EXERCISE-I

Introduction

- Which of the following compounds does not 1. contain an -OH group (A) Phenol (B) Carboxylic acid (C) Aldehydes (D) Alcohols
- **2.** IUPAC name of CH_3COCH_3 is (A) Acetone (B) 2-propanone
 - (C) Dimethyl ketone (D) Propanal
- 3. What is the compound called if remaining two valencies of a carbonyl group are satisfied by two alkyl groups

(B) Ketone

- (A) Aldehyde
- (C) Acid (D) Acid chloride OH
- $CH_3 C CN$ is 4.
 - (A) Acetaldehyde cyanohydrin
 - (B) Acetone cyanohydrin
 - (C) Cyanoethanol
 - (D) Ethanol nitrile
- **5.** Ethanedial has which functional group(s)
 - (B) Two aldehydic (A) One ketonic
 - (C) One double bond (D) Two double bond
- 6. In the group $\geq_R^{R'} C = O$ the carbonyl carbon

is joined to other atoms by

- (A) Two sigma and one pi bonds
- (B) Three sigma and one pi bonds
- (C) One sigma and two pi bonds
- (D) Two sigma and two pi bonds
- 7. Which of the following types of isomerism is shown by pentanone
 - (A) Chain isomerism
 - (B) Position isomerism
 - (C) Functional isomerism
 - (D) All of these
- IUPAC name of *CCl₃CHO* is 8.
 - (A) Chloral
 - (B) Trichloro acetaldehyde
 - (C) 1, 1, 1-trichloroethanal
 - (D) 2, 2, 2-trichloroethanal

- Which of the following is a mixed ketone 9. (A) Pentanone (B) Acetophenone (C) Benzophenone (D) Butanone
- **10.** Chloral is (A) CCl_3CHO (B) CCl_3COCH_3 (C) CCl_3COCCl_3
 - (D) CCl_3CH_2OH

Preparation

11. From which of the following tertiary butyl alcohol is obtained by the action of methyl magnesium iodide

(A) HCHO (B) CH_3CHO (C) CH_3COCH_3 (D) *CO*₂

- 12. Catalyst used in Rosenmund reduction is (A) $Pd / BaSO_4$ (B) Zn-Hg couple (C) $LiAlH_{A}$ (D) Ni/H_2
- **13.** $CH_3 CH_2 C \equiv CH \xrightarrow[H_2O]{R}$ Butanone, *R* is
 - (A) Hg^{++} (B) $KMnO_4$
 - (C) $KClO_3$ (D) $K_2Cr_2O_7$
- 14. Dry heating of calcium acetate gives (A) Acetaldehyde (B) Ethane (C) Acetic acid (D) Acetone
- **15.** Identify the product *C* in the series $CH_3CN \xrightarrow{Na/C_2H_5OH} A \xrightarrow{HNO_2} B \xrightarrow{Tollen's reagent} C$ (A) CH_3COOH (B) CH_3CH_2NHOH (C) CH_3CONH_2 (D) $CH_{2}CHO$
- 16. Acetophenone is prepared by the reaction of which of the following in the presence of AlCl₃ catalyst
 - (A) Phenol and acetic acid
 - (B) Benzene and acetone
 - (C) Benzene and acetyl chloride
 - (D) Phenol and acetone
- **17.** Isopropyl alcohol on oxidation gives
 - (A) Acetone (B) Acetaldehyde
 - (C) Ether (D) Ethylene

18. On heating calcium acetate and calcium formate, the product formed is

(A) CH_3COCH_3

- (B) CH_3CHO
- (C) $HCHO + CaCO_3$
- (D) $CH_3CHO + CaCO_3$
- **19.** Which of the following compound gives a ketone with Grignard reagent
 - (A) Formaldehyde (B) Ethyl alcohol
 - (C) Methyl cyanide (D) Methyl iodide
- **20.** In the Rosenmund's reduction, $BaSO_4$ taken with catalyst *Pd* acts as
 - (A) Promotor(B) Catalytic poison(C) Cooperator(D) Absorber
- **21.** Which of the following gases when passed through warm dilute solution of H_2SO_4 in presence of $HgSO_4$ gives acetaldehyde
 - (A) CH_4 (B) C_2H_6
 - (C) $C_2 H_4$ (D) $C_2 H_2$
- **22.** CH_3COCH_2 can be obtained by
 - (A) Heating acetaldehyde with methanol
 - (B) Oxidation of propyl alcohol
 - (C) Oxidation of isopropyl alcohol
 - (D) Reduction of propionic acid
- **23.** Propyne on hydrolysis in presence of HCl and $HgSO_4$ gives
 - (A) Acetaldehyde (B) Acetone
 - (C) Formaldehyde (D) None of these
- **24.** Which of the following on reaction with NH_3 gives urinary antiseptic compound

- (C) C_6H_5CHO (D) $C_6H_5CH_2CHO$
- **25.** The oxidation product of 2-propanol with hot conc. HNO_3 is
 - (A) Ethanoic acid (B) Propanone
 - (C) Propanal (D) None of these
- 26. Hydrolysis of ozonide of 1-butene gives(A) Ethylene only
 - (B) Acetaldehyde and Formaldehyde
 - (C) Propionaldehyde and Formaldehyde
 - (D) Acetaldehyde only

27. Ketones are prepared by (A) Clemmensen's reduction (B) Cannizzaro reaction (C) Rosenmund's reduction (D) Oppenaur's oxidation **28.** O_3 reacts with $CH_2 = CH_2$ to form ozonide. On hydrolysis it forms (A) Ethylene oxide (B) HCHO (C) Ethylene glycol (D) Ethyl alcohol 29. Ethyne on reaction with water in the presence of $HgSO_4$ and H_2SO_4 gives (A) Acetone (B) Acetaldehyde (C) Acetic acid (D) Ethyl alcohol **30.** $CH_3 - CH_2 - C \equiv CH \xrightarrow{H_gSO_4} A$, the compound A is (A) $CH_3 - CH_2 - C - CH_3$ (B) $CH_3 - CH_2 - CH_2 - CHO$ (C) $CH_3 - CH_2 - CH_2 - COOH$ (D) None of these

Properties

- **31.** For C_6H_5CHO which of the following is incorrect
 - (A) On oxidation it yields benzoic acid
 - (B) It is used in perfumery
 - (C) It is an aromatic aldehyde
 - (D) On reduction yields phenol
- **32.** Grignard reagent on reaction with acetone forms
 - (A) Tertiary alcohol (B) Secondary alcohol
 - (C) Acetic acid (D) Acetaldehyde
- **33.** Which of the following is incorrect
 - (A) $FeCl_3$ is used in the detection of phenols
 - (B) Fehling solution is used in the detection of glucose
 - (C) Tollen's reagent is used in detection of unsaturation
 - (D) NaHSO₃ is used in the detection of carbonyl compounds

Aldehydes, Ketones and Carboxylic Acids

4. Consider the following statement	40. Which of the following organic compounds
Acetophenone can be prepared by	exhibits positive Fehling test as well as
(1) Oxidation of 1-phenylethanol	iodoform test
(2) Reaction of benzalthanol with methyl	(A) Methanal (B) Ethanol
magnesium bromide	(C) Propanone (D) Ethanal
(3) Friedel craft's reaction of benzene with acetyl chloride	41. Which of the following does not give iodoform test
(4) Distillation of calcium benzoate	(A) CH_3CH_2OH (B) CH_3OH
(A) 1 and 2 (B) 1 and 4	(C) CH_3CHO (D) $PhCOCH_3$
(C) 1 and 3 (D) 3 and 4	42. Which of the following will not give iodoform
5. Which one of the following pairs is not	test
correctly matched	(A) Ethanal (B) Ethanol
(A) > $C = O$ $\xrightarrow{\text{Clemenson's reduction}} > CH_2$	(C) 2-propanone (D) 3-pentanone
-	43. Which of the following will not give the
$(B) > C = O \xrightarrow{\text{Wolf -Kishner reduction}} > CHOH$	iodoform test
(C) $-COCl \xrightarrow{\text{Rosenmund's reduction}} CHO$	(A) Acetophenone (B) Ethanal
(D) $-C \equiv N \xrightarrow{\text{Stephen reduction}} CHO$	(C) Benzophenone (D) Ethanol
6. Which of the following gives aldol	44. Haloform test is given by the following
condensation reaction	substance
0	(A) <i>HCHO</i> (B) $(CH_3)_2 CO$
(A) $C_6 H_5 OH$ (B) $C_6 H_5 - C_6 H_5$	(C) CH_3OCH_3 (D) CH_3CH_2Cl
	45. Dimethyl ketones are usually characterised
	through
(C) $CH_3CH_2 - C - CH_3$ (D) $(CH_3)_3C - C - CH_3$	(A) Tollen's reagent (B) Iodoform test
7. Which of the following products is formed	(C) Schiff's test (D) Benedict's reagent
when benzaldehyde is treated with CH_3MgBr	46. The light yellow compound produced when
and the addition product so obtained is	acetone reacts with iodine and alkali, is
subjected to acid hydrolysis	(A) $CH_3.CO.CH_2I$ (B) CH_3I
(A) Secondary alcohol (B) A primary alcohol	(C) CHI_3 (D) None of these
(C) Phenol (D) Tert-Butyl alcohol	47. If formaldehyde and <i>KOH</i> are heated, then we
3. Aldol condensation will not be observed in	get
(A) Chloral	(A) Acetylene (B) Methane
(B) Phenyl acetaldehyde	(C) Methyl alcohol (D) Ethyl formate
(C) Hexanal	48. Which of the following reagent reacts differently
(D) Ethanol	with <i>HCHO</i> , CH_3CHO and CH_3COCH_3
9. Which of the following compounds containing	(A) HCN (B) NH_2NH_2
carbonyl group will give coloured crystalline	(C) NH_2OH (D) NH_3
compound with	49. Acetaldehyde reacts with $C_2H_5M_gCl$ the final
NHNH 2	
	product is (A) An aldehyde
O_2N NO ₂	(A) An aldenyde (B) A ketone
(A) CH_3COCl (B) CH_3COCH_3	(C) A primary alcohol
(C) $CH_3CO(OC_2H_5)$ (D) CH_3CONH_2	(D) A secondary alcohol

50.	Treatment of propion <i>NaOH</i> solution gives	aldehyde with dilute	59
	(A) $CH_3CH_2COOCH_2$	$CH_{2}CH_{3}$	
	(B) CH ₃ CH ₂ CHOHCH	2 0	
	(C) $CH_3CH_2CHOHCH$	5	
	5 -		60
	(D) $CH_3CH_2COCH_2CH_2$	2	
51.	$CH_{3}CH = CHCHO$	is oxidised to	
	$CH_3CH = CHCOOH$ u	ising	
	(A) Alkaline $KMnO_4$	(B) Selenium dioxide	61
	(C) Ammoniacal AgNC	D_3 (D) All of these	
52.	Which of the following	does not turn Schiff's	
	reagent to pink	-	
	(A) Formaldehyde	(B) Benzaldehyde	62
	(C) Acetone	(D) Acetaldehyde	02
53.	Fehling's test is positive		
	(A) Acetaldehyde	•	
	(C) Ether	(D) Alcohol	
54.	Acetaldehyde and acc reaction with	etone differ in their	
	(A) Sodium bisulphite		
	(B) Ammonia		
	(C) Phosphorus pentach	loride	63
	(D) Phenyl hydrazine		
55.	The final product form	ed when acetaldehyde	
	is reduced with sodium	and alcohol is	
	(A) Ethylene	(B) Ethyl alcohol	
	(C) Ethene	(D) All of these	64
6.	The compound obtained	-	0
	propionaldehyde by a	malgamated zinc and	
	concentrated HCl is	(D) Dronono	
	(A) Propanol(C) Propene	(B) Propane(D) All of these	
57	Formaldehyde when tro	· · /	
57.	methanol and potassium	•	
	is known as		
	(A) Perkin reaction		65
	(B) Claisen reaction		
	(C) Cannizzaro reaction	l	
	(D) Knoevenagel reaction	on	
58.	Aldehydes and ketones give		
	(A) Hydrazine	(B) Phenyl hydrazine	
	(C) Semicarbazide	(D) Hydrogen cyanide	

(C) Semicarbazide (D) Hydrogen cyanide

59.	Acetaldehyde reacts with		
	(A) Electrophiles only		
	(B) Nucleophiles only		
	(C) Free radicals only		
	(D) Both electrophiles and nucleophiles		
60.	The typical reactions of aldehyde is		
	(A) Electrophilic addition		
	(B) Nucleophilic substitution		
	(C) Nucleophilic addition		
	(D) Nucleophilic elimination		
61.	When two molecules of acetaldehyde		
	condense in the presence of dilute alkali, it		
	forms		
	(A) Acetal (B) Sodium formate		
~	(C) Aldol (D) Mesitylene		
62.	•		
	followed by heating gives		
	(A) $CH_3CH_2CH_2CH_2OH$		
	(B) $CH_3CH_2CH_2CHO$		
	(C) $CH_3 - CH = CHCHO$		
	(D) $CH_3 - CH = CHCH_2OH$		
	- R		
63.	Reaction $\stackrel{R}{\sim} CO + HCN \rightarrow R - \stackrel{R}{{}_{C}} - OH$ is		
	K CN		
	(A) Electrophilic substitution		
	(B) Electrophilic addition		
	(C) Nucleophilic addition		
	(D) Nucleophilic substitution		
64.	Benzaldehyde on reaction with acetophenone		
	in the presence of sodium hydroxide solution		
	gives		
	(A) $C H CH = CHCOC H$		

- (A) $C_6H_5CH = CHCOC_6H_5$
- (B) $C_6H_5COCH_2C_6H_5$
- (C) $C_6H_5CH = CHC_6H_5$
- (D) $C_6H_5CH(OH)COC_6H_5$
- **65.** Aldehydes and ketones can be reduced to hydrocarbon by using
 - (A) $LiAlH_4$
 - (B) $H_2 / Pd BaSO_4$
 - (C) Na Hg / HCl
 - (D) $NH_2 NH_2 / C_2H_5ONa$

76. Acetaldehyde reacts with Cl_2 (in excess) to

66. An important reaction of acetone is autocondensation in presence of concentrated sulphuric acid to give the aromatic compound (A) Mesitylene (B) Mesityl oxide (C) Trioxan (D) Phorone 67. Identify the organic compound which, on heating with strong solution of *NaOH*, partly converted into an acid salt and partly into alcohol (A) Benzyl alcohol (B) Acetaldehyde (C) Acetone (D) Benzaldehyde 68. Which of the following does not give brick red precipitate with Fehling solution (A) Acetone (B) Acetaldehyde (C) Formalin (D) D-glucose **69.** Acetaldehyde and acetone be can distinguished by (A) Molisch test (B) Bromoform test (C) Solubility in water (D) Tollen's test **70.** Which compound is soluble in H_2O (A) HCHO (B) CH_3CHO (C) CH_3COCH_3 (D) All **71.** $CH_3CHO + CH_3MgBr \rightarrow Product \xrightarrow{H_2O} A$ What is A? (A) Primary alcohol (B) Secondary alcohol (C) Tertiary alcohol (D) Ketone 72. Which gives lactic acid on hydrolysis after reacting with HCN (A) HCHO (B) CH_3CHO (D) CH_3COCH_3 (C) C_6H_5CHO **73.** CH_3CHO react with aqueous NaOH solution to form (A) 3-hydroxy butanal (B) 2-hydroxy butanal (C) 4-hydroxy butanal (D) 3-hydroxy butanol 74. Fehling solution react with HCHO to form precipitate of (A) White colour (B) Yellow colour (C) Red colour (D) Blue colour 75. Product in following reaction is $CH_3MgI + HCHO \rightarrow Product$

(B) CH_3OH

(D) $CH_3 - O - CH_3$

(A) CH_2CHO

(C) C_2H_5OH

- give (A) Chloral (B) Chloroform (C) Acetic acid (D) Trichloroacetic acid 77. The compound which reacts with Fehling solution is (A) C_6H_5COOH (B) HCOOH (C) C_6H_5CHO (D) CH_2ClCH_3 78. Which one of the following undergoes reaction with 50% sodium hydroxide solution to give the corresponding alcohol and acid (B) Benzaldehyde (A) Butanal (C) Phenol (D) Benzoic acid 79. Which one of the following is reduced with zinc and hydrochloric acid to give the corresponding hydrocarbon (A) Acetamide (B) Acetic acid (C) Ethyl acetate (D) Butan-2-one 80. Three molecules of acetone in the presence of dry *HCl* form (A) Mesitylene (B) Phorone (C) Glyoxal (D) Mesityl oxide 81. Aldehydes and ketones can be reduced to corresponding hydrocarbons by (A) Refluxing with water (B) Refluxing with strong acids (C) Refluxing with soda amalgam and water (D) Refluxing with zinc amalgam and concentrated HCl 82. Acetone reacts with iodine to form iodoform in the presence of (A) $CaCO_3$ (B) NaOH (C) KOH (D) $MgCO_3$ 83. Cyanohydrin of which of the following forms lactic acid (B) CH_3CHO (A) CH_3CH_2CHO (D) CH_3COCH_3 (C) HCHO **84.** Which of the following is used to detect aldehydes (A) Million's test (B) Tollen's reagent
 - (C) Neutral formia ablarida a
 - (C) Neutral ferric chloride solution
 - (D) Molisch's test

- **85.** Which of the following aldehydes give red precipitate with Fehling solution ?
 - (A) Benzaldehyde(B) Salicylaldehyde(C) Acetaldehyde(D) None of these
- **86.** Which responds to +ve iodoform test ?
 - (A) Butanol (B) Butan-1-al
 - (C) Butanol-2 (D) 3-pentanone
- **87.** The correct order of reactivity of *PhMgBr* with
 - $\begin{array}{cccccccc} O & O & O \\ Ph C Ph & CH_3 C H & CH_3 C CH_3 \text{ is} \\ (I) & (II) & (III) \\ (A) & (I) > (II) > (III) & (B) & (III) > (I) > (I) \\ (C) & (II) > (III) > (I) & (D) & (I) > (III) > (II) \end{array}$
- **88.** The pair of compounds in which both the compounds give positive test with Tollen's reagent is
 - (A) Glucose and Sucrose
 - (B) Fructose and Sucrose
 - (C) Acetophenone and Hexanal
 - (D) Glucose and Fructose
- 89. The most appropriate reagent to distinguish between acetaldehyde and formaldehyde is(A) Fehling's solution
 - (B) Tollen's reagent
 - (C) Schiff's reagent
 - (D) Iodine in presence of base
- **90.** Silver mirror test can be used to distinguish between
 - (A) Ketone and acid
 - (B) Phenol and acid
 - (C) Aldehyde and acid
 - (D) Alcohol and phenol

General Introduction of Carboxylic Acids and Their Derivatives

- **91.** Which of the following structure of carboxylic acid accounts for the acidic nature
 - (A) $R C \ll O \\ OH$ (B) $R C \ll OH$
 - (C) $R C \stackrel{\neq O}{\sim} H$ (D) None of these

	J /			
92.	Acetoacetic ester behav	ves as		
	(A) An unsaturated hydroxy compound			
	(B) A keto compound			
	(C) Both of these ways			
	(D) None of these			
93.	The general formula (H	$RCO)_2$	O rep	resents
	(A) An ester	(B)	A keto	one
	(C) An ether	(D)	An aci	d anhydride
94.	A tribasic acid is			
	(A) Oxalic acid	(B)	Tartar	ric acid
	(C) Lactic acid	(D)	Citric	acid
95.	Amphiphilic molecu	ıles	are	normally
	associated with			
	(A) Isoprene based poly	ymers		
	(B) Soaps and detergen	ts		
	(C) Nitrogen based fert		-	
	(D) Pain relieving medi	icines	such a	is aspirin
96.	Number of oxygen a	atoms	in a	acetamide
	molecule is		_	
	(A) 1	(B)		
~	(C) 3	(D)	4	
97.	Urea is	~		
	(A) Monoacidic base			lic base
00	(C) Neutral	(D)	Amph	oteric
98.	Fats and oils are	(D)	A 1 1-	.1.
	(A) Acids		Alcoh	
00	(C) Esters		•	ocarbons
99.	The general formulas	$C_n H_2$	$2nO_2$ co	build be for
	open chain		C 1	1 1
	(A) Diketones			xylic acids
	(C) Diols	(D)	Dialde	ehydes
100				
100	H - C - Cl is called			
	(A) Acetyl chloride			
	(B) Formyl chloride			
	(C) Chloretone			
101	(D) Oxochloromethane .Urea			
101		onica	ocid	
	(A) Is an amide of carbonic acid (B) It is diamide of carbonic acid			
	(B) It is diamide of carbonic acid(C) Gives carbonic acid on hydrolysis			
	(C) Gives carbonic acid on hydrolysis(D) Resembles carbonic acid			

102. Which of the following acids is isomeric wit	h
phthalic acid	
(A) Succinic acid	
(B) Salicylic acid	
(C) 1, 4-benzene dicarboxylic acid	
(D) Methyl benzoic	
103. The ester among the following is	
(A) Calcium lactate	
(B) Ammonium acetate	
(C) Sodium acetate	
(D) None of these	
104.Sodium or potassium salts of higher fatt	y
acids are called	
(A) Soaps (B) Terpenes	
(C) Sugars (D) Alkaloids	
105. Formamide is	
(A) $HCONH_2$ (B) CH_3CONH_2	
(C) $HCOONH_4$ (D) $(HCHO + NH_3)$)

Preparation of Carboxylic Acids and Their Derivatives

106. The product D of the reaction

$CH_3Cl \xrightarrow{KCN} (A) \xrightarrow{H_2C}$	$\xrightarrow{D} (B) \xrightarrow{NH_3} (C) \xrightarrow{\Delta} (D)$
is	
(A) $CH_3CH_2NH_2$	(B) CH_3CN
(C) HCONH ₂	(D) CH_3CONH_2

107.Which of the following on hydrolysis forms acetic acid

(A) CH_3CN	(B) CH_3OH
(C) C_2H_5OH	(D) $C_2 H_5 N H_2$

108. When benzyl alcohol is oxidised with $KMnO_4$, the product obtained is

(A) Benzaldehyde	(B) Benzoic acid
(C) CO_2 and H_2O	(D) None of these

109.Which of the following gives benzoic acid on oxidation

(A) Chlorophenol	(B) Chlorotoluene
(C) Chlorobenzene	(D) Benzyl chloride

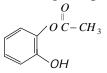
110. $(CH_3)_2 CO \xrightarrow{NaCN} A \xrightarrow{H_3O^+} B$ In the above sequence of reactions A and B are (A) $(CH_3)_2 C(OH)CN, (CH_3)_2 C(OH)COOH$ (B) $(CH_3)_2 C(OH)CN, (CH_3)_2 C(OH)_2$ (C) $(CH_3)_2 C(OH)CN, (CH_3)_2 CHCOOH$ (D) $(CH_3)_2 C(OH)CN, (CH_3)_2 C = O$ 111. Two moles of acetic acid are heated with P_2O_5 . The product formed is (A) 2 moles of ethyl alcohol (B) Formic anhydride (C) Acetic anhydride (D) 2 moles of methyl cyanide 112. Formic acid is obtained when (A) Calcium acetate is heated with conc. H_2SO_4 (B) Calcium formate is heated with calcium acetate (C) Glycerol is heated with oxalic acid at $110^{\circ}C$ (D) Acetaldehyde is oxidised with $K_2Cr_2O_7$ and H_2SO_4 113. Acetyl chloride cannot be obtained by treating acetic acid with (A) $CHCl_3$ (B) $SOCl_2$ (C) PCl_3 (D) PCl_{z} **114.***o*-xylene when oxidised in presence of V_2O_5 the product is (A) Benzoic acid (B) Phenyl acetic acid (C) Phthalic acid (D) Acetic acid 115. The reaction $CH_{3}CH = CH_{3} \xrightarrow{CO+H_{2}O} CH_{3} - CH - CH_{3}$ COOH is known as (A) Wurtz reactions (B) Koch reaction (C) Clemenson's reduction (D) Kolbe's reaction

Aldehydes, Ketones and Carboxylic Acids

116. Acetic anhydride is obtained from acetyl chloride by the reaction of	124. Which class of compounds shows <i>H</i> -bonding even more than in alcohols
(A) P_2O_5 (B) H_2SO_4	(A) Phenols (B) Carboxylic acids
(C) CH_3COONa (D) CH_3COOH	(C) Ethers (D) Aldehydes
	125. When propanamide reacts with Br_2 and $NaOH$
117. Hydrolysis of acetamide produces(A) Acetic acid(B) Acetaldehyde(C) Methylamine(D) Formic acid 118. Ethyl acetate is obtained when methyl magnesium iodide reacts with(A) Ethyl formate(B) Ethyl chloroformate(C) Acetyl chloride(D) Carbon dioxide 119. Sodium acetate reacts with acetyl chloride to form(A) Acetic acid(B) Acetic acid(B) Acetic acid(B) Acetic acid(C) Acetic anhydride(D) Sodium formate 120. Ammonium acetate reacts with acetic acid at $110^{\circ}C$ to form (A) Acetamide(B) Formamide(C) Acetamide(D) Luce	then which of the following compound is formed (A) Ethyl alcohol (B) Propyl alcohol (C) Propyl amine (D) Ethylamine 126. Hydrolysis of an ester gives a carboxylic acid which on Kolbe's electrolysis yields ethane. The ester is (A) Ethyl methonoate (B) Methyl ethanoate (C) Propylamine (D) Ethylamine 127. On prolonged heating of ammonium cyanate or urea, we get (A) N_2 (B) CO_2 (C) Biurette (D) Ammonium carbonate 128. In the Gabriel's phthalimide synthesis, phthalimide is treated first with
(C) Ammonium cyanate (D) Urea	(A) C_2H_5I / KOH (B) Ethanolic Na
Properties of Carboxylic Acids and Their Derivatives	(C) Ethanol and H_2SO_4 (D) Ether and $LiAlH_4$ 129. Which of the following is the strongest acid
121. What will happen if $LiAlH_4$ is added to an	(A) CH_3COOH (B) $BrCH_2COOH$
 ester (A) Two units of alcohol are obtained (B) One unit of alcohol and one unit of acid is obtained (C) Two units of acids are obtained (D) None of these 122. When anisole is heated with <i>HI</i>, the product is (A) Phenyl iodide and methyl iodide 	 (C) ClCH₂COOH (D) FCH₂COOH 130.Which of the following reduces Tollen's reagent (A) Acetic acid (B) Citric acid (C) Oxalic acid (D) Formic acid 131.Hydrolytic reaction of fats with caustic soda is known as (A) Esterification (B) Saponification (C) Acetylation (D) Carboxylation
(A) Phenyl lodide and methyl lodide(B) Phenol and methanol(C) Phenyl iodide and methanol(D) Methyl iodide and phenol	(C) Activitation (D) Carboxylation 132. In the reaction $CH_3COOH \xrightarrow{LiAlH_4} (A) \xrightarrow{I_2+NaOH} (B) \xrightarrow{Ag(Dust)} (C)$ the final product (C) is
123. When CH_3COOH reacts with $CH_3 - Mg - X$	(A) C_2H_5I (B) C_2H_5OH
(A) CH_3COX is formed	(II) C_2H_5I (D) C_2H_5OH (C) C_2H_2 (D) CH_3COCH_3
(B) Hydrocarbon is formed(C) Acetone is formed	133. Reaction of ethyl formate with excess of CH_3MgI followed by hydrolysis gives
(D) Alcohol is formed	(A) <i>n</i>-propyl alcohol(B) Ethanal(C) Propanal(D) Isopropyl alcohol

134.Of the following four reactions, formic and	141. Nitration of benzoic acid gives
acetic acids differ in which respect	(A) 3-nitrobenzoic acid
(A) Replacement of hydrogen by sodium	(B) 2-nitrobenzoic acid
(B) Formation of ester with alcohol	(C) 2, 3-dinitrobenzoic acid
(C) Reduction of Fehling solution	(D) 2, 4-dinitrobenzoic acid
(D) Blue litmus reaction	142. The reagent used for converting ethanoic acid
135.Formaldehyde and formic acid can be	to ethanol is
distinguished using	(A) $LiAlH_4$ (B) $KMnO_4$
(A) Tollen's reagent	(C) PCl_3 (D) $K_2Cr_2O_7 / H^+$
(B) Fehling solution	143. Which one of the following has the maximum
(C) Ferric chloride	acid strength
(D) Sodium bicarbonate	(A) <i>o</i> -nitrobenzoic acid
136. Ester and acetamide are distinguished by	(B) <i>m</i> -nitrobenzoic acid
(A) Hydrolysis with strong acids or alkali	(C) <i>p</i> -nitrobenzoic acid
(B) Derivatives of fatty acids	(D) <i>p</i> -nitrophenol
(C) Both (A) and (B)	144. When benzoic acid is treated with PCl_5 at
(D) None of these	$100^{\circ}C$, it gives
137. Acetic acid exists as a dimer in benzene	(A) Benzoyl chloride
solution. This is due to	(B) <i>o</i> -chlorobenzoic acid
(A) Condensation	(C) <i>p</i> -chlorobenzoic acid
(B) Presence of $-COOH$ group	(D) Benzyl chloride
(C) Presence of α – hydrogen	145. Oxalic acid on being heated upto $90^{\circ}C$ with
(D) Hydrogen bonding	conc. H_2SO_4 forms
138. Which of the following compounds will react	(A) $HCOOH + CO_2$ (B) $CO_2 + H_2O$
with $NaHCO_3$ solution to give sodium salt	(A) $HCOOH + CO_2$ (B) $CO_2 + H_2O$ (C) $CO_2 + CO + H_2O$ (D) $HCOOH + CO$
and carbon dioxide	
(A) Phenol (B) <i>n</i> -hexanol	146. Benzoic acid is less acidic than salicylic acid
(C) Acetic acid (D) Both (A) and (B)	because of (A) Hydrogen bond (B) Inductive effect
139. Acetic acid dissolved in benzene shows a	(A) Hydrogen bond(B) Inductive effect(C) Resonance(D) All of these
molecular mass of	
(A) 30 (B) 60	147. Lactic acid on heating with conc. H_2SO_4
(C) 120 (D) 240	gives
140. The reaction	(A) Acetic acid (B) Propionic acid
	(C) Acrylic acid (D) Formic acid
$2CH_{3} - C - OC_{2}H_{5} \xrightarrow{C_{2}H_{5}ONa} \rightarrow O$	148. Acetamide is (D) Pasia
	(A) Acidic(B) Basic(C) Neutral(D) Amphoteric
	149. Silver benzoate reacts with bromine to form
$CH_{3} - \underbrace{C}_{\parallel} - CH_{2} - \underbrace{C}_{\parallel} - OC_{2}H_{5} + C_{2}H_{5}OH$	<i>C</i>
0 0	, C – OBr
is called	(A) (B) (C - 00)
(A) Etard reaction	
(B) Perkin's reaction	COOAg
(C) Claisen condensation	(C) (D)
(D) Claisen Schmidt reaction	
	Br

150. Acetic anhydride reacts	•	1
presence of anhydrous A	$AlCl_3$ to form	
(A) Ethyl acetate	• • • •	
(C) Methyl acetate	., 1	
151. An organic compound is		
potash. The product is		1
with HCl. A white sol		1
starting compound may		
(A) Ethyl benzoate	•	
(C) Ethyl acetate	•	
152. The <i>OH</i> group of an al		1
group of a carboxylic ac	cid can be replaced by	
- <i>Cl</i> using		
(A) Chlorine		
(B) Hydrochloric acid		
(C) Phosphorus pentachl	oride	ι
(D) Hypochlorous acid		1
153. Which of the following i		
	(B) <i>p</i> -nitrophenol	
(C) <i>m</i> -nitrophenol		
154.Benedict's solution is no	•	
(A) Formaldehyde		
(C) Glucose		
155. CH_3COOH is reacted	with $CH \equiv CH$ in	
presence of Hg^{++} , the p	roduct is	
		1
(A) $CH_3(OOCCH_3)$	(B) CH_3]
${CH}_{2}(OOCH_{3})$	CH ₂ -(OOC-CH ₃)	
(C) CH_3	(D) None of these	
$CH(OOC-CH_3)_2$		
156. Acetic acid reacts with <i>I</i>	PCl ₋ to form	1
(A) CH ₃ COCl	(B) CHCl ₂ COOH	1
(C) $CH_2ClCOOH$	(D) CH_3COOCl	
$(C) CH_2 CICOOH$	$(D) CH_3 COOCI$	


157. $CH_3COOC_2H_5$ with excess of C_2H_5MgBr and hydrolysis gives

	C_2H_5
(A) $CH_3 - C = O$	(B) $CH_3 - C - OH$
$ C_2H_5$	C_2H_5
	C_2H_5
(C) $CH_3 - C = O$	(D) $CH_3 - C = O$
$\overset{ }{C}H_{3}$	CH_3

•
158. Urea upon hydrolysis yields
(A) Acetamide
(B) Carbonic acid
(C) Ammonium hydroxide
(D) NO_2
-
159. $CH_3CHO \xrightarrow{HCN} A \xrightarrow{HOH} B.$
The product <i>B</i> is
(A) Malonic acid (B) Glycolic acid
(C) Lactic acid (D) Malic acid
160. What is the % of acetic acid present in
vinegar?
(A) 6–10% (B) 70–80%
(C) $7 - 8\%$ (D) $90 - 100\%$

Uses of Carboxylic Acids and Their Derivatives

161. The following compound is used as

- (A) An anti-inflamatory agent
- (B) Analgesic
- (C) Hypnotic
- (D) Antiseptic
- **162.**To which of the following groups does soap belongs
 - (A) Esters
 - (B) Amines
 - (C) Salts of organic higher fatty acids
 - (D) Aldehydes
- 163. Aspirin is an acetylation product of
 - (A) o-hydroxybenzoic acid
 - (B) o-dihydroxybenzene
 - (C) *m*-hydroxybenzoic acid
 - (D) *p*-dihydroxybenzene

164. Which one is used as a food preservative

- (A) Sodium acetate
- (B) Sodium propionate
- (C) Sodium benzoate
- (D) Sodium oxalate

(A) Tartaric acid

165. What makes a lemon sour

- (B) Oxalic acid
- (C) Citric acid (D) Hydrochloric acid