}{10101}$ (I                                                                                                                                        | <b>B)</b> $\frac{5050}{10101}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C) $\frac{5151}{10101}$                                                                               | (D) none                                                                         |
| 11. | Consider an A.P. with first t                                                                                                                                      | term 'a' and the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ommon difference 'd'. Let $S_k d$                                                                      | enote the sum of its first K terms.                                              |
|     | If $\frac{S_{kx}}{S_x}$ is independent of x,                                                                                                                       | then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                  |
|     | (A) $a = d/2$ (I                                                                                                                                                   | <b>B)</b> a = d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C) $a = 2d$                                                                                           | (D) none of these                                                                |



# MATHS FOR JEE MAIN & ADVANCED

- 12. If  $a_1, a_2, a_3, \dots, a_n$  are positive real numbers whose product is a fixed number c, then the minimum value of  $a_1 + a_2 + a_3 + \dots + a_{n-1} + 2a_n$  is (A)  $n(2c)^{1/n}$  (B)  $(n+1)c^{1/n}$  (C)  $2nc^{1/n}$  (D)  $(n+1)(2c)^{1/n}$
- 13. The first term of an infinitely decreasing G.P. is unity and its sum is S. The sum of the squares of the terms of the progression is -

(A) 
$$\frac{S}{2S-1}$$
 (B)  $\frac{S^2}{2S-1}$  (C)  $\frac{S}{2-S}$  (D)  $S^2$ 

14. The sum of the first n-terms of the series  $1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 + \dots$  is  $\frac{n(n+1)^2}{2}$ , when n is even.

When n is odd, the sum is

(A) 
$$\frac{n(n+1)^2}{4}$$
 (B)  $\frac{n^2(n+2)}{4}$  (C)  $\frac{n^2(n+1)}{2}$  (D)  $\frac{n(n+2)^2}{4}$ 

- 15. If p, q, r in harmonic progression and p & r be different having same sign then the roots of the equation  $px^2+qx+r=0$  are -(A) real and equal (B) real and distinct (C) irrational (D) imaginary
- 16. The arithmetic mean of the nine numbers in the given set {9, 99, 999, ...... 9999999999} is a 9 digit number N, all whose digits are distinct. The number N does not contain the digit
   (A) 0
   (B) 2
   (C) 5
   (D) 9
- 17. A particle begins at the origin and moves successively in the following manner as shown, 1 unit to the right, 1/2 unit up, 1/4 unit to the right, 1/8 unit down, 1/16 unit to the right etc. The length of each move is half the length of the previous move and movement continues in the 'zigzag' manner indefinitely. The co-ordinates of the point to which the 'zigzag' converges is -

(A) 
$$(4/3, 2/3)$$
 (B)  $(4/3, 2/5)$  (C)  $(3/2, 2/3)$  (D)  $(2, 2/5)$   
18. For which positive integers *n* is the ratio,  $\sum_{k=1}^{n} k^2$  an integer ?  
 $\sum_{k=1}^{n} k$  an integer ?  
(A) odd *n* only (B) even *n* only (D)  $n = 1 + 3k$ , integer  $k \ge 0$   
19. If A, G & H are respectively the A.M., G.M. & H.M. of three positive numbers a, b, & c, then the equation whose roots are a, b, & c is given by:  
(A)  $x^3 - 3Ax^2 + 3G^3x - G^3 = 0$  (B)  $x^3 - 3Ax^2 + 3(G^3/H)x - G^3 = 0$   
(C)  $x^3 + 3Ax^2 + 3(G^3/H)x - G^3 = 0$  (D)  $x^3 - 3Ax^2 - 3(G^3/H)x + G^3 = 0$ 



| 20. | If $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + t$            | $\infty = \frac{\pi^4}{90}$ , then $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5}$ | $\frac{1}{4}$ + + to $\infty$ is equals to -                               |                                                                                |
|-----|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|     | (A) $\frac{\pi^4}{96}$                                                    | <b>(B)</b> $\frac{\pi^4}{45}$                                                    | (C) $\frac{89\pi^4}{90}$                                                   | (D) none of these                                                              |
| 21. | a, b be the roots of the<br>a, b, g, d (in this order) f                  | e equation $x^2 - 3x + a =$<br>Form an increasing G.P., the                      | 0 and g, d the roots of z                                                  | $x^2 - 12x + b = 0$ and numbers                                                |
|     | (A) $a = 3, b = 12$                                                       | <b>(B)</b> $a = 12, b = 3$                                                       | (C) $a = 2, b = 32$                                                        | <b>(D)</b> $a = 4, b = 16$                                                     |
| 22. | If a, b, c are positive num                                               | bers in G.P. and $\log\left(\frac{5c}{a}\right)$ , let                           | $\log\left(\frac{3b}{5c}\right)$ and $\log\left(\frac{a}{3b}\right)$ are i | in A.P., then a, b, c forms the sides                                          |
|     | of a triangle which is -<br>(A) equilateral                               | (B) right angled                                                                 | (C) isosceles                                                              | (D) none of these                                                              |
| 23. | Suppose a, b, c are in A.                                                 | P. & $ a ,  b ,  c  < 1$ . If                                                    | $x = 1 + a + a^2 + \dots $ to $\infty$ ;                                   |                                                                                |
|     | $y = 1 + b + b^2 + \dots \text{ to } \infty$                              | & $z = 1 + c + c^2 + \dots $ to $\infty$                                         | , then x, y, z are in:                                                     |                                                                                |
|     | (A) A.P.                                                                  | (B) G.P.                                                                         | (C) H.P.                                                                   | (D) none                                                                       |
| 24. | $\frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + \frac{1}{2}$ | $\frac{1.3.5.7}{4.6.8.10}$ + is                                                  | equal to                                                                   |                                                                                |
|     | $(\Lambda) \frac{1}{2}$                                                   | $(\mathbf{P}) \frac{1}{2}$                                                       | (1)                                                                        | <b>(D)</b> 1                                                                   |
|     | (A) 4                                                                     | (b) <sub>3</sub>                                                                 |                                                                            |                                                                                |
| 25. | If a, b, c, d are positive r<br>(A) $0 \le M \le 1$                       | (B) $1 \le M \le 2$                                                              | $b + c + d = 2$ , then M = (a - (C) $2 \le M \le 3$                        | ( <b>b</b> ) $(c + d)$ satisfies the relation:<br>( <b>b</b> ) $3 \le M \le 4$ |
| 26. | The sum to n terms of the                                                 | e series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2}$             | $\frac{1}{2+3^2}$ + is -                                                   |                                                                                |
|     | (A) $\frac{3n}{n+1}$                                                      | (B) $\frac{6n}{n+1}$                                                             | (C) $\frac{9n}{n+1}$                                                       | <b>(D)</b> $\frac{12n}{n+1}$                                                   |
| 27. | Let $a_n, n \in N$ is an A.P. wit                                         | h common difference 'd' and                                                      | all whose terms are non-zer                                                | o. If n approaches infinity, then the                                          |
|     | $\operatorname{sum} \frac{1}{a_1 a_2} + \frac{1}{a_2 a_3} + \dots +$      | $\frac{1}{a_n a_{n+1}}$ will approach                                            |                                                                            |                                                                                |
|     | $(1)$ $\frac{1}{1}$                                                       | $\frac{2}{2}$                                                                    | $(0)$ $\frac{1}{1}$                                                        |                                                                                |
|     | (A) a <sub>1</sub> d                                                      | (b) $a_1d$                                                                       | $(c)$ $2a_1d$                                                              | $(\mathbf{D}) \mathbf{a}_1 \mathbf{d}$                                         |
| 28. | If $3 + \frac{1}{4}(3 + d) + \frac{1}{4^2}(3 + d)$                        | $(+2d)$ + + upto $\infty$ = 8, th                                                | hen the value of d is:                                                     |                                                                                |
|     | (A) 9                                                                     | <b>(B)</b> 5                                                                     | <b>(C)</b> 1                                                               | (D) none of these                                                              |
| 29. | If the $(m+1)^{th}$ , $(n+1)^{th}$ & to the first term of the AP          | $(r+1)^{th}$ terms of an AP are in is -                                          | n GP & m, n, r are in HP, then                                             | the ratio of the common difference                                             |
|     | (A) $\frac{1}{n}$                                                         | <b>(B)</b> $\frac{2}{n}$                                                         | (C) $-\frac{2}{n}$                                                         | (D) none of these                                                              |
| 30. | If $\frac{1+3+5+upto n t}{4+7+10+upto n}$                                 | $\frac{\text{terms}}{\text{terms}} = \frac{20}{7 \log_{10} x} \text{ and } n =$  | $\log_{10} x + \log_{10} x^{\frac{1}{2}} + \log_{10} x$                    | $\frac{1}{4} + \log_{10} x^{\frac{1}{8}} + \dots + \infty$ , then x is         |
|     | equal to<br>(A) 10 <sup>3</sup>                                           | <b>(B)</b> 10 <sup>5</sup>                                                       | <b>(C)</b> 10 <sup>6</sup>                                                 | <b>(D)</b> 10 <sup>7</sup>                                                     |



Add. 41-42A, Ashok Park Main, New Rohtak Road, New Delhi-110035 +91-9350679141

Exercise # 2 Part # I > [Multiple Correct Choice Type Questions] Let a, b, g be the roots of the equation  $x^3 + 3ax^2 + 3bx + c = 0$ . If a, b, g are in H.P. then b is equal to -1.  $(\mathbf{A}) - \mathbf{c}/\mathbf{b}$ **(B)** c/b  $(\mathbf{C}) - \mathbf{a}$ **(D)** a  $x_1, x_2$  are the roots of the equation  $x^2 - 3x + A = 0$ ;  $x_3, x_4$  are roots of the equation  $x^2 - 12x + B = 0$ , such that  $x_1, x_2$ , 2.  $x_3, x_4$  form an increasing G.P., then  $(\mathbf{A})\mathbf{A}=2$ **(B)** B = 32 $(C) x_1 + x_3 = 5$ **(D)**  $x_2 + x_4 = 10$ If  $a_1, a_2, \dots, a_n \in \mathbb{R}^+$  and  $a_1, a_2, \dots, a_n = 1$  then the least value of  $(1 + a_1 + a_1^2)(1 + a_2 + a_2^2), \dots, (1 + a_n + a_n^2)$  is -3. **(B)**  $n3^{n}$ (A)  $3^{n}$ (C) 3<sup>3n</sup> (D) data inadequate If sum of the infinite G.P., p, 1,  $\frac{1}{p}$ ,  $\frac{1}{p^2}$ ,  $\frac{1}{p^3}$ , ..... is  $\frac{9}{2}$ , then value of p is **4**. **(B)**  $\frac{2}{3}$  **(C)**  $\frac{3}{2}$ **(D)**  $\frac{1}{2}$ **(A)** 3 If a, a<sub>1</sub>, a<sub>2</sub>,....,a<sub>10</sub>, b are in A.P. and a, g<sub>1</sub>, g<sub>2</sub>,.....g<sub>10</sub>, b are in G.P. and h is the H.M. between a and b, then 5.  $\frac{a_1 + a_2 + \dots + a_{10}}{g_1 g_{10}} + \frac{a_2 + a_3 + \dots + a_9}{g_2 g_9} + \dots + \frac{a_5 + a_6}{g_5 g_6}$  is -**(B)**  $\frac{10}{h}$  **(C)**  $\frac{30}{h}$ (A)  $\frac{10}{h}$ (**D**)  $\frac{5}{1}$ 6. Let  $a_1, a_2, a_3, \dots$  and  $b_1, b_2, b_3, \dots$  be arithmetic progressions such that  $a_1 = 25, b_1 = 75$  and

 $a_{100} + b_{100} = 100$ . Then

(A) the difference between successive terms in progression 'a' is opposite of the difference in progression 'b'. (C)  $(a_1 + b_1), (a_2 + b_2), (a_2 + b_3), \dots$  are in A.P. **(B)**  $a_n + b_n = 100$  for any *n*.

**(D)** 
$$\sum_{r=1}^{100} (a_r + b_r) = 10000$$

7. For the A.P. given by a<sub>1</sub>, a<sub>2</sub>, ....., a<sub>n</sub>, ....., with non-zero common difference, the equations satisfied are-(A)  $a_1 + 2a_2 + a_3 = 0$ **(B)**  $a_1 - 2a_2 + a_3 = 0$ **(D)**  $a_1 - 4a_2 + 6a_3 - 4a_4 + a_5 = 0$ (C)  $a_1 + 3a_2 - 3a_3 - a_4 = 0$ 

If (1 + 3 + 5 + ... + a) + (1 + 3 + 5 + ... + b) = (1 + 3 + 5 + ... + c), where each set of parentheses contains the 8. sum of consecutive odd integers as shown such that - (i) a + b + c = 21, (ii) a > 6If  $G = Max\{a, b, c\}$  and  $L = Min\{a, b, c\}$ , then -**(B)** b - a = 2(A) G - L = 4(C) G - L = 7(D) a - b = 2

The p<sup>th</sup> term  $T_p$  of H.P. is q(q + p) and q<sup>th</sup> term  $T_q$  is p(p + q) when p > 1, q > 1, then -(A)  $T_{p+q} = pq$  (B)  $T_{pq} = p + q$  (C)  $T_{p+q} > T_{pq}$  (D)  $T_{pq} > T_{p+q}$ 9.

If a, b and c are distinct positive real numbers and  $a^2 + b^2 + c^2 = 1$ , then ab + bc + ca is -10.

(A) equal to 1 **(B)** less than 1 (C) greater than 1 (D) any real number



| 11. | If $\sum_{r=1}^{n} r(r+1) (2r+3) = a$                                                                | $\mathbf{n}^4 + \mathbf{b}\mathbf{n}^3 + \mathbf{c}\mathbf{n}^2 + \mathbf{d}\mathbf{n} + \mathbf{e},  \mathbf{the}$ | en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |
|-----|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|     | (A) $a + c = b + d$                                                                                  |                                                                                                                     | <b>(B)</b> $e = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                             |
|     | (C) a, $b - 2/3$ , $c - 1$ are in                                                                    | n A.P.                                                                                                              | <b>(D)</b> c/a is an integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |
| 12. | Let $a_1, a_2, \dots, a_{10}$ be in A                                                                | P. & $h_1, h_2, \dots, h_{10}$ be in H.                                                                             | P If $a_1 = h_1 = 2 \& a_{10} = h_{10} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 then $a_4h_7$ is -                                        |
|     | <b>(A)</b> 2                                                                                         | <b>(B)</b> 3                                                                                                        | <b>(C)</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>(D)</b> 6                                                |
| 13. | If first and $(2n-1)^{\text{th}}$ term<br>(A) $a + c = 2b$                                           | is of an A.P., G.P. and H.P. and $(\mathbf{B})$ $\mathbf{a} \ge \mathbf{b} \ge \mathbf{c}$                          | the equal and their $n^{th}$ terms a <b>(C)</b> $a + c = b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | are a, b, c respectively, then -<br>(D) $b^2 = ac$          |
| 14. | If the roots of the equation<br>(A) $p+q=0$<br>(C) one of the roots is un                            | h, $x^3 + px^2 + qx - 1 = 0$ form                                                                                   | an increasing G.P. where p<br>(B) $p \in (-3, \infty)$<br>(D) one root is smaller that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and q are real, then<br>an 1 and one root is greater than 1 |
| 15. | If x, $ x + 1 $ , $ x - 1 $ are the (A) 180                                                          | ree terms of an A.P., then it<br>(B) 350                                                                            | ts sum upto 20 terms is –<br>(C) 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(D)</b> 720                                              |
| 16. | Let a, x, b be in A.P.; a, y                                                                         | , b be in G.P. and a, z, b be in                                                                                    | H.P. If $x = y + 2$ and $a = 5z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | then -                                                      |
|     | $(\mathbf{A}) \mathbf{y}^2 = \mathbf{x}\mathbf{z}$                                                   | ( <b>B</b> ) x>y>z                                                                                                  | (C) $a = 9, b = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(D)</b> $a = \frac{9}{4}, b = \frac{1}{4}$               |
| 17. | If the arithmetic mean of                                                                            | f two positive numbers a &                                                                                          | a b (a > b) is twice their ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cometric mean, then a: b is:                                |
|     | (A) $2 + \sqrt{3} : 2 - \sqrt{3}$                                                                    | <b>(B)</b> $7 + 4\sqrt{3} : 1$                                                                                      | (C) 1: 7 – 4 $\sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>(D)</b> 2: $\sqrt{3}$                                    |
| 18. | If $sin(x - y)$ , sin x and sin                                                                      | (x + y) are in H.P., then sin :                                                                                     | x. $\sec \frac{y}{2} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |
|     | <b>(A)</b> 2                                                                                         | <b>(B)</b> √2                                                                                                       | <b>(C)</b> $-\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>(D)</b> -2                                               |
| 19. | The sum of the first 100 te                                                                          | rms comm <mark>on to the ser</mark> ies 17                                                                          | , 21, 25, and 16, 21, 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,is -                                                      |
|     | (A) 101100                                                                                           | <b>(B)</b> 111000                                                                                                   | <b>(C)</b> 110010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>(D)</b> 100101                                           |
| 20. | a, b, c are three distinct re<br>(A) $x < -1$                                                        | al numbers, which are in G.I<br>(B) $-1 < x < 2$                                                                    | P. and $a + b + c = xb$ , then -<br>(C) $2 < x < 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(D)</b> x>3                                              |
| 21. | If $a_1, a_2, \dots, a_n$ are dis<br>(A) $a_1 + 2a_2 + a_3 = 0$<br>(C) $a_1 + 3a_2 - 3a_3 - a_4 = 0$ | tinct terms of an A.P., then                                                                                        | <b>(B)</b> $a_1 - 2a_2 + a_3 = 0$<br><b>(D)</b> $a_1 - 4a_2 + 6a_3 - 4a_4 + 6a_5 - $ | $a_5 = 0$                                                   |
| 22. | Let $p, q, r \in \mathbb{R}^+$ and 27 pq                                                             | $r \ge (p+q+r)^3$ and $3p+4q$                                                                                       | $+5r = 12$ then $p^3 + q^4 + r^5$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s equal to -                                                |
|     | (A) 2                                                                                                | <b>(B)</b> 6                                                                                                        | <b>(C)</b> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (D) none of these                                           |
|     |                                                                                                      |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |





11. Statement-I : If a, b, c are three distinct positive number in H.P., then  $\left(\frac{a+b}{2a-b}\right) + \left(\frac{c+b}{2c-b}\right) > 4$ 

Statement-II : Sum of any number and it's reciprocal is always greater than or equal to 2.

- Statement-I: 3, 6, 12 are in G.P., then 9, 12, 18 are in H.P.
   Statement-II: If three consecutive terms of a G.P. are positive and if middle term is added in these terms, then resultant will be in H.P.
- 13. Statement-I : If  $x^2y^3 = 6(x, y > 0)$ , then the least value of 3x + 4y is 10

Statement-II : If  $m_1, m_2 \in N$ ,  $a_1, a_2 > 0$  then  $\frac{m_1a_1 + m_2a_2}{m_1 + m_2} \ge (a_1^{m_1}a_2^{m_2})^{\frac{1}{m_1 + m_2}}$  and equality holds when  $a_1 = a_2$ .

14. Statement-I: The difference between the sum of the first 100 even natural numbers and the sum of the first 100 odd natural numbers is 100.

**Statement-II**: The difference between the sum of the first *n* even natural numbers and sum of the first *n* odd natural numbers is *n*.

15. **Statement-I**: If a, b, c are three positive numbers in G.P., then  $\left(\frac{a+b+c}{3}\right) \cdot \left(\frac{3abc}{ab+bc+ca}\right) = \left(\sqrt[3]{abc}\right)^2$ 

**Statement-II** : (A.M.)  $(H.M.) = (G.M.)^2$  is true for any set of positive numbers.



# Exercise # 3 Part # I [Matrix Match Type Questions]

Following questions contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **one** statement in **Column-II**.

| 1. |            | Column-I                                                                                                                        | Column       | -II |
|----|------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
|    | <b>(A)</b> | If $a_i$ 's are in A.P. and $a_1 + a_3 + a_4 + a_5 + a_7 = 20$ , $a_4$                                                          | <b>(p)</b>   | 21  |
|    |            | is equal to                                                                                                                     |              |     |
|    | <b>(B)</b> | Sum of an infinite G.P. is 6 and it's first term is 3.                                                                          | <b>(q)</b>   | 4   |
|    |            | then harmonic mean of first and third terms of G.P. is                                                                          |              |     |
|    | <b>(C)</b> | If roots of the equation $x^3 - ax^2 + bx + 27 = 0$ , are in G.P.                                                               | (r)          | 24  |
|    |            | with common ratio 2, then $a + b$ is equal to                                                                                   |              |     |
|    | <b>(D)</b> | If the roots of $x^4 - 8x^3 + ax^2 + bx + 16 = 0$ are                                                                           | <b>(s)</b>   | 6/5 |
|    |            | positive real numbers then a is                                                                                                 |              |     |
| 2. | Column     | I-I                                                                                                                             | Column       | -11 |
|    | (A)        | If $\log_x y$ , $\log_z x$ , $\log_y z$ are in G.P., $xyz = 64$ and $x^3, y^3, z^3$                                             | <b>(p)</b>   | 2   |
|    |            | are in A.P., then $\frac{3x}{y}$ is equal to                                                                                    |              |     |
|    | <b>(B)</b> | The value of $2^{\frac{1}{4}} \cdot 4^{\frac{1}{8}} \cdot 8^{\frac{1}{16}} \infty$ is equal to                                  | <b>(q)</b>   | 1   |
|    | (C)        | If x, y, z are in A.P., then                                                                                                    | (r)          | 3   |
|    |            | (x+2y-z)(2y+z-x)(z+x-y) = kxyz,                                                                                                 |              |     |
|    |            | where $k \in N$ , then k is equal to                                                                                            |              |     |
|    | (D)        | There are m A.M. between 1 and 31. If the ratio of the                                                                          | <b>(s)</b>   | 4   |
|    |            | $7^{\text{th}}$ and $(m-1)^{\text{th}}$ means is 5:9, then $\frac{m}{7}$ is equal to                                            |              |     |
| 3. |            | Column–I                                                                                                                        | Column       | -II |
|    | (A)        | If $\log_5 2$ , $\log_5 (2^x - 5)$ and $\log_5 (2^x - 7/2)$ are in A.P.,<br>then value of 2x is equal to                        | <b>(p)</b>   | 6   |
|    | <b>(B)</b> | Let $S_n$ denote sum of first n terms of an A.P. If $S_{2n} = 3S_n$ ,                                                           | <b>(q)</b>   | 9   |
|    |            | then $\frac{S_{3n}}{S_n}$ is                                                                                                    |              |     |
|    | (C)        | Sum of infinite series $4 + \frac{8}{3} + \frac{12}{3^2} + \frac{16}{3^3} + \dots$ is                                           | ( <b>r</b> ) | 3   |
|    | <b>(D)</b> | The length, breadth, height of a rectangular box are in G.P. The volume is 27, the total surface area is 78. Then the length is | (\$)         | 1   |



# SEQUENCE AND SERIES

| 4. | Colum                             | n-I                                                                                                                                                                                                                                         | Colum                               | m-II                                                                                          |
|----|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|
|    | <b>(A)</b>                        | n <sup>th</sup> term of the series 4, 11, 22, 37, 56, 79,                                                                                                                                                                                   | <b>(p)</b>                          | $2n^2 + n$                                                                                    |
|    | <b>(B)</b>                        | $ 1^2 - 2^2 + 3^2 - 4^2$ 2n terms is equal to                                                                                                                                                                                               | <b>(q)</b>                          | $2n^2 + n + 1$                                                                                |
|    | <b>(C)</b>                        | sum to n terms of the series 3, 7, 11, 15, is                                                                                                                                                                                               | <b>(r)</b>                          | $-(n^2 + n)$                                                                                  |
|    | <b>(D</b> )                       | coefficient of $x^n$ in $2x(x-1)(x-2)$ $(x-n)$ is                                                                                                                                                                                           | <b>(s)</b>                          | $\frac{1}{2}(n^2+n)$                                                                          |
|    | Part #                            | II [Comprehension Type Questions]                                                                                                                                                                                                           |                                     |                                                                                               |
|    | I ui c n                          | Teomptonension Type Questions                                                                                                                                                                                                               |                                     |                                                                                               |
|    |                                   | Comprehension # 1                                                                                                                                                                                                                           |                                     |                                                                                               |
|    | There are<br>Progress<br>The mide | e $4n + 1$ terms in a sequence of which first $2n + 1$ are in Arithmetic Progress<br>ion the common difference of Arithmetic Progression is 2 and common rat<br>dle term of the Arithmetic Progression is equal to middle term of Geometric | ion and la<br>io of Geo<br>Progress | ast $2n + 1$ are in Geometric<br>metric Progression is $1/2$ .<br>ion. Let middle term of the |

sequence is  $T_m$  and  $T_m$  is the sum of infinite Geometric Progression whose sum of first two terms is  $\left(\frac{5}{4}\right)$  n and ratio

of these terms is  $\frac{9}{16}$ .

1. Number of terms in the given sequence is equal to -

|    | (A) 9                                          | <b>(B)</b> 17                                    | <b>(C)</b> 13          | (D) none        |
|----|------------------------------------------------|--------------------------------------------------|------------------------|-----------------|
| 2. | Middle term of the giver (A) 16/7              | n sequence, i.e. T <sub>m</sub> is e<br>(B) 32/7 | equal to -<br>(C) 48/7 | <b>(D)</b> 16/9 |
| 3. | First term of given seque<br>(A) $-8/7, -20/7$ | ence is equal to -<br>(B) -36/7                  | <b>(C)</b> 36/7        | <b>(D)</b> 48/7 |
| 4. | Middle term of given A. (A) 6/7                | P. is equal to -<br>(B) 10/7                     | (C) 78/7               | <b>(D)</b> 11   |
| 5. | Sum of the terms of give (A) 6/7               | m A. P. is equal to -<br>(B) 7                   | (C) 3                  | <b>(D)</b> 6    |

# **Comprehension # 2**

In a sequence of (4n + 1) terms the first (2n + 1) terms are in AP whose common difference is 2, and the last (2n + 1) terms are in GP whose common ratio 0.5. If the middle terms of the AP and GP are equal, then

1. Middle term of the sequence is

| (A) $\frac{n \cdot 2^{n+1}}{2^n - 1}$          | <b>(B)</b> $\frac{n \cdot 2^{n+1}}{2^{2n}-1}$ | (C) n . 2 <sup>n</sup>             | <b>(D)</b> None of these           |
|------------------------------------------------|-----------------------------------------------|------------------------------------|------------------------------------|
| First term of the se                           | quence is                                     |                                    |                                    |
| $(\mathbf{A}) \ \frac{4n+2n \cdot 2^n}{2^n-1}$ | <b>(B)</b> $\frac{4n-2n\cdot 2^{n}}{2^{n}-1}$ | (C) $\frac{2n-n \cdot 2^n}{2^n-1}$ | (D) $\frac{2n+n \cdot 2^n}{2^n-1}$ |
| Middle term of the                             | GP is                                         |                                    |                                    |
| (A) $\frac{2^n}{2^n - 1}$                      | <b>(B)</b> $\frac{n \cdot 2^{n}}{2^{n} - 1}$  | (C) $\frac{n}{2^n - 1}$            | <b>(D)</b> $\frac{2n}{2^n-1}$      |



2.

3.

## **Comprehension # 3**

Let  $a_m$  (m = 1, 2, ....,p) be the possible integral values of a for which the graphs of  $f(x) = ax^2 + 2bx + b$  and  $g(x) = 5x^2 - 3bx - a$  meets at some point for all real values of b.

Let 
$$t_r = \prod_{m=1}^{p} (r - a_m)$$
 and  $S_n = \sum_{r=1}^{n} t_r$ ,  $n \in N$ .

**1.** The minimum possible value of *a* is

2.

3.

(A) 
$$\frac{1}{5}$$
 (B)  $\frac{5}{26}$  (C)  $\frac{3}{38}$  (D)  $\frac{2}{43}$   
The sum of values of n for which S<sub>n</sub> vanishes is  
(A) 8 (B) 9 (C) 10 (D) 15  
The value of  $\sum_{r=5}^{\infty} \frac{1}{t_r}$  is equal to  
(A)  $\frac{1}{3}$  (B)  $\frac{1}{6}$  (C)  $\frac{1}{15}$  (D)  $\frac{1}{18}$ 

We know that 
$$1 + 2 + 3 + \dots = \frac{n(n+1)}{2} = f(n)$$
,

$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = g(n),$$

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2 = h(n)$$

- 1. g(n) g(n-1) must be equal to (A)  $n^2$  (B)  $(n-1)^2$  (C) n-1 (D)  $n^3$
- Greatest even natural number which divides g(n) f(n), for every n ≥ 2, is

   (A) 2
   (B) 4
   (C) 6
   (D) none of these

   f(n) + 3 g(n) + h(n) is divisible by 1 + 2 + 3 + ......... + n
- 3. f(n) + 3 g(n) + h(n) is divisible by  $1 + 2 + 3 + \dots + h$ (A) only if n = 1 (B) only if n is odd (C) only if n is even (D) for all  $n \in N$



# **Comprehension # 5**

If  $a_i > 0$ , i = 1, 2, 3, ..., n and  $m_1, m_2, m_3, ..., m_n$  be positive rational numbers, then

$$\left(\frac{m_1a_1 + m_2a_2 + \dots + m_na_n}{m_1 + m_2 + \dots + m_n}\right) \ge \left(a_1^{m_1}a_2^{m_2}\dots a_n^{m_n}\right)^{1/(m_1 + m_2 + \dots + m_n)} \ge \frac{(m_1 + m_2 + \dots + m_n)}{\frac{m_1}{a_1} + \frac{m_2}{a_2} + \dots + \frac{m_n}{a_n}}$$

is called weighted mean theorem

where  $A^* = \frac{m_1 a_1 + m_2 a_2 + \dots + m_n a_n}{m_1 + m_2 + \dots + m_n}$  = Weighted arithmetic mean

$$G^* = \left(a_1^{m_1}a_2^{m_2}\dots a_n^{m_n}\right)^{1/(m_1+m_2+\dots+m_n)} = \text{Weighted geometric mean}$$

and  $H^* = \frac{m_1 + m_2 + \dots + m_n}{\frac{m_1}{a_1} + \frac{m_2}{a_2} + \dots + \frac{m_n}{a_n}} =$  Weighted harmonic mean

i.e.,  $A^* \ge G^* \ge H^*$ Now, let a + b + c = 5(a, b, c > 0) and  $x^2y^3 = 243(x > 0, y > 0)$ 

- 1. The greatest value of  $ab^{3}c$  is -(A) 3 (B) 9 (C) 27 (D) 81
- 2. Which statement is correct -

(A) 
$$\frac{1}{5} \ge \frac{1}{\frac{1}{a} + \frac{3}{b} + \frac{1}{c}}$$
 (B)  $\frac{1}{25} \ge \frac{1}{\frac{1}{a} + \frac{9}{b} + \frac{1}{c}}$  (C)  $\frac{1}{5} \ge \frac{1}{\frac{1}{a} + \frac{9}{b} + \frac{1}{c}}$  (D)  $\frac{1}{25} \ge \frac{1}{\frac{1}{a} + \frac{6}{b} + \frac{1}{c}}$ 

- 3. The least value of  $x^2 + 3y + 1$  is -(A) 15 (B) greater than 15 (C) 3 (D) less than 15
- 4. Which statement is correct -

(A) 
$$\frac{2x+3y}{5} \ge 3 \ge \frac{5}{\frac{3}{x}+\frac{2}{y}}$$
  
(B)  $\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{3x+2y}$   
(C)  $\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{3x+4y}$   
(D)  $\frac{2x+3y}{5} \ge 3 \ge \frac{5xy}{2x+3y}$ 





|     | Exercise # 5                                              | Part # I  P                                                  | Previous Year Question                                                     | s] [AIEEE/JEE-N                                              | IAIN]                              |
|-----|-----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------|
| 1.  | If 1, $\log_3 \sqrt{3^{1-x}+2}$ , let                     | $\log_3(4.3^x - 1)$ are in A.P.                              | then x equals.                                                             |                                                              | [AIEEE 2002]                       |
|     | (A) $\log_3 4$                                            | <b>(B)</b> $1 - \log_3 4$                                    | (C) $1 - \log_4 3$                                                         | <b>(D)</b> log <sub>4</sub> 3                                |                                    |
| 2.  | Sum of infinite number                                    | er of terms in G.P. is 20                                    | and sum of their square is                                                 | 100. The common ra                                           | tio of G.P. is-                    |
|     | <b>(A)</b> 5                                              | <b>(B)</b> 3/5                                               | <b>(C)</b> 8/5                                                             | <b>(D)</b> 1/5                                               | [AIEEE 2002]                       |
| 3.  | Fifth term of a G.P. is                                   | 2, then the product of                                       | its 9 terms is-                                                            |                                                              | [AIEEE 2002]                       |
|     | (A) 256                                                   | <b>(B)</b> 512                                               | <b>(C)</b> 1024                                                            | (D) None of t                                                | hese                               |
| 4.  | The sum of the series                                     | $1^3 - 2^3 + 3^3 - \dots + 9$                                | 9 <sup>3</sup> =                                                           |                                                              | [AIEEE 2002]                       |
|     | (A) 300                                                   | <b>(B)</b> 125                                               | <b>(C)</b> 425                                                             | ( <b>D</b> ) 0                                               |                                    |
| 5.  | Let T <sub>r</sub> be the rth term                        | of an A.P. whose first ter                                   | rm is a and common differe                                                 | ence is d. If for some                                       | positive integers                  |
|     | m,n, m $\neq$ n , T <sub>m</sub> = $\frac{1}{r}$          | $\frac{1}{1}$ and $T_n = \frac{1}{m}$ , then a               | a – d equals                                                               |                                                              | [AIEEE 2004]                       |
|     | <b>(A)</b> 0                                              | <b>(B)</b> 1                                                 | (C) $\frac{1}{mn}$                                                         | <b>(D)</b> $\frac{1}{m} + \frac{1}{n}$                       |                                    |
| 6.  | If AM and GM of tw                                        | o roots of a quadratic ec                                    | quation are 9 and 4 respect                                                | ively, then this quadr                                       | atic equation is-                  |
|     | (A) $x^2 - 18x + 16 = 0$                                  | <b>(B)</b> $x^2 + 18x - 16 =$                                | 0 (C) $x^2 + 18x + 16 =$                                                   | 0 <b>(D)</b> $x^2 - 18x -$                                   | [AIEEE 2004]<br>-16 = 0            |
|     |                                                           |                                                              | loga                                                                       |                                                              |                                    |
| 7.  | If $a_1$ , $a_2$ , $a_3$ ,, $a_n$                         | , are in G.P. then th                                        | e value of the $\log a_{n+3}$                                              | $\log a_{n+1}  \log a_{n+2}$<br>$\log a_{n+4}  \log a_{n+5}$ | eterminant, is-                    |
|     |                                                           |                                                              | loga <sub>n+6</sub>                                                        | $\log a_{n+7} \log a_{n+8}$                                  |                                    |
|     | (A) 0                                                     | <b>(B)</b> 1                                                 | <b>(C)</b> 2                                                               | <b>(D)</b> –2                                                | [AIEEE 2004]                       |
|     | ×<br>S                                                    | <u>∞</u> <u>∞</u>                                            |                                                                            |                                                              |                                    |
| 8.  | If $x = \sum_{n=0}^{\infty} a^n$ , y                      | $= \sum_{n=0}^{\infty} b^n$ , $z = \sum_{n=0}^{\infty} b^n$  | $C^n$ where a, b, c are                                                    | in A.P. and  a                                               | < 1,  b  < 1,                      |
|     | c  < 1 then x, y, z are                                   | : in-                                                        |                                                                            |                                                              | [AIEEE 2005]                       |
|     | (A) HP<br>(C) AP                                          |                                                              | (B) Arithmetic - Geo<br>(D) GP                                             | ometric Progression                                          |                                    |
| 9.  | Let a <sub>1</sub> , a <sub>2</sub> , a <sub>3</sub> , be | terms of an A.P. If $\frac{a_1}{a_1}$                        | $\frac{a_2 + a_2 + \dots + a_p}{a_2 + \dots + a_q} = \frac{p^2}{q^2}, p =$ | $\neq$ q then $\frac{a_6}{a_{21}}$ equals                    | - [AIEEE-2006]                     |
|     | (A) $\frac{2}{7}$                                         | <b>(B)</b> $\frac{11}{41}$                                   | (C) $\frac{41}{11}$                                                        | <b>(D)</b> $\frac{7}{2}$                                     |                                    |
| 10. | If $a_1$ , $a_2$ ,, $a_n$ are in<br>(A) $na_1a_n$         | <b>H.P.</b> , then the expression <b>(B)</b> $(n - 1)a_1a_n$ | on $a_1a_2 + a_2a_3 + \dots + a_{n-1}$<br>(C) $n(a_1 - a_n)$               | $a_n$ is equal to-<br>(D) $(n-1)(a_1)$                       | [AIEEE-2006]<br>- a <sub>n</sub> ) |



11. In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of this progression equals-[AIEEE-2007] (C)  $\frac{1}{2}(\sqrt{5}-1)$  (D)  $\frac{1}{2}(1-\sqrt{5})$ (A)  $\frac{1}{2}\sqrt{5}$ (B)  $\sqrt{5}$ The first two terms of a geometric progression add up to 12. The sum of the third and the fourth terms is 48. If the 12. terms of the geometric progression are alternately positive and negative, then the first term is **[AIEEE 2008] (A)**–4 **(B)**-12(C) 12  $\mathbf{D}$ 

# The sum to infinity of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ is :-13.

**(A)**4 **(B)** 6 **(C)**2

(B) 21 months

14. A person is to count 4500 currency notes. Let a denote the number of notes he counts in the n<sup>th</sup> minute. If  $a_1 = a_2 = ... = a_{10} = 150$  and  $a_{10}, a_{11}, ...$  are in an AP with common difference –2, then the time taken by him to count all notes is :-[AIEEE-2010] (C) 125 minutes (D) 135 minutes (A) 24 minutes **(B)** 34 minutes

15. A man saves Rs. 200 in each of the first three months of his service. In each of the subsequent months his saving increases by Rs. 40 more than the saving of immediately previous month. His total saving from the start of service will be Rs. 11040 after :-[AIEEE-2011] (C) 18 months (D) 19 months

(A) 20 months

[AIEEE-2009]

**(D)** 3

```
16. Let a_n be the n<sup>th</sup> term of an A.P. If \sum_{r=1}^{100} a_{2r} = \alpha and \sum_{r=1}^{100} a_{2r-1} = \beta, then the common difference of the A.P. is:
```

(A) 
$$\frac{\alpha - \beta}{200}$$
 (B) a - b (C)  $\frac{\alpha - \beta}{100}$  (D) b - a [AIEEE-2011]

**Statement-1**: The sum of the series  $1 + (1 + 2 + 4) + (4 + 6 + 9) + (9 + 12 + 16) + \dots + (361 + 380 + 400)$  is 8000. 17.

Statement-2: 
$$\sum_{k=1}^{n} (k^3 - (k-1)^3) = n^3$$
, for any natural number n. [AIEEE-2012]

- (A) Statement-1 is true, Statement-2 is false.
- **(B)** Statement–1 is false, Statement–2 is true.
- (C) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (D) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.

18.

If 100 times the 100<sup>th</sup> term of an A.P. with non-zero common difference equals the 50 times its 50<sup>th</sup> term, then the 150<sup>th</sup> term of this A.P. is : [AIEEE-2012] (A) zero **(B)**-150 (C) 150 times its 50<sup>th</sup> term **(D)** 150

| 19. | The sum of first 20 terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the sequence 0.7, 0.77,                                                   | 0.777,, is :                                                                                   |                                             | [JEE-MAIN 2013]                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------|
|     | (A) $\frac{7}{81}(179-10^{-20})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>(B)</b> $\frac{7}{9}(99-10^{-20})$                                        | (C) $\frac{7}{81}(179+10^{-20})$                                                               | <b>(D)</b> $\frac{7}{9}(99 - 1)$            | -10 <sup>-20</sup> )                  |
| 20. | Let $\alpha$ and $\beta$ be the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of equation $px^2 + qx + r =$                                                | 0, $p \neq 0$ . If p, q, r are in A.                                                           | P. and $\frac{1}{\alpha} + \frac{1}{\beta}$ | = 4, then the value                   |
|     | of $ \alpha - \beta $ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                                |                                             | [JEE Main 2014]                       |
|     | $(\mathbf{A}) \ \frac{\sqrt{61}}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>(B)</b> $\frac{2\sqrt{17}}{9}$                                            | (C) $\frac{\sqrt{34}}{9}$                                                                      | <b>(D)</b> $\frac{2\sqrt{13}}{9}$           |                                       |
| 21. | Three positive numbers in A.P. Then the commo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | from an increasing G.P. If t<br>n ratio of the G.P. is :                     | he middle term in this G.P.                                                                    | is doubled, t                               | he new numbers are<br>[JEE Main 2014] |
|     | (A) $\sqrt{2} + \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>(B)</b> $3 + \sqrt{2}$                                                    | (C) $2 - \sqrt{3}$                                                                             | <b>(D)</b> $2 + \sqrt{3}$                   |                                       |
| 22. | If $(10)^9 + 2(11)^1(10)^8 + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(11)^2 (10)^7 + \dots + 10(11)^9 =$                                         | = k(10) <sup>9</sup> , then k is equal to                                                      |                                             | [JEE Main 2014]                       |
|     | (A) $\frac{121}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>(B)</b> $\frac{441}{100}$                                                 | ( <b>C</b> ) 100                                                                               | <b>(D)</b> 110                              |                                       |
| 23. | The sum of first 9 terms o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1+3}$                         | $+ \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ is :                                             |                                             | [JEE Main 2015]                       |
|     | <b>(A)</b> 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>(B)</b> 192                                                               | (C) 71                                                                                         | <b>(D)</b> 96                               |                                       |
| 24. | If m is the A.M. of two dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | stinct real numbers <i>l</i> and n( <i>l</i>                                 | $(n > 1)$ and $G_1, G_2$ and $G_3$ at                                                          | re three geom                               | etric means between                   |
|     | $l$ and n, then $G_1^4 + 2G_2^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+ G_3^4$ equals.                                                            |                                                                                                |                                             | [ <b>JEE Main 2015</b> ]              |
|     | (A) $4 lmn^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>(B)</b> $4 l^2 m^2 n^2$                                                   | (C) 4 $l^2$ mn                                                                                 | <b>(D)</b> $4 lm^2n$                        |                                       |
| 25. | The mean of the data set of are added to the data, the data is the | comprising of 1 <mark>6 obs</mark> ervation<br>the mean of the resultar      | ons is 16. If one of the three<br>nt data, is :                                                | new observa                                 | tions valued 3, 4 and [JEE Main 2015] |
|     | (A) 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(B)</b> 14.0                                                              | <b>(C)</b> 16.8                                                                                | <b>(D)</b> 16.0                             |                                       |
| 26. | If the $2^{nd}$ , $5^{th}$ and $9^{th}$ terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of a non-constant A.P. are i                                                 | n G.P., then the common rat                                                                    | io of this G.P. $0^{2/5}$                   | is :                                  |
|     | (A) 4/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              | (C) //4                                                                                        | <b>(D)</b> 8/3                              |                                       |
| 27. | If the sum of the first ten ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ms of the series $\left(1\frac{3}{5}\right)^2 + \left(2\frac{3}{5}\right)^2$ | $\left(\frac{2}{5}\right)^2 + \left(3\frac{1}{5}\right)^2 + 4^2 + \left(4\frac{4}{5}\right)^2$ | +, is $\frac{16}{5}$                        | m, then m is equal to :               |
|     | (A) 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>(B)</b> 100                                                               | (C) 99                                                                                         | <b>(D)</b> 102                              | [JEE Main 2016]                       |



Part # II [Previous Year Questions][IIT-JEE ADVANCED] **1.(A)** Consider an infinite geometric series with first term 'a' and common ratio r. If the sum is 4 and the second term is 3/4, then -[**JEE 2000**] (A)  $a = \frac{7}{4}$ ,  $r = \frac{3}{7}$  (B) a = 2,  $r = \frac{3}{8}$  (C)  $a = \frac{3}{2}$ ,  $r = \frac{1}{2}$  (D) a = 3,  $r = \frac{1}{4}$ If a, b, c, d are positive real numbers such that a + b + c + d = 2, then M = (a + b)(c + d) satisfies the relation -**(B)** (A)  $0 \le M \le 1$ **(B)**  $1 \le M \le 2$ (C)  $2 \le M \le 3$ **(D)**  $3 \le M \le 4$ **(C)** The fourth power of the common difference of an arithmetic progression with integer entries is added to the Product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer. [**JEE 2000**] Let  $\alpha$ ,  $\beta$  be the roots of  $x^2 - x + p = 0$  and  $\gamma$ ,  $\delta$  be the roots of  $x^2 - 4x + q = 0$ . If  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$  are in G.P., then the 2.(A) integer values of p and q respectively, are -[**JEE 2001**] **(A)** −2, −32 **(B)** −2, 3 (C) -6.3(D) -6, -32**(B)** If the sum of the first 2n terms of the A.P. 2, 5, 8 ..... is equal to the sum of the first n terms of the A.P. 57, 59, 61, ..... then n equals -**(A)** 10 **(B)** 12 **(C)** 11 **(D)** 13 **(C)** Let the positive numbers a, b, c, d be in A.P. Then abc, abd, acd, bcd are (A) not in A.P./G.P./H.P. (B) in A.P. (C) in G.P. **(D)** in H.P. **(D)** Let  $a_1, a_2, \dots, b_n$  be positive real numbers in G.P.. For each n, let  $A_n, G_n, H_n$ , be respectively, the arithmetic mean, geometric mean and harmonic mean of a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub>,........... a<sub>n</sub>. Find an expression for the G.M. of G<sub>1</sub>, G<sub>2</sub>,......G<sub>n</sub> in terms of  $A_1, A_2, \dots, A_n, H_1, H_2, \dots, H_n$ [**JEE 2001**] Suppose a, b, c are in A.P. and a<sup>2</sup>, b<sup>2</sup>, c<sup>2</sup> are in G.P. If a < b < c and a + b + c =  $\frac{3}{2}$ , then the value of a is -3.(A) **(B)**  $\frac{1}{2\sqrt{3}}$  **(C)**  $\frac{1}{2} - \frac{1}{\sqrt{3}}$  **(D)**  $\frac{1}{2} - \frac{1}{\sqrt{2}}$ (A)  $\frac{1}{2\sqrt{2}}$ [**JEE 2002**] **(B)** Let a, b be positive real numbers. If a,  $A_1$ ,  $A_2$ , b are in A.P.; a,  $G_1$ ,  $G_2$ , b are in G.P. and a,  $H_1$ ,  $H_2$ , b are in H.P., show that  $\frac{G_1G_2}{H_1H_2} = \frac{A_1 + A_2}{H_1 + H_2} = \frac{(2a + b)(a + 2b)}{9ab}$ . [**JEE 2002**] If a, b, c are in A.P.,  $a^2$ ,  $b^2$ ,  $c^2$  are in H.P., then prove that either a = b = c or  $a, b, -\frac{c}{2}$  form a G.P. 4. [**JEE 2003**] If a, b, c are positive real numbers, then prove that  $[(1 + a)(1 + b)(1 + c)]^7 > 7^7 a^4 b^4 c^4$ . 5. [**JEE 2004**] The first term of an infinite geometric progression is x and its sum is 5. Then -[**JEE 2004**] 6. (A)  $0 \le x \le 10$ **(B)** 0 < x < 10(C) - 10 < x < 0**(D)** x > 10If total number of runs scored in n matches is  $\left(\frac{n+1}{4}\right)(2^{n+1}-n-2)$  where n > 1, and the runs scored in the k<sup>th</sup> match 7. are given by k.  $2^{n+1-k}$ , where  $1 \le k \le n$ . Find n. [**JEE-2005**]

In quadratic equation  $ax^2 + bx + c = 0$ , if a, b are roots of equation,  $\Delta = b^2 - 4ac$  and a + b,  $a^2 + b^2$ ,  $a^3 + b^3$  are in G.P. 8. [**JEE 2005**] then (D)  $\Delta = 0$ **(B)**  $\beta \Delta = 0$ (C)  $\chi \Delta = 0$ (A)  $\Delta \neq 0$ If  $a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \dots (-1)^{n-1} \left(\frac{3}{4}\right)^n$  and  $b_n = 1 - a_n$  then find the minimum natural number  $n_0$  such that 9.  $b_n > a_n \forall n \ ^3 n_0$ [**JEE 2006**] **Comprehension Based Question Comprehension #1** Let V, denote the sum of first r terms of an arithmetic progression (A.P.) whose first term is r and the common difference is (2r - 1). Let  $T_r = V_{r+1} - V_r - 2$  and  $Q_r = T_{r+1} - T_r$  for  $r = 1, 2, ..., N_r$ The sum  $V_1 + V_2 + ... + V_n$  is : 10. [**JEE 2007**] **(B)**  $\frac{1}{12}$  n(n + 1) (3n<sup>2</sup> + n + 2) (A)  $\frac{1}{12}n(n+1)(3n^2-n+1)$ (D)  $\frac{1}{3}(2n^3-2n+3)$ (C)  $\frac{1}{2}n(2n^2 - n + 1)$ T<sub>r</sub> is always : 11. [**JEE 2007**] (A) an odd number (B) an even number (C) a prime number (D) a composite number 12. Which one of the following is a correct statement? [**JEE 2007**] (A)  $Q_1, Q_2, Q_3, \dots$  are in A.P. with common difference 5 **(B)**  $Q_1, Q_2, Q_3, \dots$  are in A.P. with common difference 6 (C)  $Q_1, Q_2, Q_3, \dots$  are in A.P. with common difference 11 **(D)**  $Q_1 = Q_2 = Q_3 = \dots$ 

**Comprehension # 2** 

13.

Let  $A_1, G_1, H_1$  denote the arithmetic, geometric and harmonic means, respectively, of two distinct positive numbers. For  $n \ge 2$ , let  $A_{n-1}$  and  $H_{n-1}$  has arithmetic, geometric and harmonic means as  $A_n, G_n, H_n$  respectively: Which one of the following statements is correct?

- (A)  $G_1 > G_2 > G_3 > \dots$ (B)  $G_1 < G_2 < G_3 < \dots$ (D)  $G_1 < G_2 < G_3 < \dots$ (D)  $G_1 < G_2 < G_3 < \dots$  and  $G_4 > G_5 > G_6 > \dots$
- 14. Which one of the following statements is correct ?
   (A)  $A_1 > A_2 > A_3 > \dots$  (B)  $A_1 < A_2 < A_3 < \dots$  

   (C)  $A_1 > A_3 > A_5 > \dots$  and  $A_2 < A_4 < A_6 < \dots$  (D)  $A_1 < A_3 < A_5 < \dots$  and  $A_2 > A_4 > A_6 > \dots$
- 15.
   Which one of the following statements is correct ?
   (A)  $H_1 > H_2 > H_3 > ...$  (B)  $H_1 < H_2 < H_3 < ...$  

   (C)  $H_1 > H_3 > H_5 > ...$  and  $H_2 < H_4 < H_6 > ...$  (D)  $H_1 < H_3 < H_5 < ...$  and  $H_2 > H_4 > H_6 > ...$

16. Suppose four distinct positive numbers  $a_1, a_2, a_3, a_4$  are in G.P. Let  $b_1 = a_1, b_2 = b_1 + a_2, b_3 = b_2 + a_3$  and  $b_4 = b_3 + a_4$ . Statement -I : The numbers  $b_1, b_2, b_3, b_4$  are neither in A.P. nor in G.P. Statement -II : The numbers  $b_1, b_2, b_3, b_4$  are in H.P. (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.

- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.



[**JEE 2007**]

[**JEE 2007**]

# MATHS FOR JEE MAIN & ADVANCED

| 17. | If the sum of first n terms of an A.P. is cn <sup>2</sup> , then the s                                                                 | sum of squares of these n te                             | rms is [JEE 2009]                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
|     | $n(4n^2-1)c^2$ $n(4n^2+1)c^2$                                                                                                          | $n(4n^2-1)c^2$                                           | $n(4n^2+1)c^2$                                 |
|     | $(A) \xrightarrow{6} (B) \xrightarrow{3}$                                                                                              | $(\mathbf{C}) = \frac{1}{3}$                             | $(\mathbf{D}) = \frac{1}{6}$                   |
| 18. | Let S., $k = 1, 2, \dots, 100$ , denote the sum of the infinite s                                                                      | geometric series whose first                             | term is $\frac{k-1}{k-1}$ and the common ratio |
| 10  |                                                                                                                                        |                                                          | k!                                             |
|     | is $\frac{1}{k}$ . Then the value of $\frac{100^2}{100!} + \sum_{k=1}^{100}  (k^2 - 3k + 1)S_k $                                       | S                                                        | [JEE 2010]                                     |
| 19. | Let $a_1, a_2, a_3, \dots, a_{11}$ be real numbers satisfying                                                                          |                                                          |                                                |
|     | $a_1 = 15, 27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for $k = 3$ .                                                                 | ,4,,11.                                                  |                                                |
|     | If $\frac{a_1^2 + a_2^2 + \dots + a_{11}^2}{11} = 90$ , then the value of $\frac{a_1 + a_2}{11}$                                       | $\frac{a_2 + + a_{11}}{11}$ is equal to                  | [JEE 2010]                                     |
| 20. | The minimum value of the sum of real numbers a                                                                                         | $^{-5}$ , $a^{-4}$ , $3a^{-3}$ , 1, $a^{8}$ and $a^{10}$ | with $a > 0$ is [JEE 2014]                     |
| 21. | Let $a_1, a_2, a_3, \dots, a_{100}$ be an arithmetic progression with                                                                  | ith $a_1 = 3$ and $S_p = \sum_{i=1}^p a_i, 1$            | $\leq p \leq 100$ . For any integer n with     |
|     | $1 \le n \le 20$ , let m = 5n. If $\frac{S_m}{S_n}$ does not depend on n,                                                              | then a <sub>2</sub> is                                   | [ <b>JEE 2011</b> ]                            |
| 22. | Let $a_1, a_2, a_3, \dots$ be in harmonic progression with $a_1 =$                                                                     | = 5 and $a_{20}$ = 25. The least p                       | ositive integer n for which $a_n < 0$ is       |
|     | (A) 22 (B) 23                                                                                                                          | <b>(C)</b> 24                                            | ( <b>D</b> )25                                 |
| 23. | Let $S_n = \sum_{k=1}^{4n} (-1)^{\frac{k(k+1)}{2}} k^2$ . Then $S_n$ can take value(                                                   | s)                                                       | [JEE-Ad. 2013]                                 |
|     | (A) 1056 (B) 1088                                                                                                                      | <b>(C)</b> 1120                                          | <b>(D)</b> 1332                                |
| 24. | A pack contains n cards numbered from 1 to n. Tw                                                                                       | vo consecutive numbered                                  | cards are removed from the pack                |
|     | and the sum of the numbers on the remaining car cards is k, then $k - 20 =$                                                            | ds is 1224. If the smaller                               | to the numbers on the removed [JEE-Ad. 2013]   |
| 25  | Lat a h a ha positive integers such that b is a                                                                                        | n integer If a h a are in                                | accompting progression and the                 |
| 23. | Let a, b, c be positive integers such that – is a<br>a                                                                                 | n nitegei. It a, b, c are n                              | geometric progression and the                  |
|     | arithmetic mean of a, b, c is $b + 2$ , then the value of                                                                              | of $\frac{a^2 + a - 14}{a^2 + a - 14}$ is                | [JEE Ad. 2014]                                 |
|     |                                                                                                                                        | a + 1                                                    | f 1                                            |
| 26. | Suppose that all the terms of an arithmetic progressio                                                                                 | n (A.P.) are natural number                              | s. If the ratio of the sum of the first        |
|     | seven terms to the sum of first eleven terms is 6 : 11 and<br>difference of this A D is                                                | l the seventh term lies in betv                          | veen 130 and 140, then the common              |
|     | difference of this A.P. is.                                                                                                            |                                                          | [JEE Ad. 2015]                                 |
| 27. | Let $b_i > 1$ for $i = 1, 2,, 101$ . Suppose $\log_{e} b_1, \log_{e} b_2,$                                                             | $\dots, \log_{e} b_{101}$ are in Arithmetic              | Progression (A.P) with the common              |
|     | difference $\log_e 2$ . Suppose $a_1, a_2,, a_{101}$ are in A.P. su<br>If $t = b_1 + b_2 +, + b_2$ , and $s = a_1 + a_2 +, a_n$ , then | cn that $a_1 = b_1$ and $a_{51} = b_{51}$ .              | [JEE Ad. 2016]                                 |
|     | (A) $s > t$ and $a_{101} > b_{101}$                                                                                                    | <b>(B)</b> $s > t$ and $a_{101} < b_{101}$               |                                                |
|     | (C) $s < t$ and $a_{101} > b_{101}$                                                                                                    | <b>(D)</b> s < t and $a_{101}^{101} < b_{101}^{101}$     |                                                |







- Let  $a_1, a_2, a_3, \dots, a_8$  be 8 non-negative real numbers such that  $a_1 + a_2 + \dots + a_8 = 16$  and 10. **S**<sub>1</sub>:  $P = a_1a_2 + a_2a_3 + a_3a_4 + \dots + a_7a_8$ , then the maximum value of P is 64.
  - If x, y, r and s are positive real numbers such that  $x^2 + y^2 = r^2 + s^2 = 1$ , then the maximum value of **S**, : (xr + ys) is 2.
  - **S**<sub>3</sub>: If A.M. and G.M. between two positive numbers are respectively A and G, then the numbers are

 $A + \sqrt{A^2 - G^2}$ ,  $A - \sqrt{A^2 - G^2}$ 

If p, q, r be three distinct real numbers in A.P. then  $p^3 + r^3$  equals -6 pqr **S**<sub>4</sub>: (A) TTFF (B) FTFT (C) TFTF (D) FFTT

#### **SECTION - II : MULTIPLE CORRECT ANSWER TYPE**

11. The value of 
$$\sum_{r=1}^{n} \frac{1}{\sqrt{a + rx} + \sqrt{a + (r - 1)x}}$$
 is  
(A)  $\frac{n}{\sqrt{a} + \sqrt{a + nx}}$  (B)  $\frac{n}{\sqrt{a} - \sqrt{a + nx}}$  (C)  $\frac{\sqrt{a + nx} - \sqrt{a}}{x}$  (D)  $\frac{\sqrt{a} + \sqrt{a + nx}}{x}$   
12. For the series  $S = 1 + \frac{1}{(1 + 3)}(1 + 2)^2 + \frac{1}{(1 + 3 + 5)}(1 + 2 + 3)^2 + \frac{1}{(1 + 3 + 5 + 7)}(1 + 2 + 3 + 4)^2 + ....$   
(A) 7<sup>th</sup> term is 16 (B) 7<sup>th</sup> term is 18  
(C) sum of first ten terms is  $\frac{505}{4}$  (D) sum of first ten term is  $\frac{405}{4}$   
13. If 1, log<sub>y</sub>x, log<sub>z</sub>y, -15 log<sub>x</sub>z are in A.P., then  
(A)  $z^3 = x$  (B)  $x = y^{-1}$  (C)  $z^{-3} = y$  (D)  $x = y^{-1} = z^3$   
14. If  $\sum_{r=1}^{n} r(r+1) = \frac{(n+a)(n+b)(n+c)}{3}$ , where  $a < b < c$ , then  
(A)  $2b = c$  (B)  $a^3 - 8b^3 + c^3 = 8abc$  (C) c is prime number (D)  $(a + b)^2 = 0$   
15. Let  $a_n = \frac{(111....1)}{n \text{ times}}$ , then

(A)  $a_{912}$  is not prime

**(B)**  $a_{951}$  is not prime

(C)  $a_{480}$  is not prime

## **(D)** $a_{91}$ is not prime

# **SECTION - III : ASSERTION AND REASON TYPE**

Statement-I: If a, b, c are non zero real numbers such that  $3(a^2 + b^2 + c^2 + 1) = 2(a + b + c + ab + bc + ca)$ , 16. then a, b, c are in A.P. as well as in G.P.

Statement-II: A series is in A.P. as well as in G.P. if all the terms in the series are equal and non zero.



- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- 17. Statement-I: Equations  $x^2 4x + 1 = 0$  and  $x^2 ax + b = 0$ , where a, b are rational numbers, have at least one common root, then a = 4 and b = 1
  - **Statement-II**: If two equations  $ax^2 + bx + c = 0$  and  $a_1x^2 + b_1x + c_1 = 0$ , where a, b, c,  $a_1$ ,  $b_1$ ,  $c_1$  are

non-zero rational numbers, have common irrational root, then  $\frac{a}{a_1} = \frac{b}{b_1} = \frac{c}{c_1}$ .

- (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
- (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- **18. Statement-I**: The sum of the first 30 terms of the sequence 1, 2, 4, 7, 11, 16, 22,..... is 4520.
  - **Statement-II**: If the successive differences of the terms of a sequence form an A.P., then general term of sequence is of the form an<sup>2</sup> + bn + c.
  - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
  - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
  - (C) Statement-I is True, Statement-II is False
  - (D) Statement-I is False, Statement-II is True
- 19. Statement-I: Let a, b, c be positive integers, then  $a^{\frac{a}{a+b+c}} \cdot b^{\frac{b}{a+b+c}} \cdot c^{\frac{c}{a+b+c}} \ge \frac{1}{3}(a+b+c)$ 
  - **Statement-II**: Let  $a_1, a_2, ..., a_n$  be positive numbers in A.P. If A & G are the arithmetic and the geometric means of  $a_1$  and  $a_n$  respectively then,  $G^n < a_1.a_2....a_n < A^n$
  - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
  - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
  - (C) Statement-I is True, Statement-II is False
  - (D) Statement-I is False, Statement-II is True
- 20. Statement-I: If one A.M. 'A' and two G.M.'s p and q be inserted between any two numbers, then  $p^3 + q^3 = 2Apq$ Statement-II: If x, y, z are in G.P., then  $y^2 = xz$ 
  - (A) Statement-I is True, Statement-II is True; Statement-II is a correct explanation for Statement-I.
  - (B) Statement-I is True, Statement-II is True; Statement-II is NOT a correct explanation for Statement-I.
  - (C) Statement-I is True, Statement-II is False
  - (D) Statement-I is False, Statement-II is True



## **SECTION - IV : MATRIX - MATCH TYPE**

#### 21. Match the column

22.

| Colum                             | n – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Colum                             | n – II                                    |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| (A)                               | Suppose that $F(n + 1) = \frac{2 F(n) + 1}{2}$ for                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>(p)</b>                        | 42                                        |
|                                   | n = 1, 2, 3, and $F(1) = 2$ . Then $F(101)$ equals                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                           |
| <b>(B)</b>                        | If $a_1, a_2, a_3, \dots, a_{21}$ are in A.P. and                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>(q)</b>                        | 1620                                      |
|                                   | $a_3 + a_5 + a_{11} + a_{17} + a_{19} = 10$ then the value of $\sum_{i=1}^{21} a_i$ is                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                           |
| <b>(C)</b>                        | $10^{\text{th}}$ term of the sequence S = 1 + 5 + 13 + 29 +, is                                                                                                                                                                                                                                                                                                                                                                                                                         | (r)                               | 52                                        |
| <b>(D</b> )                       | The sum of all two digit numbers which are not divisible                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>(s)</b>                        | 2045                                      |
|                                   | by 2 or 3 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                           |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>(t)</b>                        | $2 + 4 + 6 + \dots + 12$                  |
| Match                             | the column                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                           |
|                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                           |
| Colum                             | n-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Colum                             | n-II                                      |
| Colum<br>(A)                      | <b>n</b> -1<br>The arithmetic mean of two positive numbers is 6 and their                                                                                                                                                                                                                                                                                                                                                                                                               | Colum<br>(p)                      | n-11<br>$\frac{2}{7}$                     |
| Colum<br>(A)                      | n-1<br>The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy                                                                                                                                                                                                                                                                                                                                                                       | Colum<br>(p)                      | $\frac{1}{7}$                             |
| Colum<br>(A)                      | <b>n</b> -1<br>The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy<br>the relation $G^2 + 3 H = 48$ , then product of the two number is.                                                                                                                                                                                                                                                                                         | Colum<br>(p)                      | $\frac{2}{7}$                             |
| Colum<br>(A)<br>(B)               | The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy<br>the relation $G^2 + 3 H = 48$ , then product of the two number is.<br>The sum of the series $\frac{5}{1^2 \cdot 4^2} + \frac{11}{4^2 \cdot 7^2} + \frac{17}{7^2 \cdot 10^2} + \dots$ is.                                                                                                                                                                                  | Colum<br>(p)<br>(q)               | $\frac{2}{7}$ 32                          |
| Colum<br>(A)<br>(B)<br>(C)        | The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy<br>the relation G <sup>2</sup> + 3 H = 48, then product of the two number is.<br>The sum of the series $\frac{5}{1^2 \cdot 4^2} + \frac{11}{4^2 \cdot 7^2} + \frac{17}{7^2 \cdot 10^2} + \dots$ is.<br>If the first two terms of a Harmonic Progression be $\frac{1}{2}$ and $\frac{1}{3}$ ,                                                                                 | Colum<br>(p)<br>(q)<br>(r)        | $\frac{2}{7}$ $32$ $\frac{1}{3}$          |
| (A)<br>(B)<br>(C)                 | The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy<br>the relation G <sup>2</sup> + 3 H = 48, then product of the two number is.<br>The sum of the series $\frac{5}{1^2.4^2} + \frac{11}{4^2.7^2} + \frac{17}{7^2.10^2} + \dots$ is.<br>If the first two terms of a Harmonic Progression be $\frac{1}{2}$ and $\frac{1}{3}$ ,<br>then the Harmonic Mean of the first four terms is                                              | Colum<br>(p)<br>(q)<br>(r)        | $\frac{2}{7}$ $32$ $\frac{1}{3}$          |
| Colum<br>(A)<br>(B)<br>(C)<br>(D) | The arithmetic mean of two positive numbers is 6 and their<br>geometric mean G and harmonic mean H satisfy<br>the relation $G^2 + 3 H = 48$ , then product of the two number is.<br>The sum of the series $\frac{5}{1^2 \cdot 4^2} + \frac{11}{4^2 \cdot 7^2} + \frac{17}{7^2 \cdot 10^2} + \dots$ is.<br>If the first two terms of a Harmonic Progression be $\frac{1}{2}$ and $\frac{1}{3}$ ,<br>then the Harmonic Mean of the first four terms is<br>Geometric mean of $-4$ and $-9$ | Colum<br>(p)<br>(q)<br>(r)<br>(s) | $\frac{2}{7}$<br>32<br>$\frac{1}{3}$<br>6 |

# **SECTION - V : COMPREHENSION TYPE**

#### 23. Read the following comprehension carefully and answer the questions.

Let  $A_1, A_2, A_3, \dots, A_m$  be arithmetic means between -2 and 1027 and  $G_1, G_2, G_3, \dots, G_n$  be geometric means between 1 and 1024. Product of geometric means is  $2^{45}$  and sum of arithmetic means is  $1025 \times 171$ .

| 1 | The value of n is              |                       |                |                   |
|---|--------------------------------|-----------------------|----------------|-------------------|
|   | <b>(A)</b> 7                   | <b>(B)</b> 9          | <b>(C)</b> 11  | (D) none of these |
| 2 | The value of m is              |                       |                |                   |
|   | <b>(A)</b> 340                 | <b>(B)</b> 342        | <b>(C)</b> 344 | <b>(D)</b> 346    |
| 3 | The value of $G_1 + G_2 + G_3$ | $_{3}$ + + $G_{n}$ is |                |                   |
|   | (A) 1022                       | <b>(B)</b> 2044       | <b>(C)</b> 512 | (D) none of these |



| 24.                                                                                               | Read the followin                                                                                                                    |                            |                           |                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|----------------|--|--|--|--|--|--|
|                                                                                                   | There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15 and where D and d are                     |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | the common differences such that D – d = 1. If $\frac{p}{q} = \frac{7}{2}$ where p and q are the product of the numbers respectively |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   |                                                                                                                                      |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | and $d \ge 0$ , in the t                                                                                                             | wo sets                    |                           |                |  |  |  |  |  |  |
| 1.                                                                                                | Value of p is                                                                                                                        |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> 100                                                                                                                       | <b>(B)</b> 120             | <b>(C)</b> 105            | <b>(D)</b> 110 |  |  |  |  |  |  |
| 2.                                                                                                | Value of q is                                                                                                                        |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> 100                                                                                                                       | <b>(B)</b> 120             | <b>(C)</b> 105            | <b>(D)</b> 110 |  |  |  |  |  |  |
| 3.                                                                                                | Value of $D + d$ is                                                                                                                  |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> 1                                                                                                                         | <b>(B)</b> 2               | <b>(C)</b> 3              | <b>(D)</b> 4   |  |  |  |  |  |  |
| 25.                                                                                               | Read the followin                                                                                                                    | ng comprehension carefully | and answer the questions. |                |  |  |  |  |  |  |
| Four different integers form an increasing A.P. One of these numbers is equal to the sum of the s |                                                                                                                                      |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | other three numb                                                                                                                     | bers. Then                 |                           |                |  |  |  |  |  |  |
| 1.                                                                                                | The smallest num                                                                                                                     | nber is :                  |                           |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> – 2                                                                                                                       | <b>(B)</b> 0               | ( <b>C</b> ) – 1          | <b>(D)</b> 2   |  |  |  |  |  |  |
| 2.                                                                                                | The common diff                                                                                                                      | ference of the four numbe  | rs is                     |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> 2                                                                                                                         | <b>(B)</b> 1               | <b>(C)</b> 3              | <b>(D)</b> 4   |  |  |  |  |  |  |
| 3.                                                                                                | The sum of all th                                                                                                                    | e four numbers is          |                           |                |  |  |  |  |  |  |
|                                                                                                   | <b>(A)</b> 10                                                                                                                        | <b>(B)</b> 8               | <b>(C)</b> 2              | <b>(D)</b> 6   |  |  |  |  |  |  |
|                                                                                                   |                                                                                                                                      |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   |                                                                                                                                      | SECTION -                  | - VI : INTEGER TYP        | Ľ              |  |  |  |  |  |  |
| 26.                                                                                               | Find the sum to infinity of a decreasing G.P. with the common ratio x such that $ x  < 1$ ; $x \neq 0$ . The ratio of the            |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | fourth term to the second term is $\frac{1}{2}$ and the ratio of third term to the square of the second term is $\frac{1}{2}$        |                            |                           |                |  |  |  |  |  |  |
|                                                                                                   | 16 and the ratio of third term to the second term is 16                                                                              |                            |                           |                |  |  |  |  |  |  |

27. A man arranges to pay off a debt of Rs. 3600 by 40 annual installments which form an arithmetic series. When 30 of the installments are paid he dies leaving a third of the debt unpaid. Find the value of the first installment.

28. If 
$$(1^2 - a_1) + (2^2 - a_2) + (3^2 - a_3) + \dots + (n^2 - a_n) = \frac{1}{3}n(n^2 - 1)$$
, then find the value of  $a_7$ .

- **29.** The sum of first p-terms of an A.P. is q and the sum of first q terms is p, find the sum of first (p + q) terms.
- 30. Circles are inscribed in the acute angle  $\alpha$  so that every neighbouring circles touch each other. If the radius of the first circle is R, then find the sum of the radii of the first n circles in terms of R and  $\alpha$ .



# ANSWER KEY

### **EXERCISE - 1**

 1. D
 2. B
 3. C
 4. D
 5. B
 6. D
 7. C
 8. B
 9. A
 10. B
 11. A
 12. A
 13. B

 14. C
 15. D
 16. A
 17. B
 18. D
 19. B
 20. A
 21. C
 22. D
 23. C
 24. C
 25. A
 26. B

 27. A
 28. A
 29. C
 30. B
 30. B

#### EXERCISE - 2 : PART # I

| 1.  | А | 2.  | ABCD | 3.  | А  | 4.  | AC | 5.  | С   | 6.  | ABCD | 7.  | BD  | 8.  | AD  | 9.  | ABC |
|-----|---|-----|------|-----|----|-----|----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|
| 10. | В | 11. | ABCD | 12. | D  | 13. | BD | 14. | ACD | 15. | AB   | 16. | ABC | 17. | ABC | 18. | BC  |
| 19. | А | 20. | AD   | 21. | BD | 22. | С  |     |     |     |      |     |     |     |     |     |     |

#### PART - II

1. D 2. A 3. A 4. C 5. A 6. B 7. B 8. D 9. A 10. D 11. C 12. A 13. A 14. A 15. C

#### EXERCISE - 3 : PART # I

**1.**  $A \rightarrow q, B \rightarrow s, C \rightarrow p, D \rightarrow r$  **2.**  $A \rightarrow r, B \rightarrow p, C \rightarrow s, D \rightarrow p$  **3.**  $A \rightarrow p, B \rightarrow p, C \rightarrow q, D \rightarrow q$ **4.**  $A \rightarrow q, B \rightarrow p, C \rightarrow p, D \rightarrow r$ 

### PART - II

 Comprehension #1: 1.
 C
 2.
 C
 3.
 B
 4.
 A
 5.
 D
 Comprehension #2: 1.
 A
 2.
 B
 3.
 D

 Comprehension #3: 1.
 B
 2.
 C
 3.
 D
 Comprehension #4: 1.
 A
 2.
 A
 3.
 D

 Comprehension #5: 1.
 C
 2.
 C
 3.
 B
 4.
 B
 B

### EXERCISE - 5 : PART # I

 1. B
 2. B
 3. B
 4. C
 5. A
 6. B
 7. A
 8. A
 9. B
 10. B
 11. C
 12. B
 13. D

 14. B
 15. B
 16. C
 17. C
 18. A
 19. C
 20. D
 21. D
 22. C
 23. D
 24. D
 25. B
 26. A

 27. A

## PART - II

1. A D, B A 2. A A, B C, C D, D  $[(A_1, A_2, \dots, A_n) (H_1, H_2, \dots, H_n)]^{\frac{1}{2n}}$ 3.  $a \rightarrow D$  6. B 7. (n=7) 8. C 9. 6 10. B 11. D 12. B 13. C 14. A 15. B 16. C 17. C 18. 3 19. 0 20. 8 21. 9 or 3 22. D 23. A, D 24. 5 25. 4 26. 9 27. B



**MOCK TEST** 

| 1. A<br>10. ?     | 2. B<br>11. AC    | 3. C<br>12. AC                                                                                            | 4. D<br>13. ABCD                          | 5. A<br>14. ABC                          | 6. B<br>15. ABC           | 7. B<br>CD 16. A                                                                                                    | 8. A<br>17. A                                                            | 9. A<br>18. D |
|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------|
| 19. A<br>23. 1. B | 20. B<br>2. B 3.  | $\begin{array}{ccc} 21. & \mathbf{A} \rightarrow \mathbf{r}, \\ \mathbf{A} & 4. & \mathbf{A} \end{array}$ | $B \rightarrow pt, C \rightarrow$<br>5. A | sq, $D \rightarrow q$<br><b>24.</b> 1. C | 22. A→<br>2. B            | $\Rightarrow q, B \rightarrow r, C \rightarrow$<br><b>3.</b> C <b>25.</b> 1                                         | $p, D \rightarrow t$                                                     | 3. C          |
| <b>26.</b> 12     | <b>27.</b> Rs. 51 | <b>28.</b> 7                                                                                              | <b>29.</b> –(p + q                        | )                                        | <b>30.</b> $\frac{R(}{2}$ | $\frac{1-\sin\frac{\alpha}{2}}{2\sin\frac{\alpha}{2}}\left[\left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)\right]$ | $\left[\frac{-\sin\frac{\alpha}{2}}{-\sin\frac{\alpha}{2}}\right]^n - 1$ |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |
|                   |                   |                                                                                                           |                                           |                                          |                           |                                                                                                                     |                                                                          |               |